// // C/C++ headers // #include #include #include // // ROOT headers // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // // RunInfo header // #include // // YODA headers // #include //#include #include // // This program headers // #include #include #include // // // Declaration of the core fortran routines // #define tofl2com tofl2com_ extern "C" int tofl2com(); #define toftrk toftrk_ extern "C" int toftrk(); #define rdtofcal rdtofcal_ //extern "C" int rdtofcal(char [], int *); extern "C" int rdtofcal(const char *, int *); // // Tracker classes headers and definitions // #include #include // new tracking code // using namespace std; // // // CORE ROUTINE // // int ToFCore(UInt_t run, TFile *file, GL_TABLES *glt, Int_t ToFargc, char *ToFargv[]){ // // // Set these to true to have a very verbose output. // Bool_t verbose = false; Bool_t debug = false; // Bool_t l1only = false; // Bool_t deltree = false; // // TString processFolder = Form("ToFFolder_%u",run); if ( ToFargc > 0 ){ Int_t i = 0; while ( i < ToFargc ){ if ( !strcmp(ToFargv[i],"-processFolder") ) { if ( ToFargc < i+1 ){ throw -3; }; processFolder = (TString)ToFargv[i+1]; i++; }; if ( !strcmp(ToFargv[i],"-v") || !strcmp(ToFargv[i],"--verbose") ) { verbose = true; }; if ( !strcmp(ToFargv[i],"-g") || !strcmp(ToFargv[i],"--debug") ) { verbose = true; debug = true; }; if ( !strcmp(ToFargv[i],"--level1-only") ) { l1only = true; } if ( !strcmp(ToFargv[i],"--delete-tree") ) { deltree = true; } i++; }; }; // // // Output directory is the working directoy. // const char* outdir = gSystem->DirName(gSystem->DirName(file->GetPath())); // // Variables for level2 // TTree *tracker = 0; TTree *trigger = 0; TTree *toft = 0; UInt_t nevents = 0; Long64_t maxsize = 10000000000LL; TTree::SetMaxTreeSize(maxsize); // // variables needed to reprocess data // TString tofversion; ItoRunInfo *runinfo = 0; TArrayI *runlist = 0; TTree *toftclone = 0; Bool_t reproc = false; Bool_t reprocall = false; UInt_t nobefrun = 0; UInt_t noaftrun = 0; UInt_t numbofrun = 0; stringstream ftmpname; TString fname; UInt_t totfileentries = 0; UInt_t idRun = 0; // // variables needed to handle error signals // Int_t code = 0; Int_t sgnl; // // tof level2 classes // ToFLevel2 *tof = new ToFLevel2(); ToFLevel2 *tofclone = new ToFLevel2(); ToFdEdx *tofdedx = new ToFdEdx(); // // tracker level2 variables // TrkLevel2 *trk = new TrkLevel2(); Int_t nevtrkl2 = 0; // // trigger level2 variables // TrigLevel2 *trg = new TrigLevel2(); Int_t nevtrgl2 = 0; // // define variables for opening and reading level0 file // TFile *l0File = 0; TTree *l0tr = 0; TBranch *l0head = 0; // TBranch *l0trig = 0; TBranch *l0tof = 0; pamela::EventHeader *eh = 0; pamela::PscuHeader *ph = 0; // pamela::trigger::TriggerEvent *trig = 0; pamela::tof::TofEvent *tofEvent = 0; // // Define other basic variables // UInt_t procev = 0; stringstream file2; stringstream file3; stringstream qy; Int_t itr = -1; Int_t totevent = 0; UInt_t atime = 0; UInt_t re = 0; UInt_t jumped = 0; // // Working filename // TString outputfile; stringstream name; name.str(""); name << outdir << "/"; // // temporary file and folder // TFile *tempfile = 0; TTree *temptof = 0; stringstream tempname; stringstream toffolder; Bool_t myfold = false; tempname.str(""); tempname << outdir; tempname << "/" << processFolder.Data(); toffolder.str(""); toffolder << tempname.str().c_str(); tempname << "/toftree_run"; tempname << run << ".root"; UInt_t totnorun = 0; // // variables needed to load magnetic field maps // Int_t ntrkentry = 0; Int_t npmtentry = 0; UInt_t tttrkpar1 = 0; Bool_t trkpar1 = true; UInt_t tttofpar1 = 0; Bool_t tofpar1 = true; // // DB classes // GL_ROOT *glroot = new GL_ROOT(); GL_PARAM *glparam = new GL_PARAM(); GL_TIMESYNC *dbtime = 0; // // declaring external output and input structures // extern struct ToFInput tofinput_; extern struct ToFOutput tofoutput_; // // WM variables perform dE/dx II order corrections // //Float_t dedx_corr_m[100][48],dedx_corr[48]; Double_t mtime[100],t1,t2,tm; //Float_t yhelp1,yhelp2,slope,inter,thelp1,thelp2; //RC variables for new dEdx II order correction (10th reduction) Float_t Heyhelp1,Heyhelp2,Heslope,Heinter,thelp1,thelp2; Float_t pyhelp1,pyhelp2,pslope,pinter; Float_t dedx_Hepeak[48],dedx_ppeak[48]; Float_t dedx_Hepeak_m[100][48],dedx_ppeak_m[100][48]; Float_t inter_dedx[48],slope_dedx[48]; Float_t xmean1,xwidth1; Int_t ical,ii,wj,jj; Float_t xleft=0; Float_t xright=0; Float_t yleft=0; Float_t yright=0; Int_t warning = 0; int a=0, b=0; // // Let's start! // // // As a first thing we must check what we have to do: if run = 0 we must process all events in the file has been passed // if run != 0 we must process only that run but first we have to check if the tree ToF already exist in the file // if it exists we are reprocessing data and we must delete that entries, if not we must create it. // if ( run == 0 ) reproc = true; // // // Output file is "outputfile" // if ( !file->IsOpen() ){ if ( verbose ) printf(" ToF - ERROR: cannot open file for writing\n"); throw -301; } if ( debug ) file->ls(); // // Delete tree if requested // if ( deltree ){ TTree *T = (TTree*)file->Get("ToF"); if ( T ){ if ( verbose ) printf(" ToF - REMOVING ToF TTree \n"); T->Delete("all"); } } // // Does it contain the Tracker tree? // // TClonesArray *tcNucleiTrk = NULL; TClonesArray *tcExtNucleiTrk = NULL; TClonesArray *tcExtTrk = NULL; TClonesArray *ttofNucleiTrk = NULL; TClonesArray *ttofExtNucleiTrk = NULL; TClonesArray *ttofExtTrk = NULL; Bool_t hasNucleiTrk = false; Bool_t hasExtNucleiTrk = false; Bool_t hasExtTrk = false; if ( !l1only ){ tracker = (TTree*)file->Get("Tracker"); if ( !tracker ) { if ( verbose ) printf(" TOF - ERROR: no tracker tree\n"); code = -302; goto closeandexit; } // // get tracker level2 data pointer // // tracker->SetMaxVirtualSize(2500000000LL); // EM residual Tracker-new tree in level2 files when NEVENTS is big tracker->SetBranchAddress("TrkLevel2",&trk); nevtrkl2 = tracker->GetEntries(); // // Look for extended tracking algorithm // if ( verbose ) printf("Look for extended and nuclei tracking algorithms\n"); // Nuclei tracking algorithm Int_t checkAlgo = 0; tcNucleiTrk = new TClonesArray("TrkTrack"); checkAlgo = tracker->SetBranchAddress("TrackNuclei",&tcNucleiTrk); if ( !checkAlgo ){ if ( verbose ) printf(" Nuclei tracking algorithm branch found! :D \n"); hasNucleiTrk = true; } else { if ( verbose ) printf(" Nuclei tracking algorithm branch not found :( !