| 2 |
& xl,icode,dip,dec) |
& xl,icode,dip,dec) |
| 3 |
c---------------------------------------------------------------- |
c---------------------------------------------------------------- |
| 4 |
c INPUT: |
c INPUT: |
| 5 |
c xlat geodatic latitude in degrees |
c xlat geodatic latitude in degrees |
| 6 |
c xlong geodatic longitude in degrees |
c xlong geodatic longitude in degrees |
| 7 |
c year decimal year (year+month/12.0-0.5 or year+day-of-year/365 |
c year decimal year (year+month/12.0-0.5 or year+day-of-year/365 |
| 8 |
c or 366 if leap year) |
c or 366 if leap year) |
| 9 |
c height height in km |
c height height in km |
| 10 |
c OUTPUT: |
c OUTPUT: |
| 11 |
c xl L value |
c xl L value |
| 12 |
c icode =1 L is correct; =2 L is not correct; |
c icode =1 L is correct; =2 L is not correct; |
| 13 |
c =3 an approximation is used |
c =3 an approximation is used |
| 14 |
c dip geomagnetic inclination in degrees |
c dip geomagnetic inclination in degrees |
| 15 |
c dec geomagnetic declination in degress |
c dec geomagnetic declination in degress |
| 16 |
c---------------------------------------------------------------- |
c---------------------------------------------------------------- |
| 17 |
|
|
| 18 |
REAL LATI,LONGI |
REAL LATI,LONGI |
| 20 |
SAVE /GENER/ |
SAVE /GENER/ |
| 21 |
C |
C |
| 22 |
CALL INITIZE |
CALL INITIZE |
| 23 |
ibbb=0 |
ibbb=0 |
| 24 |
ALOG2=ALOG(2.) |
ALOG2=ALOG(2.) |
| 25 |
ISTART=1 |
ISTART=1 |
| 26 |
lati=xlat |
lati=xlat |
| 32 |
CALL FELDG(LATI,LONGI,HEIGHT,BNORTH,BEAST,BDOWN,BABS) |
CALL FELDG(LATI,LONGI,HEIGHT,BNORTH,BEAST,BDOWN,BABS) |
| 33 |
CALL SHELLG(LATI,LONGI,HEIGHT,DIMO,XL,ICODE,BAB1) |
CALL SHELLG(LATI,LONGI,HEIGHT,DIMO,XL,ICODE,BAB1) |
| 34 |
DIP=ASIN(BDOWN/BABS)/UMR |
DIP=ASIN(BDOWN/BABS)/UMR |
| 35 |
DEC=ASIN(BEAST/SQRT(BEAST*BEAST+BNORTH*BNORTH))/UMR |
DEC=ASIN(BEAST/SQRT(BEAST*BEAST+BNORTH*BNORTH))/UMR |
| 36 |
RETURN |
RETURN |
| 37 |
END |
END |
| 38 |
c |
c |
| 191 |
C B0 MAGNETIC FIELD STRENGTH IN GAUSS |
C B0 MAGNETIC FIELD STRENGTH IN GAUSS |
| 192 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
| 193 |
DIMENSION V(3),U(3,3),P(8,100),SP(3) |
DIMENSION V(3),U(3,3),P(8,100),SP(3) |
| 194 |
COMMON X(3),H(144) |
COMMON X(3),H(196) |
| 195 |
COMMON/FIDB0/ SP |
COMMON/FIDB0/ SP |
| 196 |
SAVE /FIDB0/ |
SAVE /FIDB0/ |
| 197 |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
| 308 |
RQ=R*R |
RQ=R*R |
| 309 |
FF=SQRT(1.+3.*ZQ/RQ) |
FF=SQRT(1.+3.*ZQ/RQ) |
| 310 |
RADIK=B0-((D2*T+D1)*T+D0)*R*RQ*FF |
RADIK=B0-((D2*T+D1)*T+D0)*R*RQ*FF |
| 311 |
IF(R-RMAX)44,44,45 |
IF((R-RMAX).le.0.) goto 44 |
| 312 |
|
IF((R-RMAX).gt.0.) goto 45 |
| 313 |
45 ICODE=2 |
45 ICODE=2 |
| 314 |
RADIK=RADIK-12.*(R-RMAX)**2 |
