1 |
subroutine igrf_sub(xlat,xlong,year,height, |
c subroutine igrf_sub(xlat,xlong,year,height, |
2 |
& xl,icode,dip,dec) |
c & xl,icode,dip,dec) |
3 |
c---------------------------------------------------------------- |
c---------------------------------------------------------------- |
4 |
c INPUT: |
c INPUT: |
5 |
c xlat geodatic latitude in degrees |
c xlat geodatic latitude in degrees |
6 |
c xlong geodatic longitude in degrees |
c xlong geodatic longitude in degrees |
7 |
c year decimal year (year+month/12.0-0.5 or year+day-of-year/365 |
c year decimal year (year+month/12.0-0.5 or year+day-of-year/365 |
8 |
c or 366 if leap year) |
c or 366 if leap year) |
9 |
c height height in km |
c height height in km |
10 |
c OUTPUT: |
c OUTPUT: |
11 |
c xl L value |
c xl L value |
12 |
c icode =1 L is correct; =2 L is not correct; |
c icode =1 L is correct; =2 L is not correct; |
13 |
c =3 an approximation is used |
c =3 an approximation is used |
14 |
c dip geomagnetic inclination in degrees |
c dip geomagnetic inclination in degrees |
15 |
c dec geomagnetic declination in degress |
c dec geomagnetic declination in degress |
16 |
c---------------------------------------------------------------- |
c---------------------------------------------------------------- |
17 |
|
c |
18 |
REAL LATI,LONGI |
c REAL LATI,LONGI |
19 |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
c COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
20 |
SAVE /GENER/ |
c SAVE /GENER/ |
21 |
C |
C |
22 |
CALL INITIZE |
c CALL INITIZE |
23 |
ibbb=0 |
c ibbb=0 |
24 |
ALOG2=ALOG(2.) |
c ALOG2=ALOG(2.) |
25 |
ISTART=1 |
c ISTART=1 |
26 |
lati=xlat |
c lati=xlat |
27 |
longi=xlong |
c longi=xlong |
28 |
c |
c |
29 |
C----------------CALCULATE PROFILES----------------------------------- |
C----------------CALCULATE PROFILES----------------------------------- |
30 |
c |
c |
31 |
CALL FELDCOF(YEAR,DIMO) |
c CALL FELDCOF(YEAR,DIMO) |
32 |
CALL FELDG(LATI,LONGI,HEIGHT,BNORTH,BEAST,BDOWN,BABS) |
c CALL FELDG(LATI,LONGI,HEIGHT,BNORTH,BEAST,BDOWN,BABS) |
33 |
CALL SHELLG(LATI,LONGI,HEIGHT,DIMO,XL,ICODE,BAB1) |
c CALL SHELLG(LATI,LONGI,HEIGHT,DIMO,XL,ICODE,BAB1) |
34 |
DIP=ASIN(BDOWN/BABS)/UMR |
c DIP=ASIN(BDOWN/BABS)/UMR |
35 |
DEC=ASIN(BEAST/SQRT(BEAST*BEAST+BNORTH*BNORTH))/UMR |
c DEC=ASIN(BEAST/SQRT(BEAST*BEAST+BNORTH*BNORTH))/UMR |
36 |
RETURN |
c RETURN |
37 |
END |
c END |
38 |
c |
c |
39 |
c |
c |
40 |
C SHELLIG.FOR, Version 2.0, January 1992 |
C SHELLIG.FOR, Version 2.0, January 1992 |
55 |
C |
C |
56 |
C |
C |
57 |
SUBROUTINE FINDB0(STPS,BDEL,VALUE,BEQU,RR0) |
SUBROUTINE FINDB0(STPS,BDEL,VALUE,BEQU,RR0) |
58 |
|
IMPLICIT REAL(8)(A-H) |
59 |
|
IMPLICIT REAL(8)(O-Z) |
60 |
C-------------------------------------------------------------------- |
C-------------------------------------------------------------------- |
61 |
C FINDS SMALLEST MAGNETIC FIELD STRENGTH ON FIELD LINE |
C FINDS SMALLEST MAGNETIC FIELD STRENGTH ON FIELD LINE |
62 |
C |
C |
72 |
C RR0 EQUATORIAL RADIUS NORMALIZED TO EARTH RADIUS |
C RR0 EQUATORIAL RADIUS NORMALIZED TO EARTH RADIUS |
73 |
C BDEL FINAL ACHIEVED ACCURACY |
C BDEL FINAL ACHIEVED ACCURACY |
74 |
C-------------------------------------------------------------------- |
C-------------------------------------------------------------------- |
75 |
|
REAL(8) P |
76 |
