// // C/C++ headers // #include #include // // ROOT headers // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // // RunInfo header // #include // // YODA headers // #include #include #include // // This program headers // #include #include #include // // // Declaration of the core fortran routines // #define tofl2com tofl2com_ extern "C" int tofl2com(); #define toftrk toftrk_ extern "C" int toftrk(); #define rdtofcal rdtofcal_ extern "C" int rdtofcal(char [], int *); // // Tracker classes headers and definitions // #include // using namespace std; // // // CORE ROUTINE // // int ToFCore(UInt_t run, TFile *file, TSQLServer *dbc, Int_t ToFargc, char *ToFargv[]){ // // // Set these to true to have a very verbose output. // Bool_t verbose = false; Bool_t debug = false; // TString processFolder = Form("ToFFolder_%u",run); if ( ToFargc > 0 ){ Int_t i = 0; while ( i < ToFargc ){ if ( !strcmp(ToFargv[i],"-processFolder") ) { if ( ToFargc < i+1 ){ throw -3; }; processFolder = (TString)ToFargv[i+1]; i++; }; if ( !strcmp(ToFargv[i],"-v") || !strcmp(ToFargv[i],"--verbose") ) { verbose = true; }; if ( !strcmp(ToFargv[i],"-g") || !strcmp(ToFargv[i],"--debug") ) { verbose = true; debug = true; }; i++; }; }; // // // Output directory is the working directoy. // const char* outdir = gSystem->DirName(gSystem->DirName(file->GetPath())); // // Variables for level2 // TTree *tracker = 0; TTree *toft = 0; UInt_t nevents = 0; Long64_t maxsize = 10000000000LL; TTree::SetMaxTreeSize(maxsize); // // variables needed to reprocess data // TString tofversion; ItoRunInfo *runinfo = 0; TArrayI *runlist = 0; TTree *toftclone = 0; Bool_t reproc = false; Bool_t reprocall = false; UInt_t nobefrun = 0; UInt_t noaftrun = 0; UInt_t numbofrun = 0; stringstream ftmpname; TString fname; UInt_t totfileentries = 0; UInt_t idRun = 0; // // variables needed to handle error signals // Int_t code = 0; Int_t sgnl; // // tof level2 classes // ToFLevel2 *tof = new ToFLevel2(); ToFLevel2 *tofclone = new ToFLevel2(); // // tracker level2 variables // TrkLevel2 *trk = new TrkLevel2(); Int_t nevtrkl2 = 0; // // define variables for opening and reading level0 file // TFile *l0File = 0; TTree *l0tr = 0; TBranch *l0head = 0; TBranch *l0trig = 0; TBranch *l0tof = 0; pamela::EventHeader *eh = 0; pamela::PscuHeader *ph = 0; pamela::trigger::TriggerEvent *trig = 0; pamela::tof::TofEvent *tofEvent = 0; // // Define other basic variables // UInt_t procev = 0; stringstream file2; stringstream file3; stringstream qy; Int_t itr = -1; Int_t totevent = 0; UInt_t atime = 0; UInt_t re = 0; UInt_t jumped = 0; // // Working filename // TString outputfile; stringstream name; name.str(""); name << outdir << "/"; // // temporary file and folder // TFile *tempfile = 0; TTree *temptof = 0; stringstream tempname; stringstream toffolder; tempname.str(""); tempname << outdir; tempname << "/" << processFolder.Data(); toffolder.str(""); toffolder << tempname.str().c_str(); gSystem->MakeDirectory(toffolder.str().c_str()); tempname << "/toftree_run"; tempname << run << ".root"; // // variables needed to load magnetic field maps // Int_t ntrkentry = 0; Int_t npmtentry = 0; UInt_t tttrkpar1 = 0; Bool_t trkpar1 = true; UInt_t tttofpar1 = 0; Bool_t tofpar1 = true; // // DB classes // GL_ROOT *glroot = new GL_ROOT(); GL_PARAM *glparam = new GL_PARAM(); GL_TIMESYNC *dbtime = 0; // // declaring