RADIK=RADIK-12.*(R-RMAX)**2 |
| 315 |
44 IF(RADIK+RADIK.LE.ORADIK) GOTO 10 |
44 IF(RADIK+RADIK.LE.ORADIK) GOTO 10 |
| 342 |
C-- because 1E-38 is the minimal allowable arg. for ALOG in our envir. |
C-- because 1E-38 is the minimal allowable arg. for ALOG in our envir. |
| 343 |
C-- D. Bilitza, Nov 87. |
C-- D. Bilitza, Nov 87. |
| 344 |
C |
C |
| 345 |
11 FI=0.5*ABS(FI)/SQRT(B0)+1E-12 |
11 FI=0.5*ABS(FI)/SQRT(B0)+1E-12 |
| 346 |
C |
C |
| 347 |
C*****COMPUTE L FROM B AND I. SAME AS CARMEL IN INVAR. |
C*****COMPUTE L FROM B AND I. SAME AS CARMEL IN INVAR. |
| 348 |
C |
C |
| 349 |
C-- Correct dipole moment is used here. D. Bilitza, Nov 87. |
C-- Correct dipole moment is used here. D. Bilitza, Nov 87. |
| 350 |
C |
C |
| 351 |
DIMOB0=DIMO/B0 |
DIMOB0=DIMO/B0 |
| 352 |
arg1=alog(FI) |
arg1=alog(FI) |
| 353 |
arg2=alog(DIMOB0) |
arg2=alog(DIMOB0) |
| 354 |
c arg = FI*FI*FI/DIMOB0 |
c arg = FI*FI*FI/DIMOB0 |
| 355 |
c if(abs(arg).gt.88.0) arg=88.0 |
c if(abs(arg).gt.88.0) arg=88.0 |
| 356 |
XX=3*arg1-arg2 |
XX=3*arg1-arg2 |
| 357 |
IF(XX.GT.23.0) GOTO 776 |
IF(XX.GT.23.0) GOTO 776 |
| 358 |
IF(XX.GT.11.7) GOTO 775 |
IF(XX.GT.11.7) GOTO 775 |
| 359 |
IF(XX.GT.+3.0) GOTO 774 |
IF(XX.GT.+3.0) GOTO 774 |
| 360 |
IF(XX.GT.-3.0) GOTO 773 |
IF(XX.GT.-3.0) GOTO 773 |
| 361 |
IF(XX.GT.-22.) GOTO 772 |
IF(XX.GT.-22.) GOTO 772 |
| 362 |
771 GG=3.33338E-1*XX+3.0062102E-1 |
c 771 GG=3.33338E-1*XX+3.0062102E-1 |
| 363 |
|
GG=3.33338E-1*XX+3.0062102E-1 |
| 364 |
GOTO777 |
GOTO777 |
| 365 |
772 GG=((((((((-8.1537735E-14*XX+8.3232531E-13)*XX+1.0066362E-9)*XX+ |
772 GG=((((((((-8.1537735E-14*XX+8.3232531E-13)*XX+1.0066362E-9)*XX+ |
| 366 |
18.1048663E-8)*XX+3.2916354E-6)*XX+8.2711096E-5)*XX+1.3714667E-3)* |
18.1048663E-8)*XX+3.2916354E-6)*XX+8.2711096E-5)*XX+1.3714667E-3)* |
| 394 |
C* CALLS ENTRY POINT FELDI IN GEOMAGNETIC FIELD SUBROUTINE FELDG * |
C* CALLS ENTRY POINT FELDI IN GEOMAGNETIC FIELD SUBROUTINE FELDG * |
| 395 |
C******************************************************************* |
C******************************************************************* |
| 396 |
DIMENSION P(7),U(3,3) |
DIMENSION P(7),U(3,3) |
| 397 |
COMMON XI(3),H(144) |
COMMON XI(3),H(196) |
| 398 |
C*****XM,YM,ZM ARE GEOMAGNETIC CARTESIAN INVERSE CO-ORDINATES |
C*****XM,YM,ZM ARE GEOMAGNETIC CARTESIAN INVERSE CO-ORDINATES |
| 399 |
ZM=P(3) |
ZM=P(3) |
| 400 |
FLI=P(1)*P(1)+P(2)*P(2)+1E-15 |
FLI=P(1)*P(1)+P(2)*P(2)+1E-15 |
| 476 |
C POINTING IN THE TANGENTIAL PLANE TO THE NORTH, EAST |
C POINTING IN THE TANGENTIAL PLANE TO THE NORTH, EAST |
| 477 |
C AND DOWNWARD. |
C AND DOWNWARD. |
| 478 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
| 479 |
DIMENSION V(3),B(3),G(144) |
