1049 |
|
|
1050 |
} |
} |
1051 |
|
|
|
//////////////////////////////////////////////////// |
|
1052 |
|
|
1053 |
|
|
1054 |
|
/// wm feb 08 |
1055 |
|
|
1056 |
|
/** |
1057 |
|
* Method to calculate Beta from the 12 single measurements |
1058 |
|
* we check the individual weights for artificial TDC values, then calculate |
1059 |
|
* am mean beta for the first time. In a second step we loop again through |
1060 |
|
* the single measurements, checking for the residual from the mean |
1061 |
|
* The cut on the residual reject measurements > "x"-sigma. A chi2 value is |
1062 |
|
* calculated, furthermore a "quality" value by adding the weights which |
1063 |
|
* are finally used. If all measurements are taken, "quality" will be = 22.47. |
1064 |
|
* A chi2 cut around 3-4 and a quality-cut > 20 is needed for clean beta |
1065 |
|
* measurements like antiprotons etc. |
1066 |
|
* The Level2 output is derived in the fortran routines using: 10.,10.,20. |
1067 |
|
* @param notrack Track Number |
1068 |
|
* @param cut on residual: difference between single measurement and mean |
1069 |
|
* @param cut on "quality" |
1070 |
|
* @param cut on chi2 |
1071 |
|
*/ |
1072 |
|
|
1073 |
|
Float_t ToFLevel2::CalcBeta(Int_t notrack, Float_t resmax, Float_t qualitycut, Float_t chi2cut){ |
1074 |
|
|
1075 |
|
// cout<<" in CalcBeta "<<resmax<<" "<<chi2cut<<" "<<qualitycut<<endl; |
1076 |
|
|
1077 |
|
Float_t bxx = 100.; |
1078 |
|
// |
1079 |
|
ToFTrkVar *trk = GetToFTrkVar(notrack); |
1080 |
|
if(!trk) return 0; //ELENA |
1081 |
|
|
1082 |
|
|
1083 |
|
Float_t chi2,xhelp,beta_mean; |
1084 |
|
Float_t w_i[12],quality,sw,sxw,res,betachi,beta_mean_inv; |
1085 |
|
Float_t b[12],tdcfl; |
1086 |
|
Int_t pmt_id,pmt_plane; |
1087 |
|
|
1088 |
|
for (Int_t i=0; i<12; i++){ |
1089 |
|
b[i] = trk->beta[i]; |
1090 |
|
} |
1091 |
|
|
1092 |
|
|
1093 |
|
//======================================================================== |
1094 |
|
//--- Find out ToF layers with artificial TDC values & fill vector --- |
1095 |
|
//======================================================================== |
1096 |
|
|
1097 |
|
Float_t w_il[6]; |
1098 |
|
|
1099 |
|
for (Int_t jj=0; jj<6;jj++) { |
1100 |
|
w_il[jj] = 1000.; |
1101 |
|
} |
1102 |
|
|
1103 |
|
|
1104 |
|
for (Int_t i=0; i<trk->npmttdc; i++){ |
1105 |
|
// |
1106 |
|
pmt_id = (trk->pmttdc).At(i); |
1107 |
|
pmt_plane = GetPlaneIndex(pmt_id); |
1108 |
|
tdcfl = (trk->tdcflag).At(i); |
1109 |
|
if (w_il[pmt_plane] != 1.) w_il[pmt_plane] = tdcfl; //tdcflag |
1110 |
|
}; |
1111 |
|
|
1112 |
|
//======================================================================== |
1113 |
|
//--- Set weights for the 12 measurements using information for top and bottom: |
1114 |
|
//--- if no measurements: weight = set to very high value=> not used |
1115 |
|
//--- top or bottom artificial: weight*sqrt(2) |
1116 |
|
//--- top and bottom artificial: weight*sqrt(2)*sqrt(2) |
1117 |
|
//======================================================================== |
1118 |
|
|
1119 |
|
Int_t itop[12] = {0,0,1,1,2,2,3,3,0,0,1,1}; |
