1 |
/** |
2 |
* \file ToFLevel2.h |
3 |
* \author Gianfranca DeRosa / Wolfgang Menn / Rita Carbone with E. M. supervision |
4 |
*/ |
5 |
|
6 |
#ifndef ToFLevel2_h |
7 |
#define ToFLevel2_h |
8 |
// |
9 |
#include <TObject.h> |
10 |
#include <TArrayI.h> |
11 |
#include <TArrayF.h> |
12 |
#include <TClonesArray.h> |
13 |
|
14 |
#include <math.h> // EMILIANO |
15 |
#include <iostream> // from ToFLevel2.cpp |
16 |
#include <fstream> // Emiliano |
17 |
#include <sstream> // Emiliano |
18 |
#include <string> // Emiliano |
19 |
|
20 |
|
21 |
#include <ToFStruct.h> |
22 |
|
23 |
#include <TrkLevel2.h> // Emiliano |
24 |
#include <TrigLevel2.h> // Emiliano |
25 |
#include <GLTables.h> // Emiliano |
26 |
#include <OrbitalInfo.h> // Emiliano |
27 |
#include <ToFCore.h> // Emiliano |
28 |
#include <physics/tof/TofEvent.h> |
29 |
|
30 |
// |
31 |
// Declaration of the core fortran routines |
32 |
// |
33 |
#define tofl2com tofl2com_ |
34 |
extern "C" int tofl2com(); |
35 |
#define toftrk toftrk_ |
36 |
extern "C" int toftrk(); |
37 |
#define rdtofcal rdtofcal_ |
38 |
//extern "C" int rdtofcal(char [], int *); |
39 |
extern "C" int rdtofcal(const char *, int *); |
40 |
|
41 |
// |
42 |
// class which contains track related variables |
43 |
// |
44 |
#define ZTOF11 53.74 |
45 |
#define ZTOF12 53.04 |
46 |
#define ZTOF21 23.94 |
47 |
#define ZTOF22 23.44 |
48 |
#define ZTOF31 -23.49 |
49 |
#define ZTOF32 -24.34 |
50 |
|
51 |
|
52 |
class ToFGeom : public TObject { |
53 |
|
54 |
private: |
55 |
TArrayI ePlane, eXY; |
56 |
|
57 |
public: |
58 |
ToFGeom() { |
59 |
int plane[24] = { |
60 |
0, 0, 0, 0, 0, 0, 0, 0, |
61 |
1, 1, 1, 1, 1, 1, |
62 |
2, 2, |
63 |
3, 3, |
64 |
4, 4, 4, |
65 |
5, 5, 5 |
66 |
}; |
67 |
int plXY[6]= { 2, 1, 1, 2, 2, 1 }; // X==1, Y==2 */ |
68 |
ePlane.Set(24,plane); |
69 |
eXY.Set(6,plXY); |
70 |
} |
71 |
|
72 |
int GetPad( int idpmt) { return (int)((idpmt+0.5)/2.); } |
73 |
int GetPlane( int idpmt) { return ePlane[ GetPad(idpmt) ]; } |
74 |
int GetXY( int idpmt) { return eXY[ GetPlane(idpmt) ]; } |
75 |
|
76 |
ClassDef(ToFGeom,1); |
77 |
|
78 |
}; |
79 |
|
80 |
|
81 |
/** |
82 |
* \brief Class which contains the PMT data |
83 |
* |
84 |
* If there is a valid ADC or a TDC value (value<4095) for a PMT, both ADC and TDC data |
85 |
* are stored in the PMT class. |
86 |
* Look in the ToFLevel2Ex.cxx example in the repository how to read the PMT class. |
87 |
*/ |
88 |
class ToFPMT : public TObject { |
89 |
|
90 |
private: |
91 |
|
92 |
public: |
93 |
Int_t pmt_id; ///<the identification number of the PMT from 0 to 47 |
94 |
Float_t adc; ///<raw ADC value for this PMT |
95 |
Float_t tdc; ///<raw TDC value for this PMT |
96 |
Float_t tdc_tw; ///<time-walk corrected TDC value for this PMT |
97 |
Float_t l0flag_adc; ///< warning flags from unpacking |
98 |
Float_t l0flag_tdc; ///< warning flags from unpacking |
99 |
// |
100 |
ToFPMT(); |
101 |
ToFPMT(const ToFPMT&); |
102 |
// |
103 |
ToFPMT* GetToFPMT(){return this;}; |
104 |
void Clear(Option_t *t=""); |
105 |
|
106 |
ClassDef(ToFPMT,3); |
107 |
}; |
108 |
|
109 |
/** |
110 |
* \brief Class used to calibrate adc to dEdx for each PMT |
111 |
* |
112 |
* Class used to calibrate adc to dEdx for each PMT |
113 |
*/ |
114 |
class ToFdEdx : public TObject { |
115 |
|
116 |
private: |
117 |
// |
118 |
ToFGeom eGeom; // ToF geometry |
119 |
// |
120 |
Float_t adc_he; |
121 |
TArrayF *eDEDXpmt; // 0-47 pmt dEdx |