DIMENSION V(3),B(3),G(196) |
| 480 |
CHARACTER*258 NAME |
CHARACTER*258 NAME |
| 481 |
INTEGER NMAX |
INTEGER NMAX |
| 482 |
REAL TIME |
REAL TIME |
| 483 |
COMMON XI(3),H(144) |
COMMON XI(3),H(196) |
| 484 |
COMMON/MODEL/ G,NMAX,TIME,NAME |
COMMON/MODEL/ G,NMAX,TIME,NAME |
| 485 |
SAVE/MODEL/ |
SAVE/MODEL/ |
| 486 |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
| 530 |
Y=XI(2)*F |
Y=XI(2)*F |
| 531 |
Z=XI(3)*(F+F) |
Z=XI(3)*(F+F) |
| 532 |
I=I-2 |
I=I-2 |
| 533 |
IF(I-1)5,4,2 |
c print *,' I ',I |
| 534 |
|
IF((I-1).lt.0) goto 5 |
| 535 |
|
IF((I-1).eq.0) goto 4 |
| 536 |
|
IF((I-1).gt.0) goto 2 |
| 537 |
2 DO 3 M=3,I,2 |
2 DO 3 M=3,I,2 |
| 538 |
H(IL+M+1)=G(IL+M+1)+Z*H(IH+M+1)+X*(H(IH+M+3)-H(IH+M-1)) |
H(IL+M+1)=G(IL+M+1)+Z*H(IH+M+1)+X*(H(IH+M+3)-H(IH+M-1)) |
| 539 |
A -Y*(H(IH+M+2)+H(IH+M-2)) |
A -Y*(H(IH+M+2)+H(IH+M-2)) |
| 565 |
END |
END |
| 566 |
C |
C |
| 567 |
C |
C |
| 568 |
SUBROUTINE FELDCOF(YEAR,DIMO) |
SUBROUTINE FELDCOF(YEAR,DIMO) |
| 569 |
C------------------------------------------------------------------------ |
C------------------------------------------------------------------------ |
| 570 |
C DETERMINES COEFFICIENTS AND DIPOL MOMENT FROM IGRF MODELS |
C DETERMINES COEFFICIENTS AND DIPOL MOMENT FROM IGRF MODELS |
| 571 |
C |
C |
| 572 |
C INPUT: YEAR DECIMAL YEAR FOR WHICH GEOMAGNETIC FIELD IS TO |
C INPUT: YEAR DECIMAL YEAR FOR WHICH GEOMAGNETIC FIELD IS TO |
| 573 |
C BE CALCULATED |
C BE CALCULATED |
| 574 |
C OUTPUT: DIMO GEOMAGNETIC DIPOL MOMENT IN GAUSS (NORMALIZED |
C OUTPUT: DIMO GEOMAGNETIC DIPOL MOMENT IN GAUSS (NORMALIZED |
| 575 |
C TO EARTH'S RADIUS) AT THE TIME (YEAR) |
C TO EARTH'S RADIUS) AT THE TIME (YEAR) |
| 576 |
C D. BILITZA, NSSDC, GSFC, CODE 633, GREENBELT, MD 20771, |
C D. BILITZA, NSSDC, GSFC, CODE 633, GREENBELT, MD 20771, |
| 577 |
C (301)286-9536 NOV 1987. |
C (301)286-9536 NOV 1987. |
| 578 |
C ### updated to IGRF-2000 version -dkb- 5/31/2000 |
C ### updated to IGRF-2000 version -dkb- 5/31/2000 |
| 579 |
C ### updated to IGRF-2005 version -dkb- 3/24/2000 |
C ### updated to IGRF-2005 version -dkb- 3/24/2000 |
| 580 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
| 581 |
CHARACTER*258 FIL1, FIL2 |
CHARACTER*258 FIL1, FIL2 |
| 582 |
CHARACTER*258 FILMOD |
CHARACTER*258 FILMOD |
| 583 |
C ### FILMOD, DTEMOD arrays +1 |
C ### FILMOD, DTEMOD arrays +1 |
| 584 |
c DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(14),DTEMOD(14) |
c DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(14),DTEMOD(14) |
| 585 |
DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(3),DTEMOD(3) |
DIMENSION GH1(196),GH2(196),GHA(196),FILMOD(3),DTEMOD(3) |
| 586 |
DOUBLE PRECISION X,F0,F |
DOUBLE PRECISION X,F0,F |
| 587 |