external output and input structures // extern struct ToFInput tofinput_; extern struct ToFOutput tofoutput_; // // Let's start! // // // As a first thing we must check what we have to do: if run = 0 we must process all events in the file has been passed // if run != 0 we must process only that run but first we have to check if the tree ToF already exist in the file // if it exists we are reprocessing data and we must delete that entries, if not we must create it. // if ( run == 0 ) reproc = true; // // // Output file is "outputfile" // if ( !file->IsOpen() ){ if ( verbose ) printf(" ToF - ERROR: cannot open file for writing\n"); throw -301; }; // // Does it contain the Tracker tree? // tracker = (TTree*)file->Get("Tracker"); if ( !tracker ) { if ( verbose ) printf(" TOF - ERROR: no tracker tree\n"); code = -302; goto closeandexit; }; // // get tracker level2 data pointer // tracker->SetBranchAddress("TrkLevel2",&trk); nevtrkl2 = tracker->GetEntries(); // // Retrieve GL_RUN variables from the level2 file // tofversion = ToFInfo(false); // we should decide how to handle versioning system // // create an interface to RunInfo called "runinfo" // // ItoRunInfo= interface with RunInfo and GL_RUN runinfo = new ItoRunInfo(file); // // open "Run" tree in level2 file, if not existing return an error (sngl != 0) // sgnl = 0; sgnl = runinfo->Update(run, "TOF",tofversion); if ( sgnl ){ if ( verbose ) printf(" TOF - ERROR: RunInfo exited with non-zero status\n"); code = sgnl; goto closeandexit; } else { sgnl = 0; }; // // number of events in the file BEFORE the first event of our run // nobefrun = runinfo->GetFirstEntry(); // // total number of events in the file // totfileentries = runinfo->GetFileEntries(); // // first file entry AFTER the last event of our run // noaftrun = runinfo->GetLastEntry() + 1; // // number of run to be processed // numbofrun = runinfo->GetNoRun(); // // Try to access the ToF tree in the file, if it exists we are reprocessing data if not we are processing a new run // toftclone = (TTree*)file->Get("ToF"); // if ( !toftclone ){ // // tree does not exist, we are not reprocessing // reproc = false; if ( run == 0 && verbose ) printf(" ToF - WARNING: you are reprocessing data but ToF tree does not exist!\n"); if ( runinfo->IsReprocessing() && run != 0 && verbose ) printf(" ToF - WARNING: it seems you are not reprocessing data but ToF\n versioning information already exists in RunInfo.\n"); } else { // // tree exists, we are reprocessing data. Are we reprocessing a single run or all the file? // toftclone->SetAutoSave(900000000000000LL); reproc = true; // // update versioning information // if ( verbose ) printf("\n Preparing the pre-processing...\n"); // if ( run == 0 ){ // // we are reprocessing all the file // if we are reprocessing everything we don't need to copy any old event and we can just work with the new tree and delete the old one immediately // reprocall = true; // if ( verbose ) printf("\n ToF - WARNING: Reprocessing all runs\n"); // } else { // // we are reprocessing a single run, we must copy to the new tree the events in the file which preceed the first event of the run // reprocall = false; // if ( verbose ) printf("\n ToF - WARNING: Reprocessing run number %u \n",run); // // copying old tree to a new file // tempfile = new TFile(tempname.str().c_str(),"RECREATE"); temptof = toftclone->CloneTree(-1,"fast"); temptof->SetName("ToF-old"); tempfile->Write(); tempfile->Close(); } // // Delete the old tree from old file and memory // toftclone->Delete("all"); // if ( verbose ) printf(" ...done!