\n"); printf(" ok, this is not a problem (it depends on tracker settings) \n"); delete tcNucleiTrk; tcNucleiTrk = NULL; // 10RED reprocessing bug when missing extratracks } // Nuclei tracking algorithm using calorimeter points tcExtNucleiTrk = new TClonesArray("ExtTrack"); checkAlgo = tracker->SetBranchAddress("RecoveredTrackNuclei",&tcExtNucleiTrk); if ( !checkAlgo ){ if ( verbose ) printf(" Recovered nuclei tracking algorithm branch found! :D \n"); hasExtNucleiTrk = true; } else { if ( verbose ) printf(" Recovered nuclei tracking algorithm branch not found :( !\n"); printf(" ok, this is not a problem (it depends on tracker settings) \n"); delete tcExtNucleiTrk; tcExtNucleiTrk = NULL; // 10RED reprocessing bug when missing extratracks } // Tracking algorithm using calorimeter points tcExtTrk = new TClonesArray("ExtTrack"); checkAlgo = tracker->SetBranchAddress("RecoveredTrack",&tcExtTrk); if ( !checkAlgo ){ if ( verbose ) printf(" Recovered track algorithm branch found! :D \n"); hasExtTrk = true; } else { if ( verbose ) printf(" Recovered track algorithm branch not found :( !\n"); printf(" ok, this is not a problem (it depends on tracker settings) \n"); delete tcExtTrk; tcExtTrk = NULL; // 10RED reprocessing bug when missing extratracks } } // // Does it contain the Trigger tree? // trigger = (TTree*)file->Get("Trigger"); if ( !trigger ) { if ( verbose ) printf(" TOF - ERROR: no trigger tree\n"); code = -302; goto closeandexit; }; // // get trigger level2 data pointer // // trigger->SetMaxVirtualSize(2500000000LL); // EM residual Tracker-new tree in level2 files when NEVENTS is big trigger->SetBranchAddress("TrigLevel2",&trg); nevtrgl2 = trigger->GetEntries(); // // Retrieve GL_RUN variables from the level2 file // tofversion = ToFInfo(false); // we should decide how to handle versioning system // // create an interface to RunInfo called "runinfo" // // ItoRunInfo= interface with RunInfo and GL_RUN runinfo = new ItoRunInfo(file); // // open "Run" tree in level2 file, if not existing return an error (sngl != 0) // sgnl = 0; sgnl = runinfo->Update(run, "TOF",tofversion); if ( sgnl ){ if ( verbose ) printf(" TOF - ERROR: RunInfo exited with non-zero status\n"); code = sgnl; goto closeandexit; } else { sgnl = 0; }; // // number of events in the file BEFORE the first event of our run // nobefrun = runinfo->GetFirstEntry(); // // total number of events in the file // totfileentries = runinfo->GetFileEntries(); // // first file entry AFTER the last event of our run // noaftrun = runinfo->GetLastEntry() + 1; // // number of run to be processed // numbofrun = runinfo->GetNoRun(); totnorun = runinfo->GetRunEntries(); // // Try to access the ToF tree in the file, if it exists we are reprocessing data if not we are processing a new run // toftclone = (TTree*)file->Get("ToF"); // if ( !toftclone ){ // // tree does not exist, we are not reprocessing // reproc = false; if ( run == 0 && verbose ) printf(" ToF - WARNING: you are reprocessing data but ToF tree does not exist!\n"); if ( runinfo->IsReprocessing() && run != 0 && verbose ) printf(" ToF - WARNING: it seems you are not reprocessing data but ToF\n versioning information already exists in RunInfo.\n"); } else { // // tree exists, we are reprocessing data. Are we reprocessing a single run or all the file? // // toftclone->SetMaxVirtualSize(2500000000LL); // EM residual Tracker-new tree in level2 files when NEVENTS is big toftclone->SetAutoSave(900000000000000LL); reproc = true; // // update versioning information // if ( verbose ) printf("\n Preparing the pre-processing...\n"); // if ( run == 0 || totnorun == 1 ){ // // we are reprocessing all the file // if we are reprocessing everything we don't need to copy any old event and we can just work with the new tree and delete the old one immediately // reprocall = true; // if ( verbose ) printf("\n ToF - WARNING: Reprocessing all runs\n"); // } else { // // we are reprocessing a single run, we must copy to the new tree the events in the file which preceed the first event of the run // reprocall = false; // if ( verbose ) printf("\n ToF - WARNING: Reprocessing run number %u \n",run); // // copying old tree to a new file // gSystem->MakeDirectory(toffolder.str().c_str()); myfold = true; tempfile = new TFile(tempname.str().c_str(),"RECREATE"); temptof = toftclone->CloneTree(-1,"fast"); temptof->SetName("ToF-old"); tempfile->Write(); tempfile->Close(); } // // Delete the old tree from old file and memory // toftclone->Delete("all"); // if ( verbose ) printf(" ...done!\n"); // }; // // create ToF detector tree toft // file->cd(); toft = new TTree("ToF-new","PAMELA Level2 ToF data"); // toft->SetMaxVirtualSize(2500000000LL); // EM residual Tracker-new tree in level2 files when NEVENTS is big toft->SetAutoSave(900000000000000LL); tof->Set();//ELENA **TEMPORANEO?