1 |
/** |
2 |
* \file ToFLevel2.h |
3 |
* \author Gianfranca DeRosa / Wolfgang Menn |
4 |
*/ |
5 |
|
6 |
#ifndef ToFLevel2_h |
7 |
#define ToFLevel2_h |
8 |
// |
9 |
#include <TObject.h> |
10 |
#include <TArrayI.h> |
11 |
#include <TArrayF.h> |
12 |
#include <TClonesArray.h> |
13 |
|
14 |
#include <math.h> // EMILIANO |
15 |
|
16 |
#include <ToFStruct.h> |
17 |
|
18 |
|
19 |
// |
20 |
// class which contains track related variables |
21 |
// |
22 |
#define ZTOF11 53.74 |
23 |
#define ZTOF12 53.04 |
24 |
#define ZTOF21 23.94 |
25 |
#define ZTOF22 23.44 |
26 |
#define ZTOF31 -23.49 |
27 |
#define ZTOF32 -24.34 |
28 |
|
29 |
|
30 |
/** |
31 |
* \brief Class which contains the PMT data |
32 |
* |
33 |
* If there is a valid ADC or a TDC value (value<4095) for a PMT, both ADC and TDC data |
34 |
* are stored in the PMT class. |
35 |
* Look in the ToFLevel2Ex.cxx example in the repository how to read the PMT class. |
36 |
*/ |
37 |
class ToFPMT : public TObject { |
38 |
|
39 |
private: |
40 |
|
41 |
public: |
42 |
Int_t pmt_id; ///<the identification number of the PMT from 0 to 47 |
43 |
Float_t adc; ///<raw ADC value for this PMT |
44 |
Float_t tdc; ///<raw TDC value for this PMT |
45 |
Float_t tdc_tw; ///<time-walk corrected TDC value for this PMT |
46 |
// |
47 |
ToFPMT(); |
48 |
ToFPMT(const ToFPMT&); |
49 |
// |
50 |
ToFPMT* GetToFPMT(){return this;}; |
51 |
void Clear(Option_t *t=""); |
52 |
|
53 |
|
54 |
|
55 |
ClassDef(ToFPMT,2); |
56 |
}; |
57 |
|
58 |
|
59 |
/** |
60 |
* \brief Class which contains the tracker related variables |
61 |
* |
62 |
* We can use the ToF standalone to find hitted paddles, calculate beta, etc.. |
63 |
* These results are then stored with the "trkseqno" = -1. |
64 |
* If we use the track from the tracker, then the penetration points in the |
65 |
* scintillators are calculated, which defines the hitted paddles. For these paddles |
66 |
* we calculate then all the output. |
67 |
* Note: The artificial ADC values are stored as dEdx in the output, the dEdx will be |
68 |
* by definition = 1. However, the artificial TDC values are just used internally |
69 |
* and not stored in the output. But one can see in both cases which PMT has artificial |
70 |
* values using "adcflag" and "tdcflag". |
71 |
* Look in the ToFLevel2Ex.cxx example in the repository how to read the tracker related |
72 |
* variables. |
73 |
*/ |
74 |
class ToFTrkVar : public TObject { |
75 |
|
76 |
private: |
77 |
|
78 |
public: |
79 |
// |
80 |
Int_t trkseqno; ///< tracker sequ. number: -1=ToF standalone, 0=first Tracker track, ... |
81 |
// |
82 |
Int_t npmttdc; ///<number of the TDC measurements used to evaluate beta |
83 |
TArrayI pmttdc; ///<contains the ID (0..47) for the PMT used to evaluate beta |
84 |
TArrayI tdcflag; ///<flag for artificial TDC, "0" if normal TDC value |
85 |
|
86 |
/** |
87 |
* \brief beta, 12 measurements for the 12 combinations, beta[13] is weighted mean |
88 |
* |
89 |
* The 12 measurements are S11-S31, S11-S32, S12-S31, S12-S32, and then analogue for |
90 |
* S2-S3 and S1-S2. |
91 |
* In the moment all measurements are taken and the weighted mean is calculated. |
92 |
* Note that the weights are just simple overall results for S1-S3, S2-S3, and S1-S2. |
93 |
* Artificial measurments are not treated correct, (since there is only one real |
94 |
* measurment the weight should be different then for two meassurments). |
95 |
* The beta calculation will be improved in the next release. |
96 |
*/ |
97 |
Float_t beta[13]; |
98 |
// |
99 |
Int_t npmtadc; ///<number of the ADC measurements used for dEdx evaluation |
100 |
TArrayI pmtadc; ///<contains the ID (0..47) for the PMT used to evaluate dEdx |
101 |
TArrayI adcflag; ///<flag for artificial ADCs, "0" if normal ADC value |
102 |
TArrayF dedx; ///<energy loss for this PMT in mip |
103 |
// |
104 |
Float_t xtofpos[3]; ///<x-measurement using the TDC values and the calibration from S12, S21, S32 |
105 |