\n"); // }; // // create ToF detector tree toft // file->cd(); toft = new TTree("ToF-new","PAMELA Level2 ToF data"); toft->SetAutoSave(900000000000000LL); tof->Set();//ELENA **TEMPORANEO?** toft->Branch("ToFLevel2","ToFLevel2",&tof); // if ( reproc && !reprocall ){ // // open new file and retrieve all tree informations // tempfile = new TFile(tempname.str().c_str(),"READ"); toftclone = (TTree*)tempfile->Get("ToF-old"); toftclone->SetAutoSave(900000000000000LL); toftclone->SetBranchAddress("ToFLevel2",&tofclone); // if ( nobefrun > 0 ){ if ( verbose ) printf("\n Pre-processing: copying events from the old tree before the processed run\n"); if ( verbose ) printf(" Copying %u events in the file which are before the beginning of the run %u \n",nobefrun,run); if ( verbose ) printf(" Start copying at event number 0, end copying at event number %u \n",nobefrun); for (UInt_t j = 0; j < nobefrun; j++){ // toftclone->GetEntry(j); // // copy tofclone to tof // tof->Clear(); memcpy(&tof,&tofclone,sizeof(tofclone)); // // Fill entry in the new tree // toft->Fill(); // }; if ( verbose ) printf(" Finished successful copying!\n"); }; }; // // Get the list of run to be processed, if only one run has to be processed the list will contain one entry only. // runlist = runinfo->GetRunList(); // // Loop over the run to be processed // for (UInt_t irun=0; irun < numbofrun; irun++){ // // retrieve the first run ID to be processed using the RunInfo list // idRun = runlist->At(irun); if ( verbose ) printf("\n\n\n ####################################################################### \n"); if ( verbose ) printf(" PROCESSING RUN NUMBER %u \n",idRun); if ( verbose ) printf(" ####################################################################### \n\n\n"); // runinfo->ID_ROOT_L0 = 0; // // store in the runinfo class the GL_RUN variables for our run // sgnl = 0; sgnl = runinfo->GetRunInfo(idRun); if ( sgnl ){ if ( verbose ) printf(" TOF - ERROR: RunInfo exited with non-zero status\n"); code = sgnl; goto closeandexit; } else { sgnl = 0; }; // // now you can access that variables using the RunInfo class this way runinfo->ID_ROOT_L0 // if ( runinfo->ID_ROOT_L0 == 0 ){ if ( verbose ) printf("\n TOF - ERROR: no run with ID_RUN = %u \n\n Exiting... \n\n",idRun); code = -5; goto closeandexit; }; // // prepare the timesync for the db // if ( !dbc->IsConnected() ) throw -314; dbtime = new GL_TIMESYNC(runinfo->ID_ROOT_L0,"ID",dbc); // // Search in the DB the path and name of the LEVEL0 file to be processed. // if ( !dbc->IsConnected() ) throw -314; glroot->Query_GL_ROOT(runinfo->ID_ROOT_L0,dbc); // ftmpname.str(""); ftmpname << glroot->PATH.Data() << "/"; ftmpname << glroot->NAME.Data(); fname = ftmpname.str().c_str(); // // print out informations // totevent = runinfo->NEVENTS; if ( verbose ) printf("\n LEVEL0 data file: %s \n",fname.Data()); if ( verbose ) printf(" RUN HEADER absolute time is: %u \n",runinfo->RUNHEADER_TIME); if ( verbose ) printf(" RUN TRAILER absolute time is: %u \n",runinfo->RUNTRAILER_TIME); if ( verbose ) printf(" %i events to be processed for run %u: from %i to %i \n\n",totevent,idRun,runinfo->EV_FROM,runinfo->EV_FROM+totevent); // // Open