** toft->Branch("ToFLevel2","ToFLevel2",&tof); // // create new branches for new tracking algorithms // if ( hasNucleiTrk ){ ttofNucleiTrk = new TClonesArray("ToFTrkVar",1); toft->Branch("TrackNuclei",&ttofNucleiTrk); } if ( hasExtNucleiTrk ){ ttofExtNucleiTrk = new TClonesArray("ToFTrkVar",1); toft->Branch("RecoveredTrackNuclei",&ttofExtNucleiTrk); } if ( hasExtTrk ){ ttofExtTrk = new TClonesArray("ToFTrkVar",1); toft->Branch("RecoveredTrack",&ttofExtTrk); } // if ( reproc && !reprocall ){ // // open new file and retrieve all tree informations // tempfile = new TFile(tempname.str().c_str(),"READ"); toftclone = (TTree*)tempfile->Get("ToF-old"); // toftclone->SetMaxVirtualSize(2500000000LL); // EM residual Tracker-new tree in level2 files when NEVENTS is big toftclone->SetAutoSave(900000000000000LL); toftclone->SetBranchAddress("ToFLevel2",&tofclone); // EM reprocessing bug fixed // if ( nobefrun > 0 ){ if ( verbose ) printf("\n Pre-processing: copying events from the old tree before the processed run\n"); if ( verbose ) printf(" Copying %u events in the file which are before the beginning of the run %u \n",nobefrun,run); if ( verbose ) printf(" Start copying at event number 0, end copying at event number %u \n",nobefrun); for (UInt_t j = 0; j < nobefrun; j++){ // if ( toftclone->GetEntry(j) <= 0 ) throw -36; // // copy tofclone to tof // memcpy(&tof,&tofclone,sizeof(tofclone)); // // Fill entry in the new tree // toft->Fill(); // } if ( verbose ) printf(" Finished successful copying!\n"); } } // // Get the list of run to be processed, if only one run has to be processed the list will contain one entry only. // runlist = runinfo->GetRunList(); // // Loop over the run to be processed // for (UInt_t irun=0; irun < numbofrun; irun++){ // // retrieve the first run ID to be processed using the RunInfo list // idRun = runlist->At(irun); if ( verbose ) printf("\n\n\n ####################################################################### \n"); if ( verbose ) printf(" PROCESSING RUN NUMBER %u \n",idRun); if ( verbose ) printf(" ####################################################################### \n\n\n"); // runinfo->ID_ROOT_L0 = 0; // // store in the runinfo class the GL_RUN variables for our run // sgnl = 0; sgnl = runinfo->GetRunInfo(idRun); if ( sgnl ){ if ( verbose ) printf(" TOF - ERROR: RunInfo exited with non-zero status\n"); code = sgnl; goto closeandexit; } else { sgnl = 0; }; // // now you can access that variables using the RunInfo class this way runinfo->ID_ROOT_L0 // if ( runinfo->ID_ROOT_L0 == 0 ){ if ( verbose ) printf("\n TOF - ERROR: no run with ID_RUN = %u \n\n Exiting... \n\n",idRun); code = -5; goto closeandexit; }; // // prepare the timesync for the db // TString host = glt->CGetHost(); TString user = glt->CGetUser(); TString psw = glt->CGetPsw(); TSQLServer *dbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); if ( !dbc->IsConnected() ) throw -314; stringstream myquery; myquery.str(""); myquery << "SET time_zone='+0:00';"; delete dbc->Query(myquery.str().c_str()); delete dbc->Query("SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';"); dbtime = new GL_TIMESYNC(runinfo->ID_ROOT_L0,"ID",dbc); // // Search in the DB the path and name of the LEVEL0 file to be processed. // // if ( !dbc->IsConnected() ) throw -314; glroot->Query_GL_ROOT(runinfo->ID_ROOT_L0,dbc); // ftmpname.str(""); ftmpname << glroot->PATH.Data() << "/"; ftmpname << glroot->NAME.Data(); fname = ftmpname.str().c_str(); // // print out informations // totevent = runinfo->NEVENTS; if ( verbose ) printf("\n LEVEL0 data file: %s \n",fname.Data()); if ( verbose ) printf(" RUN HEADER absolute time is: %u \n",runinfo->RUNHEADER_TIME); if ( verbose ) printf(" RUN TRAILER absolute time is: %u \n",runinfo->RUNTRAILER_TIME); if ( verbose ) printf(" %i events to be processed for run %u: from %i to %i \n\n",totevent,idRun,runinfo->EV_FROM,runinfo->EV_FROM+totevent); // // if ( !totevent ) goto closeandexit; // // Open Level0 file // if ( l0File ) l0File->Close(); l0File = new TFile(fname.Data()); if ( !l0File ) { if ( verbose ) printf(" TOF - ERROR: problems opening Level0 file\n"); code = -6; goto closeandexit; }; l0tr = (TTree*)l0File->Get("Physics"); if ( !l0tr ) { if ( verbose ) printf(" TOF - ERROR: no Physics tree in Level0 file\n"); l0File->Close(); code = -7; goto closeandexit; }; l0head = l0tr->GetBranch("Header"); if ( !l0head ) { if ( verbose ) printf(" TOF - ERROR: no Header branch in Level0 tree\n"); l0File->Close(); code = -8; goto closeandexit; }; // l0trig = l0tr->GetBranch("Trigger"); // if ( !l0trig ) { // if ( verbose ) printf(" TOF - ERROR: no Trigger branch in Level0 tree\n"); // l0File->Close(); // code = -300; // goto closeandexit; // }; l0tof = l0tr->GetBranch("Tof"); if ( !l0tof ) { if ( verbose ) printf(" TOF - ERROR: no ToF branch in Level0 tree\n"); l0File->Close(); code = -303; goto closeandexit; }; // // l0tr->SetBranchAddress("Trigger", &trig); l0tr->SetBranchAddress("Tof", &tofEvent); l0tr->SetBranchAddress("Header", &eh); // nevents = l0tof->GetEntries(); // if ( nevents < 1 && totevent ) { if ( verbose ) printf(" TOF - ERROR: Level0 file is empty\n\n"); l0File->Close(); code = -11; goto closeandexit; }; // if ( runinfo->EV_TO > nevents-1 && totevent ) { if ( verbose ) printf(" TOF - ERROR: too few entries in the registry tree\n"); l0File->Close(); code = -12; goto closeandexit; }; // // Check if we have to load parameter files (or calibration associated to runs and not to events) // // for example let's assume that we could have different magnetic field maps for different runs: // if ( !l1only ){ if ( trkpar1 || ( tttrkpar1 != 0 && tttrkpar1 < runinfo->RUNHEADER_TIME ) ){ trkpar1 = false; // read from DB infos about Magnetic filed maps // if ( !dbc->IsConnected() ) throw -314; glparam->Query_GL_PARAM(runinfo->RUNHEADER_TIME,1,dbc); // parameters stored in DB in GL_PRAM table tttrkpar1 = glparam->TO_TIME; // ---------------------------- // Read the magnetic field // ---------------------------- if ( verbose ) printf(" Reading magnetic field maps: \n"); trk->LoadField(glparam->PATH+glparam->NAME); if ( verbose ) printf("\n"); } } // // variable to save information about the tof calibration used // Bool_t defcal = true; // if ( tofpar1 || ( tttofpar1 != 0 && tttofpar1 < runinfo->RUNHEADER_TIME ) ){ tofpar1 = false; // // if ( !dbc->IsConnected() ) throw -314; Int_t error=glparam->Query_GL_PARAM(runinfo->RUNHEADER_TIME,201,dbc); // parameters stored in DB in GL_PRAM table if ( error<0 ) { code = error; goto closeandexit; }; // if ( verbose ) printf(" Reading ToF parameter file: %s \n",(glparam->PATH+glparam->NAME).Data()); // if ( (UInt_t)glparam->TO_TIME != (UInt_t)4294967295UL ) defcal = false; // tttofpar1 = glparam->TO_TIME; Int_t nlen = (Int_t)(glparam->PATH+glparam->NAME).Length(); // rdtofcal((char *)(glparam->PATH+glparam->NAME).Data(),&nlen); rdtofcal((const char *)(glparam->PATH+glparam->NAME).Data(),&nlen); // }; // Int_t error=glparam->Query_GL_PARAM(runinfo->RUNHEADER_TIME,204,dbc); // parameters stored in DB in GL_PRAM table if ( error<0 ) { code = error; goto closeandexit; }; // if ( verbose ) printf(" Reading ToF attenuation parameter file: %s \n",(glparam->PATH+glparam->NAME).Data()); tofdedx->ReadParAtt((glparam->PATH+glparam->NAME).Data()); // error=glparam->Query_GL_PARAM(runinfo->RUNHEADER_TIME,205,dbc); // parameters stored in DB in GL_PRAM table if ( error<0 ) { code = error; goto closeandexit; }; // if ( verbose ) printf(" Reading ToF desaturation on position parameter file: %s \n",(glparam->PATH+glparam->NAME).Data()); tofdedx->ReadParPos((glparam->PATH+glparam->NAME).Data()); // error=glparam->Query_GL_PARAM(runinfo->RUNHEADER_TIME,206,dbc); // parameters stored in DB in GL_PRAM table if ( error<0 ) { code = error; goto closeandexit; }; // if ( verbose ) printf(" Reading ToF BetheBloch parameter file: %s \n",(glparam->PATH+glparam->NAME).Data()); tofdedx->ReadParBBneg((glparam->PATH+glparam->NAME).Data()); // error=glparam->Query_GL_PARAM(runinfo->RUNHEADER_TIME,207,dbc); // parameters stored in DB in GL_PRAM table if ( error<0 ) { code = error; goto closeandexit; }; // if ( verbose ) printf(" Reading ToF Bethe-Bloch parameter file for beta gt1: %s \n",(glparam->PATH+glparam->NAME).Data()); tofdedx->ReadParBBpos((glparam->PATH+glparam->NAME).Data()); // error=glparam->Query_GL_PARAM(runinfo->RUNHEADER_TIME,208,dbc); // parameters stored in DB in GL_PRAM table if ( error<0 ) { code = error; goto closeandexit; }; // if ( verbose ) printf(" Reading ToF desaturation on beta parameter file: %s \n",(glparam->PATH+glparam->NAME).Data()); tofdedx->ReadParDesatBB((glparam->PATH+glparam->NAME).Data()); tofdedx->CheckConnectors(runinfo->RUNHEADER_TIME,glparam,dbc); // // WM reading parameter file for dE/dx II order corrections // //memset(dedx_corr_m,0,100*48*sizeof(Float_t)); //memset(dedx_corr,0,48*sizeof(Float_t)); //memset(mtime,0,100*sizeof(Double_t)); // // RC reading parameter file for new dE/dx II order correction (10th red) // memset(dedx_Hepeak_m,0,100*48*sizeof(Float_t)); memset(dedx_ppeak_m,0,100*48*sizeof(Float_t)); memset(dedx_Hepeak,0,48*sizeof(Float_t)); memset(dedx_ppeak,0,48*sizeof(Float_t)); memset(mtime,0,100*sizeof(Double_t)); // // Query the DB to get the file // error=glparam->Query_GL_PARAM(runinfo->RUNHEADER_TIME,203,dbc); // parameters stored in DB in GL_PRAM table if ( error<0 ) { code = error; goto closeandexit; }; // if ( verbose ) printf(" Reading ToF dE/dx II order correction parameter file: %s \n",(glparam->PATH+glparam->NAME).Data()); // ical=0; // counter set to zero if first-time reading //----------------------------------------------------------- // Here I read the dEdx_korr parameters //----------------------------------------------------------- jj=0; ifstream fin((glparam->PATH+glparam->NAME).Data()); UInt_t window = 200000; Bool_t first = true; Bool_t last = true; //Float_t sdedx_corr_m[48]; //memset(sdedx_corr_m,0,48*sizeof(Float_t)); Float_t sdedx_Hepeak_m[48]; memset(sdedx_Hepeak_m,0,48*sizeof(Float_t)); Float_t sdedx_ppeak_m[48]; memset(sdedx_ppeak_m,0,48*sizeof(Float_t)); Double_t stm = 0; while ( !fin.eof() ){ stm = tm; // if ( jj > 0 ) memcpy(sdedx_corr_m,dedx_corr_m[jj-1],48*sizeof(Float_t)); // BUG sdedx should be the previous in time not the previous saved [absurd dE/dx for 8th reduction March and > March 2008 data - fixed on 2009/02/04 fin>>t1>>tm>>t2; if ( debug ) cout << setiosflags(ios::fixed) << setw(10) << setprecision(3) << tm << endl; if ( (tm >= (runinfo->RUNHEADER_TIME-window) && tm <= (runinfo->RUNTRAILER_TIME+window)) || (tm > (runinfo->RUNTRAILER_TIME+window) && last) ){ if ( first ){ mtime[jj]=stm; jj++; if ( jj >= 100 ){ code = -318; goto closeandexit; }; }; mtime[jj]=tm; }; for (ii=0; ii<48;ii++){ fin>>wj>>xmean1>>xwidth1; if ( (tm >= (runinfo->RUNHEADER_TIME-window) && tm <= (runinfo->RUNTRAILER_TIME+window)) || (tm > (runinfo->RUNTRAILER_TIME+window) && last) ){ if ( first ){ //dedx_corr_m[jj-1][ii]=sdedx_corr_m[ii]; dedx_Hepeak_m[jj-1][ii]=sdedx_Hepeak_m[ii]; dedx_ppeak_m[jj-1][ii]=sdedx_ppeak_m[ii]; }; //dedx_corr_m[jj][ii]=xmean1; dedx_Hepeak_m[jj][ii]=xmean1; dedx_ppeak_m[jj][ii]=xwidth1; }; //sdedx_corr_m[ii]=xmean1; // BUG sdedx should be the previous in time not the previous saved [absurd dE/dx for 8th reduction March and > March 2008 data - fixed on 2009/02/04 sdedx_Hepeak_m[ii]=xmean1; sdedx_ppeak_m[ii]=xwidth1; }; if ( (tm >= (runinfo->RUNHEADER_TIME-window) && tm <= (runinfo->RUNTRAILER_TIME+window)) || (tm > (runinfo->RUNTRAILER_TIME+window) && last)){ if ( first ) first = false; if ( tm > (runinfo->RUNTRAILER_TIME+window) ) last = false; jj++; }; if ( jj >= 100 ){ code = -318; goto closeandexit; }; }; // fin.close(); // this is a possible bug... // Bool_t ff = false; // while ( runinfo->RUNHEADER_TIME > mtime[ical] && ical < 100 ) { // ical = ical+1; // ff = true; // }; while ( (mtime[ical] > runinfo->RUNHEADER_TIME || runinfo->RUNHEADER_TIME > mtime[ical+1] ) && ical < 99 ) { ical = ical+1; // ff = true; }; // if ( ff ) ical = ical-1; if ( verbose ) cout<<"rh time "<RUNHEADER_TIME<<" rt time "<RUNTRAILER_TIME<<" limit low "<= 98 ){ code = -315; goto closeandexit; }; // // run over all the events of the run // if ( verbose ) printf("\n Ready to start! \n\n Processed events: \n\n"); // if ( dbc ){ dbc->Close(); delete dbc; dbc = 0; }; // jumped = 0; // for ( re = runinfo->EV_FROM; re < (runinfo->EV_FROM+runinfo->NEVENTS); re++){ // for ( re = runinfo->EV_FROM; re < (runinfo->EV_FROM+100); re++){ // QUIIIIIII // if ( procev%1000 == 0 && procev > 0 && verbose ) printf(" %iK \n",procev/1000); // if ( l0head->GetEntry(re) <= 0 ) throw -36; // // absolute time of this event // ph = eh->GetPscuHeader(); atime = dbtime->DBabsTime(ph->GetOrbitalTime()); // tof->Clear(); Int_t pmt_id = 0; ToFPMT *t_pmt = new ToFPMT(); if(!(tof->PMT))tof->PMT = new TClonesArray("ToFPMT",12); //ELENA TClonesArray &tpmt = *tof->PMT; ToFTrkVar *t_tof = new ToFTrkVar(); if(!(tof->ToFTrk))tof->ToFTrk = new TClonesArray("ToFTrkVar",2); //ELENA TClonesArray &t = *tof->ToFTrk; // // paranoid check // if ( atime > (runinfo->RUNTRAILER_TIME+1) || atime < (runinfo->RUNHEADER_TIME-1) ) { if ( verbose ) printf(" TOF - WARNING: event at time outside the run time window, skipping it\n"); jumped++; goto jumpev; }; // // retrieve tracker informations, the LEVEL2 entry which correspond to our event will be "itr" // if ( !reprocall ){ itr = nobefrun + (re - runinfo->EV_FROM -jumped); } else { itr = runinfo->GetFirstEntry() + (re - runinfo->EV_FROM -jumped); }; if ( !l1only ){ if ( itr > nevtrkl2 ){ // nevtrkl2 tracker entry number if ( verbose ) printf(" TOF - ERROR: no tracker events with entry = %i in Level2 file\n",itr); l0File->Close(); code = -313; goto closeandexit; } } if ( itr > nevtrgl2 ){ // nevtrgl2 trigger entry number if ( verbose ) printf(" TOF - ERROR: no trigger events with entry = %i in Level2 file\n",itr); l0File->Close(); code = -319; goto closeandexit; } // if ( !l1only ){ trk->Clear(); // // Clones array must be cleared before going on // if ( hasNucleiTrk ){ tcNucleiTrk->Delete(); ttofNucleiTrk->Delete(); } if ( hasExtNucleiTrk ){ tcExtNucleiTrk->Delete(); ttofExtNucleiTrk->Delete(); } if ( hasExtTrk ){ tcExtTrk->Delete(); ttofExtTrk->Delete(); } } trg->Clear(); // if ( !l1only && tracker->GetEntry(itr) <= 0 ) throw -36; if ( trigger->GetEntry(itr) <= 0 ) throw -36; /// // if ( l0tof->GetEntry(re) <= 0 ) throw -36; // if ( l0trig->GetEntry(re) <= 0 ) throw -36; /// // procev++; // // start processing // // dE/dx II order correction: check time limits and interpolate time correction //================================================================== //== if time is outside time limits: //================================================================== if ( atimemtime[ical+1] ){ if ( verbose ) cout<<"Checking Time Limits!"< atime || atime > mtime[ical+1]) && ical < 99 ){ ical = ical+1; } // if ( ical < 0 || ical >= 98 ){ code = -317; goto closeandexit; }; if ( verbose ) cout<<"abs time "<dedx_ppeak[ii])slope_dedx[ii]=3./(dedx_Hepeak[ii]-dedx_ppeak[ii]); else slope_dedx[ii]=4.; if(dedx_Hepeak[ii]>dedx_ppeak[ii])inter_dedx[ii]=1.-(slope_dedx[ii]*dedx_ppeak[ii]); else inter_dedx[ii]=0.; if ( fabs(dedx_ppeak[ii]) <= 1e-15 ){ if ( verbose ) printf("ii %i pslope %f atime %u pinter %f dedx_ppeak %f \n",ii,pslope,atime,pinter,dedx_ppeak[ii]); if ( verbose ) printf("ical %i pyhelp2 %f pyhelp1 %f thelp2 %f thelp1 %f \n",ical,pyhelp2,pyhelp1,thelp2,thelp1); code = -316; goto closeandexit; } } //================================================================ //================================================================ // // Here we will use some procedure to calibrate our data and put some kind of informations in the cinput structure // for (Int_t gg=0; gg<4;gg++){ for (Int_t hh=0; hh<12;hh++){ tofinput_.tdc[hh][gg] = (0xFFF & tofEvent->tdc[gg][hh]); // exclude warning bits tofinput_.adc[hh][gg] = (0xFFF & tofEvent->adc[gg][hh]); // exclude warning bits } } // tofdedx->Init(tofEvent); warning = 0; // for (Int_t hh=0; hh<5;hh++){ tofinput_.patterntrig[hh]=trg->patterntrig[hh]; } // // Here we have calibrated data, ready to be passed to the FORTRAN routine which will extract common and track-related variables. // npmtentry = 0; // ntrkentry = 0; // // Calculate tracks informations from ToF alone // tofl2com(); // memcpy(tof->tof_j_flag,tofoutput_.tof_j_flag,6*sizeof(Int_t)); // if ( !l1only ){ // t_tof->trkseqno = -1; // // and now we must copy from the output structure to the level2 class: // t_tof->npmttdc = 0; // for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ if ( tofoutput_.tofmask[hh][kk] != 0 ){ pmt_id = tof->GetPMTid(kk,hh); t_tof->pmttdc.AddAt(pmt_id,t_tof->npmttdc); t_tof->tdcflag.AddAt(tofoutput_.tdcflagtof[hh][kk],t_tof->npmttdc); // gf: Jan 09/07 t_tof->npmttdc++; }; }; }; for (Int_t kk=0; kk<13;kk++){ t_tof->beta[kk] = tofoutput_.betatof_a[kk]; } // // memcpy(t_tof->xtofpos,tofoutput_.xtofpos,sizeof(t_tof->xtofpos)); memcpy(t_tof->ytofpos,tofoutput_.ytofpos,sizeof(t_tof->ytofpos)); memcpy(t_tof->xtr_tof,tofoutput_.xtr_tof,sizeof(t_tof->xtr_tof)); memcpy(t_tof->ytr_tof,tofoutput_.ytr_tof,sizeof(t_tof->ytr_tof)); // { Float_t xtof_temp[6]={100.,100.,100.,100.,100.,100.}; Float_t ytof_temp[6]={100.,100.,100.,100.,100.,100.