1120 |
|
Int_t ibot[12] = {4,5,4,5,4,5,4,5,2,3,2,3}; |
1121 |
|
|
1122 |
|
xhelp= 1E09; |
1123 |
|
|
1124 |
|
for (Int_t jj=0; jj<12;jj++) { |
1125 |
|
if (jj<4) xhelp = 0.11; // S1-S3 |
1126 |
|
if ((jj>3)&&(jj<8)) xhelp = 0.18; // S2-S3 |
1127 |
|
if (jj>7) xhelp = 0.28; // S1-S2 |
1128 |
|
if ((w_il[itop[jj]] == 1000.) && (w_il[ibot[jj]] == 1000.)) xhelp = 1E09; |
1129 |
|
if ((w_il[itop[jj]] == 1) || (w_il[ibot[jj]] == 1.)) xhelp = xhelp*1.414 ; |
1130 |
|
if ((w_il[itop[jj]] == 1) && (w_il[ibot[jj]] == 1.)) xhelp = xhelp*2. ; |
1131 |
|
|
1132 |
|
w_i[jj] = 1./xhelp; |
1133 |
|
} |
1134 |
|
|
1135 |
|
|
1136 |
|
//======================================================================== |
1137 |
|
//--- Calculate mean beta for the first time ----------------------------- |
1138 |
|
//--- We are using "1/beta" since its error is gaussian ------------------ |
1139 |
|
//======================================================================== |
1140 |
|
|
1141 |
|
Int_t icount=0; |
1142 |
|
sw=0.; |
1143 |
|
sxw=0.; |
1144 |
|
beta_mean=100.; |
1145 |
|
|
1146 |
|
for (Int_t jj=0; jj<12;jj++){ |
1147 |
|
if ((fabs(1./b[jj])>0.1)&&(fabs(1./b[jj])<15.)) |
1148 |
|
{ |
1149 |
|
icount= icount+1; |
1150 |
|
sxw=sxw + (1./b[jj])*w_i[jj]*w_i[jj] ; |
1151 |
|
sw =sw + w_i[jj]*w_i[jj] ; |
1152 |
|
|
1153 |
|
} |
1154 |
|
} |
1155 |
|
|
1156 |
|
if (icount>0) beta_mean=1./(sxw/sw); |
1157 |
|
beta_mean_inv = 1./beta_mean; |
1158 |
|
|
1159 |
|
//======================================================================== |
1160 |
|
//--- Calculate beta for the second time, use residuals of the single |
1161 |
|
//--- measurements to get a chi2 value |
1162 |
|
//======================================================================== |
1163 |
|
|
1164 |
|
icount=0; |
1165 |
|
sw=0.; |
1166 |
|
sxw=0.; |
1167 |
|
betachi = 100.; |
1168 |
|
chi2 = 0.; |
1169 |
|
quality=0.; |
1170 |
|
|
1171 |
|
|
1172 |
|
for (Int_t jj=0; jj<12;jj++){ |
1173 |
|
if ((fabs(1./b[jj])>0.1)&&(fabs(1./b[jj])<15.)&&(w_i[jj]>0.01)) { |
1174 |
|
res = beta_mean_inv - (1./b[jj]) ; |
1175 |
|
if (fabs(res*w_i[jj])<resmax) {; |
1176 |
|
chi2 = chi2 + pow((res*w_i[jj]),2) ; |
1177 |
|
icount= icount+1; |
1178 |
|
sxw=sxw + (1./b[jj])*w_i[jj]*w_i[jj] ; |
1179 |
|
sw =sw + w_i[jj]*w_i[jj] ; |
1180 |
|
} |
1181 |
|
} |
1182 |
|
} |
1183 |
|
quality = sqrt(sw) ; |
1184 |
|
|
1185 |
|
if (icount==0) chi2 = 1000.; |
1186 |
|
if (icount>0) chi2 = chi2/(icount) ; |
1187 |
|
if (icount>0) betachi=1./(sxw/sw); |
1188 |
|
|
1189 |
|
bxx = 100.; |
1190 |
|
if ((chi2 < chi2cut)&&(quality>qualitycut)) bxx = betachi; |
1191 |
|
// |
1192 |
|
return(bxx); |
1193 |
|
}; |
1194 |
|
|
1195 |
|
|
1196 |
|
//////////////////////////////////////////////////// |
1197 |
|
//////////////////////////////////////////////////// |
1198 |
|
|
1199 |
|
|
1200 |
/** |
/** |
1201 |
* Fills a struct cToFLevel2 with values from a ToFLevel2 object (to put data into a F77 common). |
* Fills a struct cToFLevel2 with values from a ToFLevel2 object (to put data into a F77 common). |