INTEGER L1,L2,L3 |
INTEGER L1,L2,L3 |
| 588 |
INTEGER NMAX |
INTEGER NMAX |
| 589 |
REAL TIME |
REAL TIME |
| 590 |
CHARACTER *258 P1,P2,P3 |
CHARACTER *258 P1,P2,P3 |
| 591 |
COMMON/PPATH/ L1,L2,L3,P1, P2, P3 |
COMMON/PPATH/ L1,L2,L3,P1, P2, P3 |
| 592 |
SAVE/PPATH/ |
SAVE/PPATH/ |
| 593 |
COMMON/MODEL/ GH1,NMAX,TIME,FIL1 |
COMMON/MODEL/ GH1,NMAX,TIME,FIL1 |
| 594 |
SAVE/MODEL/ |
SAVE/MODEL/ |
| 595 |
COMMON/GENER/ UMR,ERAD,AQUAD,BQUAD |
COMMON/GENER/ UMR,ERAD,AQUAD,BQUAD |
| 596 |
SAVE/GENER/ |
SAVE/GENER/ |
| 597 |
C ### updated to 2005 |
C ### updated to 2005 |
| 598 |
C CHARACTER COEFPATH*80, COEF1*80, COEF2*80, COEF3*80 |
C CHARACTER COEFPATH*80, COEF1*80, COEF2*80, COEF3*80 |
| 599 |
|
|
| 600 |
c COEFPATH = 'OrbitalInfo/src/' |
c COEFPATH = 'OrbitalInfo/src/' |
| 601 |
c COEF1 = 'dgrf00.dat' |
c COEF1 = 'dgrf00.dat' |
| 602 |
c COEF2 = 'igrf05.dat' |
c COEF2 = 'igrf05.dat' |
| 603 |
c COEF3 = 'igrf05s.dat' |
c COEF3 = 'igrf05s.dat' |
| 604 |
c COEF1 = COEFPATH(1:16)//COEF1 |
c COEF1 = COEFPATH(1:16)//COEF1 |
| 605 |
c COEF2 = COEFPATH(1:16)//COEF2 |
c COEF2 = COEFPATH(1:16)//COEF2 |
| 606 |
c COEF3 = COEFPATH(1:16)//COEF3 |
c COEF3 = COEFPATH(1:16)//COEF3 |
| 607 |
c FILMOD(1) = COEF1 |
c FILMOD(1) = COEF1 |
| 608 |
c FILMOD(2) = COEF2 |
c FILMOD(2) = COEF2 |
| 609 |
c FILMOD(3) = COEF3 |
c FILMOD(3) = COEF3 |
| 610 |
|
print *, "qui" |
| 611 |
FILMOD(1) = P1(1:L1) |
FILMOD(1) = P1(1:L1) |
| 612 |
FILMOD(2) = P2(1:L2) |
FILMOD(2) = P2(1:L2) |
| 613 |
FILMOD(3) = P3(1:L3) |
FILMOD(3) = P3(1:L3) |
| 614 |
c FILMOD(1) = 'OrbitalInfo/src/dgrf00.dat' |
print *, "qua" |
| 615 |
c FILMOD(2) = 'OrbitalInfo/src/igrf05.dat' |
c FILMOD(1) = 'OrbitalInfo/src/dgrf00.dat' |
| 616 |
c FILMOD(3) = 'OrbitalInfo/src/igrf05s.dat' |
c FILMOD(2) = 'OrbitalInfo/src/igrf05.dat' |
| 617 |
c WRITE(*,*) FILMOD(1) |
c FILMOD(3) = 'OrbitalInfo/src/igrf05s.dat' |
| 618 |
c WRITE(*,*) FILMOD(2) |
WRITE(*,*) FILMOD(1) |
| 619 |
c WRITE(*,*) FILMOD(3) |
WRITE(*,*) FILMOD(2) |
| 620 |
|
WRITE(*,*) FILMOD(3) |
| 621 |
c DATA FILMOD / 'dgrf00.dat', 'igrf05.dat', 'igrf05s.dat'/ |
c DATA FILMOD / 'dgrf00.dat', 'igrf05.dat', 'igrf05s.dat'/ |
| 622 |
DATA DTEMOD / 2000., 2005., 2010./ |
DATA DTEMOD / 2005., 2010., 2015./ |
| 623 |
c |
c |
| 624 |
c DATA FILMOD /'dgrf45.dat', 'dgrf50.dat', |
c DATA FILMOD /'dgrf45.dat', 'dgrf50.dat', |
| 625 |
c 1 'dgrf55.dat', 'dgrf60.dat', 'dgrf65.dat', |
c 1 'dgrf55.dat', 'dgrf60.dat', 'dgrf65.dat', |
| 626 |
c 2 'dgrf70.dat', 'dgrf75.dat', 'dgrf80.dat', |
c 2 'dgrf70.dat', 'dgrf75.dat', 'dgrf80.dat', |
| 627 |
c 3 'dgrf85.dat', 'dgrf90.dat', 'dgrf95.dat', |
c 3 'dgrf85.dat', 'dgrf90.dat', 'dgrf95.dat', |
| 628 |
c 4 'dgrf00.dat','igrf05.dat','igrf05s.dat'/ |