}; if(t_tof->xtofpos[0]<100. && t_tof->ytofpos[0]<100.){ xtof_temp[1]=t_tof->xtofpos[0]; ytof_temp[0]=t_tof->ytofpos[0]; }else if(t_tof->xtofpos[0]>=100. && t_tof->ytofpos[0]<100.){ ytof_temp[0]=t_tof->ytofpos[0]; tof->GetPaddleGeometry(0,(Int_t)log2(tof->tof_j_flag[0]),xleft, xright, yleft, yright); xtof_temp[1]=xleft+2.55; }else if(t_tof->ytofpos[0]>=100. && t_tof->xtofpos[0]<100.){ xtof_temp[1]=t_tof->xtofpos[0]; tof->GetPaddleGeometry(1,(Int_t)log2(tof->tof_j_flag[1]),xleft, xright, yleft, yright); ytof_temp[0]=yleft+2.75; } if(t_tof->xtofpos[1]<100. && t_tof->ytofpos[1]<100.){ xtof_temp[2]=t_tof->xtofpos[1]; ytof_temp[3]=t_tof->ytofpos[1]; }else if(t_tof->xtofpos[1]>=100. && t_tof->ytofpos[1]<100.){ ytof_temp[3]=t_tof->ytofpos[1]; tof->GetPaddleGeometry(3,(Int_t)log2(tof->tof_j_flag[3]),xleft, xright, yleft, yright); xtof_temp[2]=xleft+4.5; }else if(t_tof->ytofpos[1]>=100. && t_tof->xtofpos[1]<100.){ xtof_temp[2]=t_tof->xtofpos[1]; tof->GetPaddleGeometry(2,(Int_t)log2(tof->tof_j_flag[2]),xleft, xright, yleft, yright); ytof_temp[3]=yleft+3.75; } if(t_tof->xtofpos[2]<100. && t_tof->ytofpos[2]<100.){ xtof_temp[5]=t_tof->xtofpos[2]; ytof_temp[4]=t_tof->ytofpos[2]; }else if(t_tof->xtofpos[2]>=100. && t_tof->ytofpos[2]<100.){ ytof_temp[4]=t_tof->ytofpos[2]; tof->GetPaddleGeometry(4,(Int_t)log2(tof->tof_j_flag[4]),xleft, xright, yleft, yright); xtof_temp[5]=xleft+3; }else if(t_tof->ytofpos[2]>=100. && t_tof->xtofpos[2]<100.){ xtof_temp[5]=t_tof->xtofpos[2]; tof->GetPaddleGeometry(5,(Int_t)log2(tof->tof_j_flag[5]),xleft, xright, yleft, yright); ytof_temp[4]=yleft+2.5; } // tofdedx->Process(atime,t_tof->beta[12], (Float_t *)xtof_temp,(Float_t *)ytof_temp); t_tof->npmtadc = 0; for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ pmt_id = tof->GetPMTid(kk,hh); Int_t Iplane=-1; Int_t Ipaddle=-1; tof->GetPMTPaddle(pmt_id, Iplane, Ipaddle); tof->GetPaddleGeometry(Iplane,Ipaddle,xleft,xright,yleft,yright); if (tofEvent->tdc[kk][hh] < 4095 || tofEvent->adc[kk][hh] < 4095 || tofinput_.tdc[hh][kk] < 4095 || tofinput_.adc[hh][kk] < 4095 ) { if ( tofdedx->GetdEdx_pmt(pmt_id)>-1. && (inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)) > 0. &&((xtof_temp[Iplane]>=xleft&&xtof_temp[Iplane]<=xright) || (ytof_temp[Iplane]>=yleft&&ytof_temp[Iplane]<=yright)) ){ t_tof->dedx.AddAt((inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)),t_tof->npmtadc);// RC new dE/dx II order correction t_tof->pmtadc.AddAt(pmt_id,t_tof->npmtadc); t_tof->adcflag.AddAt(0,t_tof->npmtadc); // gf: Jan 09/07 t_tof->npmtadc++; } } } } } new(t[ntrkentry]) ToFTrkVar(*t_tof); ntrkentry++; t_tof->Clear(); t_pmt->Clear(); // for (Int_t gg=0; gg<4;gg++){ for (Int_t hh=0; hh<12;hh++){ // new WM if ( tofoutput_.tdc_c[hh][gg] < 4095 || (0xFFF & tofEvent->adc[gg][hh]) < 4095 || (0xFFF & tofEvent->tdc[gg][hh]) < 4095 ){ t_pmt->pmt_id = tof->GetPMTid(gg,hh); t_pmt->tdc_tw = tofoutput_.tdc_c[hh][gg]; t_pmt->adc = (Float_t)(0xFFF & tofEvent->adc[gg][hh]); t_pmt->tdc = (Float_t)(0xFFF & tofEvent->tdc[gg][hh]); t_pmt->l0flag_adc = (Float_t)(tofEvent->adc[gg][hh]>>12); t_pmt->l0flag_tdc = (Float_t)(tofEvent->tdc[gg][hh]>>12); if ( t_pmt->l0flag_adc || t_pmt->l0flag_tdc ) warning |= 1 << 0; // new(tpmt[npmtentry]) ToFPMT(*t_pmt); npmtentry++; t_pmt->Clear(); } } } // if ( debug ) printf(" ATIME %u re %u \n",atime,(UInt_t)re); // // Calculate track-related variables // // // Run over tracks - standard algorithm // for(Int_t nt=0; nt < trk->ntrk(); nt++){ // TrkTrack *ptt = trk->GetStoredTrack(nt); // // Copy the alpha vector in the input structure // for (Int_t e = 0; e < 5 ; e++){ tofinput_.al_pp[e] = ptt->al[e]; } // new input for 9th reduction: tracker dEdx tofinput_.trkmip = ptt->GetDEDX(); // // Get tracker related variables for this track // toftrk(); // // Copy values in the class from the structure (we need to use a temporary class to store variables). // t_tof->npmttdc = 0; for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ if ( tofoutput_.tofmask[hh][kk] != 0 ){ pmt_id = tof->GetPMTid(kk,hh); t_tof->pmttdc.AddAt(pmt_id,t_tof->npmttdc); t_tof->tdcflag.AddAt(tofoutput_.tdcflag[hh][kk],t_tof->npmttdc); // gf: Jan 09/07 t_tof->npmttdc++; } } } for (Int_t kk=0; kk<13;kk++){ t_tof->beta[kk] = tofoutput_.beta_a[kk]; } memcpy(t_tof->xtofpos,tofoutput_.xtofpos,sizeof(t_tof->xtofpos)); memcpy(t_tof->ytofpos,tofoutput_.ytofpos,sizeof(t_tof->ytofpos)); memcpy(t_tof->xtr_tof,tofoutput_.xtr_tof,sizeof(t_tof->xtr_tof)); memcpy(t_tof->ytr_tof,tofoutput_.ytr_tof,sizeof(t_tof->ytr_tof)); // tofdedx->Process(atime,t_tof->beta[12], (Float_t *)t_tof->xtr_tof,(Float_t *)t_tof->ytr_tof); t_tof->npmtadc = 0; for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ pmt_id = tof->GetPMTid(kk,hh); Int_t Iplane=-1; Int_t Ipaddle=-1; Int_t IpaddleT=-1; tof->GetPMTPaddle(pmt_id, Iplane, Ipaddle); IpaddleT=tof->GetPaddleIdOfTrack(t_tof->xtr_tof[Iplane],t_tof->ytr_tof[Iplane], Iplane,0.0); if ( debug ) printf(" 1nt %i pmt_id %i npmtadc %i dedx %f dedx slope %f dedx inter %f\n",nt,pmt_id,t_tof->npmtadc,(inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)),inter_dedx[pmt_id],slope_dedx[pmt_id]); if (tofEvent->tdc[kk][hh] < 4095 || tofEvent->adc[kk][hh] < 4095 || tofinput_.tdc[hh][kk] < 4095 || tofinput_.adc[hh][kk] < 4095 ) { if ( tofdedx->GetdEdx_pmt(pmt_id) > -1. && (inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)) > 0. && Ipaddle==IpaddleT ){ t_tof->dedx.AddAt((inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)),t_tof->npmtadc);// RC new dE/dx II order correction if ( debug ) printf(" 2nt %i npmtadc %i dedx %f dedx slope %f dedx inter %f\n",nt,t_tof->npmtadc,(inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)),inter_dedx[pmt_id],slope_dedx[pmt_id]); t_tof->pmtadc.AddAt(pmt_id,t_tof->npmtadc); t_tof->adcflag.AddAt(0,t_tof->npmtadc); // gf: Jan 09/07 t_tof->npmtadc++; } } } } // // Store the tracker track number in order to be sure to have shyncronized data during analysis // t_tof->trkseqno = nt; // // create a new object for this event with track-related