Level0 file // l0File = new TFile(fname.Data()); if ( !l0File ) { if ( verbose ) printf(" TOF - ERROR: problems opening Level0 file\n"); code = -6; goto closeandexit; }; l0tr = (TTree*)l0File->Get("Physics"); if ( !l0tr ) { if ( verbose ) printf(" TOF - ERROR: no Physics tree in Level0 file\n"); l0File->Close(); code = -7; goto closeandexit; }; l0head = l0tr->GetBranch("Header"); if ( !l0head ) { if ( verbose ) printf(" TOF - ERROR: no Header branch in Level0 tree\n"); l0File->Close(); code = -8; goto closeandexit; }; l0trig = l0tr->GetBranch("Trigger"); if ( !l0trig ) { if ( verbose ) printf(" TOF - ERROR: no Trigger branch in Level0 tree\n"); l0File->Close(); code = -300; goto closeandexit; }; l0tof = l0tr->GetBranch("Tof"); if ( !l0tof ) { if ( verbose ) printf(" TOF - ERROR: no ToF branch in Level0 tree\n"); l0File->Close(); code = -303; goto closeandexit; }; // l0tr->SetBranchAddress("Trigger", &trig); l0tr->SetBranchAddress("Tof", &tofEvent); l0tr->SetBranchAddress("Header", &eh); // nevents = l0tof->GetEntries(); // if ( nevents < 1 ) { if ( verbose ) printf(" TOF - ERROR: Level0 file is empty\n\n"); l0File->Close(); code = -11; goto closeandexit; }; // if ( runinfo->EV_TO > nevents-1 ) { if ( verbose ) printf(" TOF - ERROR: too few entries in the registry tree\n"); l0File->Close(); code = -12; goto closeandexit; }; // // Check if we have to load parameter files (or calibration associated to runs and not to events) // // for example let's assume that we could have different magnetic field maps for different runs: // if ( trkpar1 || ( tttrkpar1 != 0 && tttrkpar1 < runinfo->RUNHEADER_TIME ) ){ trkpar1 = false; // read from DB infos about Magnetic filed maps if ( !dbc->IsConnected() ) throw -314; glparam->Query_GL_PARAM(runinfo->RUNHEADER_TIME,1,dbc); // parameters stored in DB in GL_PRAM table tttrkpar1 = glparam->TO_TIME; // ---------------------------- // Read the magnetic field // ---------------------------- if ( verbose ) printf(" Reading magnetic field maps: \n"); trk->LoadField(glparam->PATH+glparam->NAME); if ( verbose ) printf("\n"); }; // if ( tofpar1 || ( tttofpar1 != 0 && tttofpar1 < runinfo->RUNHEADER_TIME ) ){ tofpar1 = false; // if ( !dbc->IsConnected() ) throw -314; Int_t error=glparam->Query_GL_PARAM(runinfo->RUNHEADER_TIME,201,dbc); // parameters stored in DB in GL_PRAM table if ( error<0 ) { code = error; goto closeandexit; }; // if ( verbose ) printf(" Reading ToF parameter file: %s \n",(glparam->PATH+glparam->NAME).Data()); // tttofpar1 = glparam->TO_TIME; Int_t nlen = (Int_t)(glparam->PATH+glparam->NAME).Length(); rdtofcal((char *)(glparam->PATH+glparam->NAME).Data(),&nlen); }; // // run over all the events of the run // if ( verbose ) printf("\n Ready to start! \n\n Processed events: \n\n"); // jumped = 0; // for ( re = runinfo->EV_FROM; re < (runinfo->EV_FROM+runinfo->NEVENTS); re++){ // if ( procev%1000 == 0 && procev > 0 && verbose ) printf(" %iK \n",procev/1000); // l0head->GetEntry(re); // // absolute time of this event // ph = eh->GetPscuHeader(); atime = dbtime->DBabsTime(ph->GetOrbitalTime()); // tof->Clear(); Int_t pmt_id = 0; ToFPMT *t_pmt = new ToFPMT(); if(!(tof->PMT))tof->PMT = new TClonesArray("ToFPMT",12); //ELENA TClonesArray &tpmt = *tof->PMT; ToFTrkVar *t_tof = new ToFTrkVar(); if(!