c 4 'dgrf00.dat','igrf05.dat','igrf05s.dat'/ |
| 629 |
c DATA DTEMOD / 1945., 1950., 1955., 1960., 1965., 1970., |
c DATA DTEMOD / 1945., 1950., 1955., 1960., 1965., 1970., |
| 630 |
c 1 1975., 1980., 1985., 1990., 1995., 2000.,2005.,2010./ |
c 1 1975., 1980., 1985., 1990., 1995., 2000.,2005.,2010./ |
| 631 |
C |
C |
| 632 |
C ### numye = numye + 1 ; is number of years represented by IGRF |
C ### numye = numye + 1 ; is number of years represented by IGRF |
| 633 |
C |
C |
| 634 |
c NUMYE=13 |
c NUMYE=13 |
| 635 |
NUMYE=2 |
NUMYE=2 |
| 636 |
|
print *, "quo" |
| 637 |
C |
|
| 638 |
C IS=0 FOR SCHMIDT NORMALIZATION IS=1 GAUSS NORMALIZATION |
C |
| 639 |
C IU IS INPUT UNIT NUMBER FOR IGRF COEFFICIENT SETS |
C IS=0 FOR SCHMIDT NORMALIZATION IS=1 GAUSS NORMALIZATION |
| 640 |
C |
C IU IS INPUT UNIT NUMBER FOR IGRF COEFFICIENT SETS |
| 641 |
IU = 10 |
C |
| 642 |
IS = 0 |
IU = 10 |
| 643 |
C-- DETERMINE IGRF-YEARS FOR INPUT-YEAR |
IS = 0 |
| 644 |
TIME = YEAR |
C-- DETERMINE IGRF-YEARS FOR INPUT-YEAR |
| 645 |
IYEA = INT(YEAR/5.)*5 |
TIME = YEAR |
| 646 |
c L = (IYEA - 1945)/5 + 1 |
IYEA = INT(YEAR/5.)*5 |
| 647 |
L = (IYEA - 2000)/5 + 1 |
c L = (IYEA - 1945)/5 + 1 |
| 648 |
IF(L.LT.1) L=1 |
L = (IYEA - 2000)/5 + 1 |
| 649 |
IF(L.GT.NUMYE) L=NUMYE |
IF(L.LT.1) L=1 |
| 650 |
DTE1 = DTEMOD(L) |
IF(L.GT.NUMYE) L=NUMYE |
| 651 |
FIL1 = FILMOD(L) |
DTE1 = DTEMOD(L) |
| 652 |
DTE2 = DTEMOD(L+1) |
FIL1 = FILMOD(L) |
| 653 |
FIL2 = FILMOD(L+1) |
DTE2 = DTEMOD(L+1) |
| 654 |
C-- GET IGRF COEFFICIENTS FOR THE BOUNDARY YEARS |
FIL2 = FILMOD(L+1) |
| 655 |
CALL GETSHC (IU, FIL1, NMAX1, ERAD, GH1, IER) |
WRITE(*,*) FIL1 |
| 656 |
IF (IER .NE. 0) STOP |
WRITE(*,*) FIL2 |
| 657 |
CALL GETSHC (IU, FIL2, NMAX2, ERAD, GH2, IER) |
print *, "que" |
| 658 |
IF (IER .NE. 0) STOP |
C-- GET IGRF COEFFICIENTS FOR THE BOUNDARY YEARS |
| 659 |
C-- DETERMINE IGRF COEFFICIENTS FOR YEAR |
CALL GETSHC (IU, FIL1, NMAX1, ERAD, GH1, IER) |
| 660 |
IF (L .LE. NUMYE-1) THEN |
IF (IER .NE. 0) STOP |
| 661 |
CALL INTERSHC (YEAR, DTE1, NMAX1, GH1, DTE2, |
print *, "quessss" |
| 662 |
1 NMAX2, GH2, NMAX, GHA) |
CALL GETSHC (IU, FIL2, NMAX2, ERAD, GH2, IER) |
| 663 |
ELSE |
IF (IER .NE. 0) STOP |
| 664 |
CALL EXTRASHC (YEAR, DTE1, NMAX1, GH1, NMAX2, |
print *, "quj" |
| 665 |
1 GH2, NMAX, GHA) |
C-- DETERMINE IGRF COEFFICIENTS FOR YEAR |
| 666 |
ENDIF |
IF (L .LE. NUMYE-1) THEN |
| 667 |
C-- DETERMINE MAGNETIC DIPOL MOMENT AND COEFFIECIENTS G |
CALL INTERSHC (YEAR, DTE1, NMAX1, GH1, DTE2, |
| 668 |
F0=0.D0 |
1 NMAX2, GH2, NMAX, GHA) |
| 669 |
DO 1234 J=1,3 |
ELSE |
| 670 |
F = GHA(J) * 1.D-5 |
CALL EXTRASHC (YEAR, DTE1, NMAX1, GH1, NMAX2, |
| 671 |
F0 = F0 + F * F |
1 GH2, NMAX, GHA) |