Float_t ytofpos[3]; ///<x-measurement using the TDC values and the calibration from S11, S22, S31 |
106 |
// |
107 |
Float_t xtr_tof[6]; ///<x-measurement in the ToF layers from tracker |
108 |
Float_t ytr_tof[6]; ///<x-measurement in the ToF layers from tracker |
109 |
// |
110 |
ToFTrkVar(); |
111 |
ToFTrkVar(const ToFTrkVar&); |
112 |
|
113 |
ToFTrkVar* GetToFTrkVar(){return this;}; |
114 |
void Clear(Option_t *t=""); |
115 |
|
116 |
ClassDef(ToFTrkVar,1); |
117 |
// |
118 |
}; |
119 |
|
120 |
/** |
121 |
* \brief Class to describe ToF LEVEL2 data |
122 |
* |
123 |
*/ |
124 |
|
125 |
class ToFLevel2 : public TObject { |
126 |
private: |
127 |
|
128 |
public: |
129 |
// |
130 |
TClonesArray *PMT; ///<class needed to store PMT hit informations |
131 |
TClonesArray *ToFTrk; ///<track related variable class |
132 |
Int_t tof_j_flag[6]; ///<number of hitted paddle(s) for each ToF layer: flag = flag + 2**(paddlenumber-1) |
133 |
// |
134 |
Int_t unpackError;///< zero if no error presente |
135 |
Int_t default_calib; ///< one if the default calibration has been used to process the data, zero otherwise |
136 |
// |
137 |
Float_t GetdEdx(Int_t notrack, Int_t plane, Int_t adcfl); // gf Apr 07 |
138 |
// |
139 |
// methods to make life simplier during the analysis, returns a pointer to the ToFTrkVar class containing track related variables |
140 |
// |
141 |
Int_t ntrk(){return ToFTrk->GetEntries();}; |
142 |
Int_t npmt(){return PMT->GetEntries();}; |
143 |
|
144 |
// |
145 |
void GetLevel2Struct(cToFLevel2 *) const; |
146 |
// |
147 |
ToFTrkVar *GetToFTrkVar(Int_t notrack); |
148 |
ToFPMT *GetToFPMT(Int_t nohit); |
149 |
Int_t GetPMTid(Int_t gg, Int_t hh); |
150 |
TString GetPMTName(Int_t ind); |
151 |
|
152 |
Int_t GetPlaneIndex(Int_t pmt_id); |
153 |
void GetMatrix(Int_t notrack, Float_t adc[4][12], Float_t tdc[4][12]); |
154 |
void GetPMTIndex(Int_t pmt_id, Int_t &gg, Int_t &hh); |
155 |
|
156 |
// gf Apr 07 |
157 |
void GetdEdxPaddle(Int_t notrack, Int_t paddleid, Int_t adcfl, Float_t &PadEdx, Int_t &SatWarning); // gf Apr 07 |
158 |
TString GetPMTName(Int_t ind, Int_t &iplane, Int_t &ipaddle,Int_t &ipmt); |
159 |
Int_t GetPaddleIdOfTrack(Float_t xtr, Float_t ytr, Int_t plane); // gf Apr 07 |
160 |
void GetPMTPaddle(Int_t pmt_id, Int_t &plane, Int_t &paddle); // gf Apr 07 |
161 |
void GetPaddlePMT(Int_t paddle, Int_t &pmtleft, Int_t &pmtright); // gf Apr 07 |
162 |
void GetPaddleGeometry(Int_t plane, Int_t paddle, Float_t &xleft, Float_t &xright, Float_t &yleft, Float_t &yright); // gf Apr 07 |
163 |
Int_t GetPaddleid(Int_t plane, Int_t paddle); |
164 |
void GetPaddlePlane(Int_t padid, Int_t &plane, Int_t &paddle); |
165 |
Int_t GetNPaddle(Int_t plane); |
166 |
// |
167 |
|
168 |
// |
169 |
// constructor |
170 |
// |
171 |
ToFLevel2(); |
172 |
~ToFLevel2(){Delete();}; //ELENA |
173 |
void Delete(Option_t *t=""); //ELENA |
174 |
void Set();//ELENA |
175 |
// |
176 |
// |
177 |
ToFLevel2* GetToFLevel2(){return this;}; |
178 |
|
179 |
/** |
180 |
* Method to get the z-position of the 6 TOF layers from the plane ID |
181 |
* @param plane_id Plane ID (11 12 21 22 31 32) |
182 |
*/ |
183 |
Float_t GetZTOF(Int_t plane_id){ |
184 |
switch(plane_id){ |
185 |
case 11: return ZTOF11; |
186 |
case 12: return ZTOF12; |
187 |
case 21: return ZTOF21; |
188 |
case 22: return ZTOF22; |
189 |
case 31: return ZTOF31; |
190 |
case 32: return ZTOF32; |
191 |
default: return 0.; |
192 |
}; |
193 |
}; |
194 |
|
195 |
// |
196 |
// Paddles position |
197 |
// |
198 |
/* |
199 |
S11 8 paddles 33.0 x 5.1 cm |
200 |
S12 6 paddles 40.8 x 5.5 cm |
201 |
S21 2 paddles 18.0 x 7.5 cm |
202 |
S22 2 paddles 15.0 x 9.0 cm |
203 |
S31 3 paddles 15.0 x 6.0 cm |
204 |
S32 3 paddles 18.0 x 5.0 cm |
205 |
*/ |
206 |
|
207 |
Int_t GetToFPlaneID(Int_t ip); |
208 |
Int_t GetToFPlaneIndex(Int_t plane_id); |
209 |
Bool_t HitPaddle(Int_t ,Int_t); |
210 |
Int_t GetNHitPaddles(Int_t plane); |
211 |
void Clear(Option_t *t=""); |
212 |
// |
213 |
ClassDef(ToFLevel2,3); |
214 |
}; |
215 |
|
216 |
#endif |
217 |
|