(tof->ToFTrk))tof->ToFTrk = new TClonesArray("ToFTrkVar",2); //ELENA TClonesArray &t = *tof->ToFTrk; // // paranoid check // if ( atime > runinfo->RUNTRAILER_TIME || atime < runinfo->RUNHEADER_TIME ) { if ( verbose ) printf(" TOF - WARNING: event at time outside the run time window, skipping it\n"); jumped++; goto jumpev; }; // // retrieve tracker informations, the LEVEL2 entry which correspond to our event will be "itr" // if ( !reprocall ){ itr = nobefrun + (re - runinfo->EV_FROM -jumped); } else { itr = runinfo->GetFirstEntry() + (re - runinfo->EV_FROM -jumped); }; if ( itr > nevtrkl2 ){ // nevtrkl2 tracker entry number if ( verbose ) printf(" TOF - ERROR: no tracker events with entry = %i in Level2 file\n",itr); l0File->Close(); code = -313; goto closeandexit; }; // trk->Clear(); // tracker->GetEntry(itr); /// // l0tof->GetEntry(re); l0trig->GetEntry(re); /// // procev++; // // start processing // // // Here we will use some procedure to calibrate our data and put some kind of informations in the cinput structure for (Int_t gg=0; gg<4;gg++){ for (Int_t hh=0; hh<12;hh++){ tofinput_.tdc[hh][gg]=tofEvent->tdc[gg][hh]; tofinput_.adc[hh][gg]=tofEvent->adc[gg][hh]; }; }; for (Int_t hh=0; hh<5;hh++){ tofinput_.patterntrig[hh]=trig->patterntrig[hh]; }; // // Here we have calibrated data, ready to be passed to the FORTRAN routine which will extract common and track-related variables. // npmtentry = 0; // ntrkentry = 0; // // Calculate tracks informations from ToF alone // tofl2com(); // memcpy(tof->tof_j_flag,tofoutput_.tof_j_flag,6*sizeof(Int_t)); // t_tof->trkseqno = -1; // // and now we must copy from the output structure to the level2 class: // t_tof->npmttdc = 0; // for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ if ( tofoutput_.tofmask[hh][kk] != 0 ){ pmt_id = tof->GetPMTid(kk,hh); t_tof->pmttdc.AddAt(pmt_id,t_tof->npmttdc); t_tof->tdcflag.AddAt(tofoutput_.tdcflagtof[hh][kk],t_tof->npmttdc); // gf: Jan 09/07 t_tof->npmttdc++; }; }; }; for (Int_t kk=0; kk<13;kk++){ t_tof->beta[kk] = tofoutput_.betatof_a[kk]; } // t_tof->npmtadc = 0; for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ if ( tofoutput_.adctof_c[hh][kk] < 1000 ){ t_tof->dedx.AddAt(tofoutput_.adctof_c[hh][kk],t_tof->npmtadc); pmt_id = tof->GetPMTid(kk,hh); t_tof->pmtadc.AddAt(pmt_id,t_tof->npmtadc); t_tof->adcflag.AddAt(tofoutput_.adcflagtof[hh][kk],t_tof->npmtadc); // gf: Jan 09/07 t_tof->npmtadc++; }; }; }; // memcpy(t_tof->xtofpos,tofoutput_.xtofpos,sizeof(t_tof->xtofpos)); memcpy(t_tof->ytofpos,tofoutput_.ytofpos,sizeof(t_tof->ytofpos)); // new(t[ntrkentry]) ToFTrkVar(*t_tof); ntrkentry++; t_tof->Clear(); // // // t_pmt->Clear(); // for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ if ( tofoutput_.tdc_c[hh][kk] < 4095 || tofEvent->adc[kk][hh] < 4095 ){ // t_pmt->pmt_id = tof->GetPMTid(kk,hh); t_pmt->tdc_tw = tofoutput_.tdc_c[hh][kk]; t_pmt->adc = tofEvent->adc[kk][hh]; // new(tpmt[npmtentry]) ToFPMT(*t_pmt); npmtentry++; t_pmt->Clear(); }; }; }; // // Calculate track-related variables // if ( trk->ntrk() > 0 ){ // // We have at least one track // // // Run over tracks // for(Int_t nt=0; nt < trk->ntrk(); nt++){ // TrkTrack *ptt = trk->GetStoredTrack(nt); // // Copy the alpha vector in the input structure // for (Int_t e = 0; e < 5 ; e++){ tofinput_.al_pp[e] = ptt->al[e]; }; // // Get tracker related variables for this track // toftrk(); // // Copy values in the class from the structure (we need to use a temporary class to store variables). // t_tof->npmttdc = 0; for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ if ( tofoutput_.tofmask[hh][kk] != 0 ){ pmt_id = tof->GetPMTid(kk,hh); t_tof->pmttdc.AddAt(pmt_id,t_tof->npmttdc); t_tof->tdcflag.AddAt(tofoutput_.tdcflag[hh][kk],t_tof->npmttdc); // gf: Jan 09/07 t_tof->npmttdc++; }; }; }; for (Int_t kk=0; kk<13;kk++){ t_tof->beta[kk] = tofoutput_.beta_a[kk]; }; // t_tof->npmtadc = 0; for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ if ( tofoutput_.adc_c[hh][kk] < 1000 ){ t_tof->dedx.AddAt(tofoutput_.adc_c[hh][kk],t_tof->npmtadc); pmt_id = tof->GetPMTid(kk,hh); t_tof->pmtadc.AddAt(pmt_id,t_tof->npmtadc); t_tof->adcflag.AddAt(tofoutput_.adcflag[hh][kk],t_tof->npmtadc); // gf: Jan 09/07 t_tof->npmtadc++; }; }; }; // memcpy(t_tof->xtofpos,tofoutput_.xtofpos,sizeof(t_tof->xtofpos)); memcpy(t_tof->ytofpos,tofoutput_.ytofpos,sizeof(t_tof->ytofpos)); // // Store the tracker track number in order to be sure to have shyncronized data during analysis // t_tof->trkseqno = nt; // // create a new object for this event with track-related variables // new(t[ntrkentry]) ToFTrkVar(*t_tof); ntrkentry++; t_tof->Clear(); // }; // loop on all the tracks }; // tof->unpackError = tofEvent->unpackError; // // Fill the rootple // toft->Fill(); // // // delete t_tof; // // // jumpev: debug = false; // }; // // Here you may want to clear some variables before processing another run // delete dbtime; }; // process all the runs // if ( verbose ) printf("\n Finished processing data \n"); // closeandexit: // // we have finished processing the run(s). If we processed a single run now we must copy all the events after our run from the old tree to the new one and delete the old tree. // if ( !reprocall && reproc && code >= 0 ){ if ( totfileentries > noaftrun ){ if ( verbose ) printf("\n Post-processing: copying events from the old tree after the processed run\n"); if ( verbose ) printf(" Copying %i events in the file which are after the end of the run %i \n",(int)(totfileentries-noaftrun),(int)run); if ( verbose ) printf(" Start copying at event number %i end copying at event number %i \n",(int)noaftrun,(int)totfileentries); for (UInt_t j = noaftrun; j < totfileentries; j++ ){ // // Get entry from old tree // toftclone->GetEntry(j); // // copy tofclone to tof // tof->Clear(); memcpy(&tof,&tofclone,sizeof(tofclone)); // // Fill entry in the new tree // toft->Fill(); }; if ( verbose ) printf(" Finished successful copying!\n"); }; }; // // Close files, delete old tree(s), write and close level2 file // if ( l0File ) l0File->Close(); if ( tempfile ) tempfile->Close(); gSystem->Unlink(tempname.str().c_str()); if ( tracker ) tracker->Delete(); // delete tracker tree from memory only to avoid writing a copy to file! // if ( code < 0 && verbose ) printf("\n TOF - ERROR: an error occurred, try to save anyway...\n"); if ( verbose ) printf("\n Writing and closing rootple\n"); if ( runinfo ) runinfo->Close(); if ( toft ) toft->SetName("ToF"); if ( file ){ file->cd(); file->Write("ToF"); }; // gSystem->Unlink(toffolder.str().c_str()); // // the end // if ( verbose ) printf("\n Exiting...\n"); if(toft)toft->Delete(); // if ( tof ) delete tof; if ( tofclone ) delete tofclone; if ( glroot ) delete glroot; if ( runinfo ) delete runinfo; // if ( code < 0 ) throw code; return(code); }