| 672 |
1234 CONTINUE |
ENDIF |
| 673 |
DIMO = DSQRT(F0) |
print *, "quw" |
| 674 |
|
C-- DETERMINE MAGNETIC DIPOL MOMENT AND COEFFIECIENTS G |
| 675 |
GH1(1) = 0.0 |
F0=0.D0 |
| 676 |
I=2 |
DO 1234 J=1,3 |
| 677 |
F0=1.D-5 |
F = GHA(J) * 1.D-5 |
| 678 |
IF(IS.EQ.0) F0=-F0 |
F0 = F0 + F * F |
| 679 |
SQRT2=SQRT(2.) |
1234 CONTINUE |
| 680 |
|
DIMO = DSQRT(F0) |
| 681 |
|
|
| 682 |
|
GH1(1) = 0.0 |
| 683 |
|
I=2 |
| 684 |
|
F0=1.D-5 |
| 685 |
|
IF(IS.EQ.0) F0=-F0 |
| 686 |
|
SQRT2=SQRT(2.) |
| 687 |
|
|
| 688 |
|
c print *, "quq" |
| 689 |
|
|
| 690 |
DO 9 N=1,NMAX |
DO 9 N=1,NMAX |
| 691 |
X = N |
X = N |
| 692 |
F0 = F0 * X * X / (4.D0 * X - 2.D0) |
F0 = F0 * X * X / (4.D0 * X - 2.D0) |
| 693 |
IF(IS.EQ.0) F0 = F0 * (2.D0 * X - 1.D0) / X |
IF(IS.EQ.0) F0 = F0 * (2.D0 * X - 1.D0) / X |
| 694 |
F = F0 * 0.5D0 |
F = F0 * 0.5D0 |
| 695 |
IF(IS.EQ.0) F = F * SQRT2 |
IF(IS.EQ.0) F = F * SQRT2 |
| 696 |
GH1(I) = GHA(I-1) * F0 |
GH1(I) = GHA(I-1) * F0 |
| 697 |
I = I+1 |
I = I+1 |
| 698 |
DO 9 M=1,N |
DO 9 M=1,N |
| 699 |
F = F * (X + M) / (X - M + 1.D0) |
F = F * (X + M) / (X - M + 1.D0) |
| 700 |
IF(IS.EQ.0) F = F * DSQRT((X - M + 1.D0) / (X + M)) |
IF(IS.EQ.0) F = F * DSQRT((X - M + 1.D0) / (X + M)) |
| 701 |
GH1(I) = GHA(I-1) * F |
GH1(I) = GHA(I-1) * F |
| 702 |
GH1(I+1) = GHA(I) * F |
GH1(I+1) = GHA(I) * F |
| 703 |
I=I+2 |
I=I+2 |
| 704 |
9 CONTINUE |
9 CONTINUE |
| 705 |
RETURN |
RETURN |
| 706 |
END |
END |
| 707 |
C |
C |
| 708 |
C |
C |
| 709 |
SUBROUTINE GETSHC (IU, FSPEC, NMAX, ERAD, GH, IER) |
SUBROUTINE GETSHC (IU, FSPEC, NMAX, ERAD, GH, IER) |
| 710 |
|
|
| 711 |
C =============================================================== |
C =============================================================== |
| 712 |
C |
C |
| 713 |
C Version 1.01 |
C Version 1.01 |
| 714 |
C |
C |
| 715 |
C Reads spherical harmonic coefficients from the specified |
C Reads spherical harmonic coefficients from the specified |
| 716 |
C file into an array. |
C file into an array. |
| 717 |
C |
C |
| 718 |
C Input: |
C Input: |
| 719 |
C IU - Logical unit number |
C IU - Logical unit number |
| 720 |
C FSPEC - File specification |
C FSPEC - File specification |
| 721 |
C |
C |
| 722 |
C Output: |
C Output: |
| 723 |
C NMAX - Maximum degree and order of model |
C NMAX - Maximum degree and order of model |
| 724 |
C ERAD - Earth's radius associated with the spherical |
C ERAD - Earth's radius associated with the spherical |
| 725 |
C harmonic coefficients, in the same units as |
C harmonic coefficients, in the same units as |
| 726 |
C elevation |
C elevation |
| 727 |
C GH - Schmidt quasi-normal internal spherical |
C GH - Schmidt quasi-normal internal spherical |