122 |
// parameters: |
123 |
TArrayF PMTsat; // 0-47 saturation parameters |
124 |
Float_t adc[48]; |
125 |
// |
126 |
|
127 |
TArrayF parAtt[48]; // 48 x 6 |
128 |
TArrayF parPos[48]; // 48 x 4 |
129 |
TArrayF parDesatBB[48]; // 48 x 3 |
130 |
TArrayF parBBneg[48]; // 48 x 3 |
131 |
TArrayF parBBpos; // 48 x 1 |
132 |
|
133 |
double f_adcPC( float x ); |
134 |
double f_BB( TArrayF &p, float x ); |
135 |
double f_BB5B( float x ); |
136 |
double f_att( TArrayF &p, float x ) ; |
137 |
double f_att5B( float x ); |
138 |
double f_desatBB( TArrayF &p, float x ); |
139 |
double f_desatBB5B( float x ); |
140 |
double f_pos( TArrayF &p, float x ); |
141 |
double f_pos5B( float x ); |
142 |
float Get_adc_he( int id, float pl_x[6], float pl_y[6]); |
143 |
|
144 |
Bool_t conn[12]; |
145 |
|
146 |
UInt_t ts[12]; |
147 |
UInt_t te[12]; |
148 |
|
149 |
|
150 |
public: |
151 |
ToFdEdx(); // class constructor |
152 |
~ToFdEdx(); // class distructor |
153 |
// |
154 |
void Clear(Option_t *option=""); |
155 |
void Delete(Option_t *option=""); |
156 |
|
157 |
void Init(pamela::tof::TofEvent *tofl0 ); // init parameters |
158 |
void Init(Int_t i, Int_t j, Float_t adce); |
159 |
void Define_PMTsat(); |
160 |
|
161 |
void ReadParAtt( const char *fname ); |
162 |
void ReadParPos( const char *fname ); |
163 |
void ReadParBBneg( const char *fname ); |
164 |
void ReadParBBpos( const char *fname ); |
165 |
void ReadParDesatBB( const char *fname ); |
166 |
|
167 |
void CheckConnectors(UInt_t atime, GL_PARAM *glparam, TSQLServer *dbc); |
168 |
|
169 |
void Process( UInt_t atime, Float_t betamean, Float_t *xtr_tof, Float_t *ytr_tof, Int_t exitat=-1); // |
170 |
void Print(Option_t *option=""); |
171 |
|
172 |
// Float_t GetdEdx_pmt(Int_t ipmt) { return (Float_t)eDEDXpmt[ipmt]; } // 0-47 dEdx for each PMT for tracked events |
173 |
Float_t GetdEdx_pmt(Int_t ipmt) { return eDEDXpmt->At(ipmt); } // 0-47 dEdx for each PMT for tracked events |
174 |
// |
175 |
ToFdEdx* GetToFdEdx(){return this;}; |
176 |
ClassDef(ToFdEdx,3); |
177 |
}; |
178 |
|
179 |
|
180 |
/** |
181 |
* \brief Class which contains the tracker related variables |
182 |
* |
183 |
* We can use the ToF standalone to find hitted paddles, calculate beta, etc.. |
184 |
* These results are then stored with the "trkseqno" = -1. |
185 |
* If we use the track from the tracker, then the penetration points in the |
186 |
* scintillators are calculated, which defines the hitted paddles. For these paddles |
187 |
* we calculate then all the output. |
188 |
* Note: The artificial ADC values are stored as dEdx in the output, the dEdx will be |
189 |
* by definition = 1. However, the artificial TDC values are just used internally |
190 |
* and not stored in the output. But one can see in both cases which PMT has artificial |
191 |
* values using "adcflag" and "tdcflag". |
192 |
* Look in the ToFLevel2Ex.cxx example in the repository how to read the tracker related |
193 |
* variables. |
194 |
*/ |
195 |
class ToFTrkVar : public TObject { |
196 |
|
197 |
private: |
198 |
|
199 |
public: |
200 |
// |
201 |
Int_t trkseqno; ///< tracker sequ. number: -1=ToF standalone, 0=first Tracker track, ... |
202 |
// |
203 |
Int_t npmttdc; ///<number of the TDC measurements used to evaluate beta |
204 |
TArrayI pmttdc; ///<contains the ID (0..47) for the PMT used to evaluate beta |
205 |