variables // new(t[ntrkentry]) ToFTrkVar(*t_tof); ntrkentry++; t_tof->Clear(); // } // loop on all the tracks // // Code for extended tracking algorithm: // // // Run over tracks - nuclei algorithm // if ( hasNucleiTrk ){ Int_t ttentry = 0; for(Int_t nt=0; nt < tcNucleiTrk->GetEntries(); nt++){ // TrkTrack *ptt = (TrkTrack*)(tcNucleiTrk->At(nt)); // // Copy the alpha vector in the input structure // for (Int_t e = 0; e < 5 ; e++){ tofinput_.al_pp[e] = ptt->al[e]; } // new input for 9th reduction: tracker dEdx tofinput_.trkmip = ptt->GetDEDX(); // // Get tracker related variables for this track // toftrk(); // // Copy values in the class from the structure (we need to use a temporary class to store variables). // t_tof->npmttdc = 0; for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ if ( tofoutput_.tofmask[hh][kk] != 0 ){ pmt_id = tof->GetPMTid(kk,hh); t_tof->pmttdc.AddAt(pmt_id,t_tof->npmttdc); t_tof->tdcflag.AddAt(tofoutput_.tdcflag[hh][kk],t_tof->npmttdc); // gf: Jan 09/07 t_tof->npmttdc++; } } } for (Int_t kk=0; kk<13;kk++){ t_tof->beta[kk] = tofoutput_.beta_a[kk]; } memcpy(t_tof->xtofpos,tofoutput_.xtofpos,sizeof(t_tof->xtofpos)); memcpy(t_tof->ytofpos,tofoutput_.ytofpos,sizeof(t_tof->ytofpos)); memcpy(t_tof->xtr_tof,tofoutput_.xtr_tof,sizeof(t_tof->xtr_tof)); memcpy(t_tof->ytr_tof,tofoutput_.ytr_tof,sizeof(t_tof->ytr_tof)); // tofdedx->Process(atime,t_tof->beta[12], (Float_t *)t_tof->xtr_tof,(Float_t *)t_tof->ytr_tof); t_tof->npmtadc = 0; for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ pmt_id = tof->GetPMTid(kk,hh); Int_t Iplane=-1; Int_t Ipaddle=-1; Int_t IpaddleT=-1; tof->GetPMTPaddle(pmt_id, Iplane, Ipaddle); IpaddleT=tof->GetPaddleIdOfTrack(t_tof->xtr_tof[Iplane],t_tof->ytr_tof[Iplane], Iplane,0.0); if ( debug ) printf(" 1nt %i pmt_id %i npmtadc %i dedx %f dedx slope %f dedx inter %f\n",nt,pmt_id,t_tof->npmtadc,(inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)),inter_dedx[pmt_id],slope_dedx[pmt_id]); if (tofEvent->tdc[kk][hh] < 4095 || tofEvent->adc[kk][hh] < 4095 || tofinput_.tdc[hh][kk] < 4095 || tofinput_.adc[hh][kk] < 4095 ) { if ( tofdedx->GetdEdx_pmt(pmt_id) > -1. && (inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)) > 0. && Ipaddle==IpaddleT ){ t_tof->dedx.AddAt((inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)),t_tof->npmtadc);// RC new dE/dx II order correction if ( debug ) printf(" 2nt %i npmtadc %i dedx %f dedx slope %f dedx inter %f\n",nt,t_tof->npmtadc,(inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)),inter_dedx[pmt_id],slope_dedx[pmt_id]); t_tof->pmtadc.AddAt(pmt_id,t_tof->npmtadc); t_tof->adcflag.AddAt(0,t_tof->npmtadc); // gf: Jan 09/07 t_tof->npmtadc++; } } } } // // Store the tracker track number in order to be sure to have shyncronized data during analysis // t_tof->trkseqno = nt; // // create a new object for this event with track-related variables // TClonesArray &tt1 = *ttofNucleiTrk; new(tt1[ttentry]) ToFTrkVar(*t_tof); ttentry++; t_tof->Clear(); // } // loop on all the tracks, nuclei algorithm } // // Run over tracks - extended nuclei algorithm // if ( hasExtNucleiTrk ){ Int_t ttentry = 0; for(Int_t nt=0; nt < tcExtNucleiTrk->GetEntries(); nt++){ // ExtTrack *ptt = (ExtTrack*)(tcExtNucleiTrk->At(nt)); // // Copy the alpha vector in the input structure // for (Int_t e = 0; e < 5 ; e++){ tofinput_.al_pp[e] = ptt->al[e]; } // new input for 9th reduction: tracker dEdx tofinput_.trkmip = ptt->GetDEDX(); // // Get tracker related variables for this track // toftrk(); // // Copy values in the class from the structure (we need to use a temporary class to store variables). // t_tof->npmttdc = 0; for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ if ( tofoutput_.tofmask[hh][kk] != 0 ){ pmt_id = tof->GetPMTid(kk,hh); t_tof->pmttdc.AddAt(pmt_id,t_tof->npmttdc); t_tof->tdcflag.AddAt(tofoutput_.tdcflag[hh][kk],t_tof->npmttdc); // gf: Jan 09/07 t_tof->npmttdc++; } } } for (Int_t kk=0; kk<13;kk++){ t_tof->beta[kk] = tofoutput_.beta_a[kk]; } memcpy(t_tof->xtofpos,tofoutput_.xtofpos,sizeof(t_tof->xtofpos)); memcpy(t_tof->ytofpos,tofoutput_.ytofpos,sizeof(t_tof->ytofpos)); memcpy(t_tof->xtr_tof,tofoutput_.xtr_tof,sizeof(t_tof->xtr_tof)); memcpy(t_tof->ytr_tof,tofoutput_.ytr_tof,sizeof(t_tof->ytr_tof)); // tofdedx->Process(atime,t_tof->beta[12], (Float_t *)t_tof->xtr_tof,(Float_t *)t_tof->ytr_tof); t_tof->npmtadc = 0; for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ pmt_id = tof->GetPMTid(kk,hh); Int_t Iplane=-1; Int_t Ipaddle=-1; Int_t IpaddleT=-1; tof->GetPMTPaddle(pmt_id, Iplane, Ipaddle); IpaddleT=tof->GetPaddleIdOfTrack(t_tof->xtr_tof[Iplane],t_tof->ytr_tof[Iplane], Iplane,0.0); if ( debug ) printf(" 1nt %i pmt_id %i npmtadc %i dedx %f dedx slope %f dedx inter %f\n",nt,pmt_id,t_tof->npmtadc,(inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)),inter_dedx[pmt_id],slope_dedx[pmt_id]); if (tofEvent->tdc[kk][hh] < 4095 || tofEvent->adc[kk][hh] < 4095 || tofinput_.tdc[hh][kk] < 4095 || tofinput_.adc[hh][kk] < 4095 ) { if ( tofdedx->GetdEdx_pmt(pmt_id) > -1. && (inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)) > 0. && Ipaddle==IpaddleT ){ t_tof->dedx.AddAt((inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)),t_tof->npmtadc);// RC new dE/dx II order correction if ( debug ) printf(" 2nt %i npmtadc %i dedx %f dedx slope %f dedx inter %f\n",nt,t_tof->npmtadc,(inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)),inter_dedx[pmt_id],slope_dedx[pmt_id]); t_tof->pmtadc.AddAt(pmt_id,t_tof->npmtadc); t_tof->adcflag.AddAt(0,t_tof->npmtadc); // gf: Jan 09/07 t_tof->npmtadc++; } } } } // // Store the tracker track number in order to be sure to have shyncronized data during analysis // t_tof->trkseqno = nt; // // create a new object for this event with track-related variables // TClonesArray &tt2 = *ttofExtNucleiTrk; new(tt2[ttentry]) ToFTrkVar(*t_tof); ttentry++; t_tof->Clear(); // } // loop on all the tracks, extended nuclei algorithm } // // Run over tracks - extended algorithm // if ( hasExtTrk ){ Int_t ttentry = 0; for(Int_t nt=0; nt < tcExtTrk->GetEntries(); nt++){ // ExtTrack *ptt = (ExtTrack*)(tcExtTrk->At(nt)); // // Copy the alpha vector in the input structure // for (Int_t e = 0; e < 5 ; e++){ tofinput_.al_pp[e] = ptt->al[e]; } // new input for 9th reduction: tracker dEdx tofinput_.trkmip = ptt->GetDEDX(); // // Get tracker related variables for this track // toftrk(); // // Copy values in the class from the structure (we need to use a temporary class to store variables). // t_tof->npmttdc = 0; for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ if ( tofoutput_.tofmask[hh][kk] != 0 ){ pmt_id = tof->GetPMTid(kk,hh); t_tof->pmttdc.AddAt(pmt_id,t_tof->npmttdc); t_tof->tdcflag.AddAt(tofoutput_.tdcflag[hh][kk],t_tof->npmttdc); // gf: Jan 09/07 t_tof->npmttdc++; } } } for (Int_t kk=0; kk<13;kk++){ t_tof->beta[kk] = tofoutput_.beta_a[kk]; } memcpy(t_tof->xtofpos,tofoutput_.xtofpos,sizeof(t_tof->xtofpos)); memcpy(t_tof->ytofpos,tofoutput_.ytofpos,sizeof(t_tof->ytofpos)); memcpy(t_tof->xtr_tof,tofoutput_.xtr_tof,sizeof(t_tof->xtr_tof)); memcpy(t_tof->ytr_tof,tofoutput_.ytr_tof,sizeof(t_tof->ytr_tof)); // tofdedx->Process(atime,t_tof->beta[12], (Float_t *)t_tof->xtr_tof,(Float_t *)t_tof->ytr_tof); t_tof->npmtadc = 0; for (Int_t hh=0; hh<12;hh++){ for (Int_t kk=0; kk<4;kk++){ pmt_id = tof->GetPMTid(kk,hh); Int_t Iplane=-1; Int_t Ipaddle=-1; Int_t IpaddleT=-1; tof->GetPMTPaddle(pmt_id, Iplane, Ipaddle); IpaddleT=tof->GetPaddleIdOfTrack(t_tof->xtr_tof[Iplane],t_tof->ytr_tof[Iplane], Iplane,0.0); if ( debug ) printf(" 1nt %i pmt_id %i npmtadc %i dedx %f dedx slope %f dedx inter %f\n",nt,pmt_id,t_tof->npmtadc,(inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)),inter_dedx[pmt_id],slope_dedx[pmt_id]); if (tofEvent->tdc[kk][hh] < 4095 || tofEvent->adc[kk][hh] < 4095 || tofinput_.tdc[hh][kk] < 4095 || tofinput_.adc[hh][kk] < 4095 ) { if ( tofdedx->GetdEdx_pmt(pmt_id) > -1. && (inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)) > 0. && Ipaddle==IpaddleT ){ t_tof->dedx.AddAt((inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)),t_tof->npmtadc);// RC new dE/dx II order correction if ( debug ) printf(" 2nt %i npmtadc %i dedx %f dedx slope %f dedx inter %f\n",nt,t_tof->npmtadc,(inter_dedx[pmt_id]+slope_dedx[pmt_id]*tofdedx->GetdEdx_pmt(pmt_id)),inter_dedx[pmt_id],slope_dedx[pmt_id]); t_tof->pmtadc.AddAt(pmt_id,t_tof->npmtadc); t_tof->adcflag.AddAt(0,t_tof->npmtadc); // gf: Jan 09/07 t_tof->npmtadc++; } } } } // // Store the tracker track number in order to be sure to have shyncronized data during analysis // t_tof->trkseqno = nt; // // create a new object for this event with track-related variables // TClonesArray &tt3 = *ttofExtTrk; new(tt3[ttentry]) ToFTrkVar(*t_tof); ttentry++; t_tof->Clear(); // } // loop on all the tracks, extended algorithm } } // if !l1only // tof->unpackError = tofEvent->unpackError; a = 0; b = 0; if ( !tof->checkPMTpatternPMThit(trg, a, b) ) warning |= 1 << 1; if ( !tof->checkPMTpmttrig(trg) ) warning |= 1 << 2; if ( !trg->checkPMTpatterntrig() ) warning |= 1 << 3; tof->unpackWarning = warning; if ( defcal ){ tof->default_calib = 1; } else { tof->default_calib = 0; } // // Fill the rootple // toft->Fill(); // // // delete t_tof; // // // jumpev: if ( !debug ) debug = false; // } // // Here you may want to clear some variables before processing another run // delete dbtime; } // process all the runs // if ( verbose ) printf("\n Finished processing data \n"); // closeandexit: // // we have finished processing the run(s). If we processed a single run now we must copy all the events after our run from the old tree to the new one and delete the old tree. // if ( !reprocall && reproc && code >= 0 ){ if ( totfileentries > noaftrun ){ if ( verbose ) printf("\n Post-processing: copying events from the old tree after the processed run\n"); if ( verbose ) printf(" Copying %i events in the file which are after the end of the run %i \n",(int)(totfileentries-noaftrun),(int)run); if ( verbose ) printf(" Start copying at event number %i end copying at event number %i \n",(int)noaftrun,(int)totfileentries); for (UInt_t j = noaftrun; j < totfileentries; j++ ){ // // Get entry from old tree // if ( toftclone->GetEntry(j) <= 0 ) throw -36; // // copy tofclone to tof // memcpy(&tof,&tofclone,sizeof(tofclone));// EM reprocessing bug fixed // // Fill entry in the new tree // toft->Fill();// EM reprocessing bug fixed }; if ( verbose ) printf(" Finished successful copying!\n"); }; }; // // Close files, delete old tree(s), write and close level2 file // if ( l0File ) l0File->Close(); if ( tempfile ) tempfile->Close(); if ( myfold ) gSystem->Unlink(tempname.str().c_str()); // if ( code < 0 && verbose ) printf("\n TOF - ERROR: an error occurred, try to save anyway...\n"); if ( verbose ) printf("\n Writing and closing rootple\n"); if ( toft ) toft->SetName("ToF"); if ( file ){ file->cd(); if ( toft ) toft->Write(0, TObject::kOverwrite); // 10RED bug fixed }; // if ( myfold ) gSystem->Unlink(toffolder.str().c_str()); // // the end // if ( tcNucleiTrk ){ tcNucleiTrk->Delete(); delete tcNucleiTrk; tcNucleiTrk = NULL; } if ( tcExtNucleiTrk ){ tcExtNucleiTrk->Delete(); delete tcExtNucleiTrk; tcExtNucleiTrk = NULL; } if ( tcExtTrk ){ tcExtTrk->Delete(); delete tcExtTrk; tcExtTrk = NULL; } // if ( verbose ) printf("\n Exiting...\n"); // if ( tofdedx ) delete tofdedx; if ( glroot ) delete glroot; if ( glparam ) delete glparam; if ( runinfo ) runinfo->Close(); if ( runinfo ) delete runinfo; // if ( code < 0 ) throw code; if ( debug ) file->ls(); return(code); }