| 728 |
C harmonic coefficients |
C harmonic coefficients |
| 729 |
C IER - Error number: = 0, no error |
C IER - Error number: = 0, no error |
| 730 |
C = -2, records out of order |
C = -2, records out of order |
| 731 |
C = FORTRAN run-time error number |
C = FORTRAN run-time error number |
| 732 |
C |
C |
| 733 |
C A. Zunde |
C A. Zunde |
| 734 |
C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225 |
C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225 |
| 735 |
C |
C |
| 736 |
C =============================================================== |
C =============================================================== |
| 737 |
|
|
| 738 |
CHARACTER FSPEC*(*), FOUT*258 |
CHARACTER FSPEC*(*), FOUT*258 |
| 739 |
DIMENSION GH(*) |
DIMENSION GH(*) |
| 740 |
C --------------------------------------------------------------- |
C --------------------------------------------------------------- |
| 741 |
C Open coefficient file. Read past first header record. |
C Open coefficient file. Read past first header record. |
| 742 |
C Read degree and order of model and Earth's radius. |
C Read degree and order of model and Earth's radius. |
| 743 |
C --------------------------------------------------------------- |
C --------------------------------------------------------------- |
| 744 |
WRITE(FOUT,667) FSPEC |
WRITE(FOUT,667) FSPEC |
| 745 |
c 667 FORMAT('/usr/local/etc/httpd/cgi-bin/natasha/IRI/',A12) |
c 667 FORMAT('/usr/local/etc/httpd/cgi-bin/natasha/IRI/',A12) |
| 746 |
667 FORMAT(A258) |
667 FORMAT(A258) |
| 747 |
|
print *," gui" |
| 748 |
OPEN (IU, FILE=FOUT, STATUS='OLD', IOSTAT=IER, ERR=999) |
OPEN (IU, FILE=FOUT, STATUS='OLD', IOSTAT=IER, ERR=999) |
| 749 |
|
print *," gua" |
| 750 |
READ (IU, *, IOSTAT=IER, ERR=999) |
READ (IU, *, IOSTAT=IER, ERR=999) |
| 751 |
|
print *," gue" |
| 752 |
READ (IU, *, IOSTAT=IER, ERR=999) NMAX, ERAD |
READ (IU, *, IOSTAT=IER, ERR=999) NMAX, ERAD |
| 753 |
|
print *," guo" |
| 754 |
C --------------------------------------------------------------- |
C --------------------------------------------------------------- |
| 755 |
C Read the coefficient file, arranged as follows: |
C Read the coefficient file, arranged as follows: |
| 756 |
C |
C |
| 772 |
C --------------------------------------------------------------- |
C --------------------------------------------------------------- |
| 773 |
|
|
| 774 |
I = 0 |
I = 0 |
| 775 |
DO 2211 NN = 1, NMAX |
DO 2211 NN = 1, NMAX |
| 776 |
DO 2233 MM = 0, NN |
DO 2233 MM = 0, NN |
| 777 |
READ (IU, *, IOSTAT=IER, ERR=999) N, M, G, H |
READ (IU, *, IOSTAT=IER, ERR=999) N, M, G, H |
| 778 |
IF (NN .NE. N .OR. MM .NE. M) THEN |
IF (NN .NE. N .OR. MM .NE. M) THEN |
| 779 |
IER = -2 |