TArrayI tdcflag; ///<flag for artificial TDC, "0" if normal TDC value |
206 |
|
207 |
/** |
208 |
* \brief beta, 12 measurements for the 12 combinations, beta[13] is modified weighted mean |
209 |
* |
210 |
* The 12 measurements are S11-S31, S11-S32, S12-S31, S12-S32, and then analogue for |
211 |
* S2-S3 and S1-S2. |
212 |
* The calculation of beta[13] is now modified: |
213 |
* We check the individual weights for artificial TDC values, then calculate |
214 |
* am mean beta for the first time. In a second step we loop again through |
215 |
* the single measurements, checking for the residual from the mean |
216 |
* The cut on the residual reject measurements > "x"-sigma. A chi2 value is |
217 |
* calculated, furthermore a "quality" value by adding the weights which |
218 |
* are finally used. If all measurements are taken, "quality" will be = 505. |
219 |
* A chi2 cut around 3-4 and a quality-cut > 400 is needed for clean beta |
220 |
* The Level2 beta[12] which is derived in the fortran routines uses: 10.,200.,20. |
221 |
* This is not a very high quality measurement. One can re-calculate a new beta[13] |
222 |
* using the L2-method "CalcBeta" |
223 |
*/ |
224 |
Float_t beta[13]; |
225 |
// |
226 |
Int_t npmtadc; ///<number of the ADC measurements used for dEdx evaluation |
227 |
TArrayI pmtadc; ///<contains the ID (0..47) for the PMT used to evaluate dEdx |
228 |
TArrayI adcflag; ///<flag for artificial ADCs, "0" if normal ADC value |
229 |
TArrayF dedx; ///<energy loss for this PMT in mip |
230 |
// |
231 |
Float_t xtofpos[3]; ///<x-measurement using the TDC values and the calibration from S12, S21, S32 |
232 |
Float_t ytofpos[3]; ///<x-measurement using the TDC values and the calibration from S11, S22, S31 |
233 |
// |
234 |
Float_t xtr_tof[6]; ///<x-measurement in the ToF layers from tracker |
235 |
Float_t ytr_tof[6]; ///<x-measurement in the ToF layers from tracker |
236 |
// |
237 |
ToFTrkVar(); |
238 |
ToFTrkVar(const ToFTrkVar&); |
239 |
|
240 |
ToFTrkVar* GetToFTrkVar(){return this;}; |
241 |
void Clear(Option_t *t=""); |
242 |
|
243 |
ClassDef(ToFTrkVar,1); |
244 |
// |
245 |
}; |
246 |
|
247 |
/** |
248 |
* \brief Class to describe ToF LEVEL2 data |
249 |
* |
250 |
*/ |
251 |
|
252 |
class ToFLevel2 : public TObject { |
253 |
private: |
254 |
|
255 |
public: |
256 |
// |
257 |
TClonesArray *PMT; ///<class needed to store PMT hit informations |
258 |
TClonesArray *ToFTrk; ///<track related variable class |
259 |
Int_t tof_j_flag[6]; ///<number of hitted paddle(s) for each ToF layer: flag = flag + 2**(paddlenumber-1) |
260 |
// |
261 |
Int_t unpackError;///< zero if no errors |
262 |
Int_t unpackWarning;///< zero if no warnings | bitwise: ... 3 2 1 0 --> bit 0 = discharging flag on at least one PMT (adc OR tdc), bit 1 = there is at least one PMT off (no tdc nor adc) which is included in the patterntrig, bit 2 = PMTs hit are not enough to match trigger configuration, bit 3 = pattern trig does not match trigger configuration |
263 |
Int_t default_calib; ///< one if the default calibration has been used to process the data, zero otherwise |
264 |
// |
265 |
Float_t GetdEdx(Int_t notrack, Int_t plane, Int_t adcfl); // gf Apr 07 |
266 |
|
267 |
Float_t CalcBeta(Int_t notrack, Float_t resmax, Float_t qualitycut, Float_t chi2cut); // wm feb 08 |
268 |
|
269 |
// |
270 |
// Float_t CalcBeta(Int_t notrack, Float_t resmax, Float_t chi2cut, Float_t qualitycut); // wm feb 08 |