IER = -2 |
| 787 |
ENDIF |
ENDIF |
| 788 |
2233 CONTINUE |
2233 CONTINUE |
| 789 |
2211 CONTINUE |
2211 CONTINUE |
| 790 |
|
print *," guj" |
| 791 |
|
|
| 792 |
999 CLOSE (IU) |
999 CLOSE (IU) |
| 793 |
|
print *," guw IER",IER |
| 794 |
|
if ( IER .eq. -1 ) IER = 0 ! gfortran 4.1.2 bug workaround... hoping not to create problems with other versions |
| 795 |
|
|
| 796 |
RETURN |
RETURN |
| 797 |
END |
END |
| 846 |
ELSE IF (NMAX1 .GT. NMAX2) THEN |
ELSE IF (NMAX1 .GT. NMAX2) THEN |
| 847 |
K = NMAX2 * (NMAX2 + 2) |
K = NMAX2 * (NMAX2 + 2) |
| 848 |
L = NMAX1 * (NMAX1 + 2) |
L = NMAX1 * (NMAX1 + 2) |
| 849 |
DO 1122 I = K + 1, L |
DO 1122 I = K + 1, L |
| 850 |
1122 GH(I) = GH1(I) + FACTOR * (-GH1(I)) |
1122 GH(I) = GH1(I) + FACTOR * (-GH1(I)) |
| 851 |
NMAX = NMAX1 |
NMAX = NMAX1 |
| 852 |
ELSE |
ELSE |
| 853 |
K = NMAX1 * (NMAX1 + 2) |
K = NMAX1 * (NMAX1 + 2) |
| 854 |
L = NMAX2 * (NMAX2 + 2) |
L = NMAX2 * (NMAX2 + 2) |
| 855 |
DO 1133 I = K + 1, L |
DO 1133 I = K + 1, L |
| 856 |
1133 GH(I) = FACTOR * GH2(I) |
1133 GH(I) = FACTOR * GH2(I) |
| 857 |
NMAX = NMAX2 |
NMAX = NMAX2 |
| 858 |
ENDIF |
ENDIF |
| 859 |
|
|
| 860 |
DO 1144 I = 1, K |
DO 1144 I = 1, K |
| 861 |
1144 GH(I) = GH1(I) + FACTOR * (GH2(I) - GH1(I)) |
1144 GH(I) = GH1(I) + FACTOR * (GH2(I) - GH1(I)) |
| 862 |
|
|
| 863 |
RETURN |
RETURN |
| 913 |
ELSE IF (NMAX1 .GT. NMAX2) THEN |
ELSE IF (NMAX1 .GT. NMAX2) THEN |
| 914 |
K = NMAX2 * (NMAX2 + 2) |
K = NMAX2 * (NMAX2 + 2) |
| 915 |
L = NMAX1 * (NMAX1 + 2) |
L = NMAX1 * (NMAX1 + 2) |
| 916 |
DO 1155 I = K + 1, L |
DO 1155 I = K + 1, L |
| 917 |
1155 GH(I) = GH1(I) |
1155 GH(I) = GH1(I) |
| 918 |
NMAX = NMAX1 |
NMAX = NMAX1 |
| 919 |
ELSE |
ELSE |
| 920 |
K = NMAX1 * (NMAX1 + 2) |
K = NMAX1 * (NMAX1 + 2) |
| 921 |
L = NMAX2 * (NMAX2 + 2) |
L = NMAX2 * (NMAX2 + 2) |
| 922 |
DO 1166 I = K + 1, L |
DO 1166 I = K + 1, L |
| 923 |
1166 GH(I) = FACTOR * GH2(I) |
1166 GH(I) = FACTOR * GH2(I) |
| 924 |
NMAX = NMAX2 |
NMAX = NMAX2 |
| 925 |
ENDIF |
ENDIF |
| 926 |
|
|
| 927 |
DO 1177 I = 1, K |
DO 1177 I = 1, K |
| 928 |
1177 GH(I) = GH1(I) + FACTOR * GH2(I) |
1177 GH(I) = GH1(I) + FACTOR * GH2(I) |
| 929 |
|
|
| 930 |
RETURN |
RETURN |
| 947 |
C ASTRONOMICAL UNION . |
C ASTRONOMICAL UNION . |
| 948 |
C----------------------------------------------------------------- |
C----------------------------------------------------------------- |
| 949 |
INTEGER TL1,TL2,TL3 |
INTEGER TL1,TL2,TL3 |
| 950 |
CHARACTER *258 TP1,TP2,TP3 |
CHARACTER (len=258) TP1,TP2,TP3 |
| 951 |
INTEGER L1,L2,L3 |
INTEGER L1,L2,L3 |
| 952 |
CHARACTER *258 P1,P2,P3 |
CHARACTER *258 P1,P2,P3 |
| 953 |
COMMON/PPATH/ L1,L2,L3,P1, P2, P3 |
COMMON/PPATH/ L1,L2,L3,P1, P2, P3 |