271 |
// |
272 |
// methods to make life simplier during the analysis, returns a pointer to the ToFTrkVar class containing track related variables |
273 |
// |
274 |
Int_t ntrk(){return ToFTrk->GetEntries();}; |
275 |
Int_t npmt(){return PMT->GetEntries();}; |
276 |
|
277 |
// |
278 |
void GetLevel2Struct(cToFLevel2 *) const; |
279 |
// |
280 |
ToFTrkVar *GetToFTrkVar(Int_t notrack); |
281 |
ToFPMT *GetToFPMT(Int_t nohit); |
282 |
Int_t GetPMTid(Int_t gg, Int_t hh); |
283 |
TString GetPMTName(Int_t ind); |
284 |
|
285 |
Int_t GetPlaneIndex(Int_t pmt_id); |
286 |
void GetMatrix(Int_t notrack, Float_t adc[4][12], Float_t tdc[4][12]); |
287 |
void GetPMTIndex(Int_t pmt_id, Int_t &gg, Int_t &hh); |
288 |
|
289 |
// gf Apr 07 |
290 |
void GetdEdxPaddle(Int_t notrack, Int_t paddleid, Int_t adcfl, Float_t &PadEdx, Int_t &SatWarning); // gf Apr 07 |
291 |
TString GetPMTName(Int_t ind, Int_t &iplane, Int_t &ipaddle,Int_t &ipmt); |
292 |
Int_t GetPaddleIdOfTrack(Float_t xtr, Float_t ytr, Int_t plane); // gf Apr 07 |
293 |
Int_t GetPaddleIdOfTrack(Float_t xtr, Float_t ytr, Int_t plane, Float_t margin); // wm jun 2008 |
294 |
void GetPMTPaddle(Int_t pmt_id, Int_t &plane, Int_t &paddle); // gf Apr 07 |
295 |
void GetPaddlePMT(Int_t paddle, Int_t &pmtleft, Int_t &pmtright); // gf Apr 07 |
296 |
void GetPaddleGeometry(Int_t plane, Int_t paddle, Float_t &xleft, Float_t &xright, Float_t &yleft, Float_t &yright); // gf Apr 07 |
297 |
Int_t GetPaddleid(Int_t plane, Int_t paddle); |
298 |
void GetPaddlePlane(Int_t padid, Int_t &plane, Int_t &paddle); |
299 |
Int_t GetNPaddle(Int_t plane); |
300 |
// |
301 |
// |
302 |
// |
303 |
Int_t Process(TrkLevel2 *trk, TrigLevel2 *trg, GL_RUN *run, OrbitalInfo *orb, Bool_t force); // Emiliano |
304 |
|
305 |
// |
306 |
// |
307 |
bool bit(int decimal, char pos); |
308 |
bool checkPMT(TString givenpmt); |
309 |
bool checkPMTpatternPMThit(TrigLevel2 *trg, int &pmtpattern, int &pmtnosignal); |
310 |
bool checkPMTpmttrig(TrigLevel2 *trg); |
311 |
void printPMT(); |
312 |
|
313 |
// |
314 |
// constructor |
315 |
// |
316 |
ToFLevel2(); |
317 |
~ToFLevel2(){Delete();}; //ELENA |
318 |
void Delete(Option_t *t=""); //ELENA |
319 |
void Set();//ELENA |
320 |
// |
321 |
// |
322 |
ToFLevel2* GetToFLevel2(){return this;}; |
323 |
|
324 |
/** |
325 |
* Method to get the z-position of the 6 TOF layers from the plane ID |
326 |
* @param plane_id Plane ID (11 12 21 22 31 32) |
327 |
*/ |
328 |
Float_t GetZTOF(Int_t plane_id){ |
329 |
switch(plane_id){ |
330 |
case 11: return ZTOF11; |
331 |
case 12: return ZTOF12; |
332 |
case 21: return ZTOF21; |
333 |
case 22: return ZTOF22; |
334 |
case 31: return ZTOF31; |
335 |
case 32: return ZTOF32; |
336 |
default: return 0.; |
337 |
}; |
338 |
}; |
339 |
|
340 |
// |
341 |
// Paddles position |
342 |
// |
343 |
/* |
344 |
S11 8 paddles 33.0 x 5.1 cm |
345 |
S12 6 paddles 40.8 x 5.5 cm |
346 |
S21 2 paddles 18.0 x 7.5 cm |
347 |
S22 2 paddles 15.0 x 9.0 cm |
348 |
S31 3 paddles 15.0 x 6.0 cm |
349 |
S32 3 paddles 18.0 x 5.0 cm |
350 |
*/ |
351 |
|
352 |
Int_t GetToFPlaneID(Int_t ip); |
353 |
Int_t GetToFPlaneIndex(Int_t plane_id); |
354 |
Bool_t HitPaddle(Int_t ,Int_t); |
355 |
Int_t GetNHitPaddles(Int_t plane); |
356 |
Int_t GetTrueNHitPaddles(Int_t plane); |
357 |
void Clear(Option_t *t=""); |
358 |
// |
359 |
ClassDef(ToFLevel2,5); |
360 |
}; |
361 |
|
362 |
#endif |
363 |
|