DIMENSION P(8,4),SP(3) |
DIMENSION P(8,4),SP(3) |
77 |
LOGICAL VALUE |
LOGICAL VALUE |
78 |
COMMON/FIDB0/ SP |
COMMON/FIDB0/ SP |
157 |
C |
C |
158 |
C |
C |
159 |
SUBROUTINE SHELLG(GLAT,GLON,ALT,DIMO,FL,ICODE,B0) |
SUBROUTINE SHELLG(GLAT,GLON,ALT,DIMO,FL,ICODE,B0) |
160 |
|
IMPLICIT REAL(8)(A-H) |
161 |
|
IMPLICIT REAL(8)(O-Z) |
162 |
C-------------------------------------------------------------------- |
C-------------------------------------------------------------------- |
163 |
C CALCULATES L-VALUE FOR SPECIFIED GEODAETIC COORDINATES, ALTITUDE |
C CALCULATES L-VALUE FOR SPECIFIED GEODAETIC COORDINATES, ALTITUDE |
164 |
C AND GEMAGNETIC FIELD MODEL. |
C AND GEMAGNETIC FIELD MODEL. |
195 |
C APPROXIMATION IS USED. |
C APPROXIMATION IS USED. |
196 |
C B0 MAGNETIC FIELD STRENGTH IN GAUSS |
C B0 MAGNETIC FIELD STRENGTH IN GAUSS |
197 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
198 |
|
REAL(8) AQUAD,BQUAD,ERA |
199 |
|
REAL(8) CT,ST,D,ALT,X,RQ,P,U,STEP |
200 |
DIMENSION V(3),U(3,3),P(8,100),SP(3) |
DIMENSION V(3),U(3,3),P(8,100),SP(3) |
201 |
COMMON X(3),H(144) |
COMMON X(3),H(196) |
202 |
COMMON/FIDB0/ SP |
COMMON/FIDB0/ SP |
203 |
SAVE /FIDB0/ |
SAVE /FIDB0/ |
204 |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
COMMON/GENER/ ERA,AQUAD,BQUAD,UMR |
205 |
SAVE /GENER/ |
SAVE /GENER/ |
206 |
C |
C |
207 |
C-- RMIN, RMAX ARE BOUNDARIES FOR IDENTIFICATION OF ICODE=2 AND 3 |
C-- RMIN, RMAX ARE BOUNDARIES FOR IDENTIFICATION OF ICODE=2 AND 3 |
315 |
RQ=R*R |
RQ=R*R |
316 |
FF=SQRT(1.+3.*ZQ/RQ) |
FF=SQRT(1.+3.*ZQ/RQ) |
317 |
RADIK=B0-((D2*T+D1)*T+D0)*R*RQ*FF |
RADIK=B0-((D2*T+D1)*T+D0)*R*RQ*FF |
318 |
IF(R-RMAX)44,44,45 |
IF((R-RMAX).le.0.) goto 44 |
319 |
|
IF((R-RMAX).gt.0.) goto 45 |
320 |
45 ICODE=2 |
45 ICODE=2 |
321 |
RADIK=RADIK-12.*(R-RMAX)**2 |
RADIK=RADIK-12.*(R-RMAX)**2 |
322 |
44 IF(RADIK+RADIK.LE.ORADIK) GOTO 10 |
44 IF(RADIK+RADIK.LE.ORADIK) GOTO 10 |
349 |
C-- because 1E-38 is the minimal allowable arg. for ALOG in our envir. |
C-- because 1E-38 is the minimal allowable arg. for ALOG in our envir. |
350 |
C-- D. Bilitza, Nov 87. |
C-- D. Bilitza, Nov 87. |
351 |
C |
C |
352 |
11 FI=0.5*ABS(FI)/SQRT(B0)+1E-12 |
11 FI=0.5*ABS(FI)/SQRT(B0)+1E-12 |
353 |
C |
C |
354 |
C*****COMPUTE L FROM B AND I. SAME AS CARMEL IN INVAR. |
C*****COMPUTE L FROM B AND I. SAME AS CARMEL IN INVAR. |
355 |
C |
C |
356 |
C-- Correct dipole moment is used here. D. Bilitza, Nov 87. |
C-- Correct dipole moment is used here. D. Bilitza, Nov 87. |
357 |
C |
C |
358 |
DIMOB0=DIMO/B0 |
DIMOB0=DIMO/B0 |
359 |
arg1=alog(FI) |
arg1=dlog(FI) |
360 |
arg2=alog(DIMOB0) |
arg2=dlog(DIMOB0) |
361 |
c arg = FI*FI*FI/DIMOB0 |
c arg = FI*FI*FI/DIMOB0 |
362 |
c if(abs(arg).gt.88.0) arg=88.0 |
c if(abs(arg).gt.88.0) arg=88.0 |
363 |
XX=3*arg1-arg2 |
XX=3*arg1-arg2 |
364 |
IF(XX.GT.23.0) GOTO 776 |
IF(XX.GT.23.0) GOTO 776 |
365 |
IF(XX.GT.11.7) GOTO 775 |
IF(XX.GT.11.7) GOTO 775 |
366 |
IF(XX.GT.+3.0) GOTO 774 |
IF(XX.GT.+3.0) GOTO 774 |
367 |
IF(XX.GT.-3.0) GOTO 773 |
IF(XX.GT.-3.0) GOTO 773 |
368 |
IF(XX.GT.-22.) GOTO 772 |
IF(XX.GT.-22.) GOTO 772 |
369 |
771 GG=3.33338E-1*XX+3.0062102E-1 |
c 771 GG=3.33338E-1*XX+3.0062102E-1 |
370 |
|
GG=3.33338E-1*XX+3.0062102E-1 |
371 |
GOTO777 |
GOTO777 |
372 |
772 GG=((((((((-8.1537735E-14*XX+8.3232531E-13)*XX+1.0066362E-9)*XX+ |
772 GG=((((((((-8.1537735E-14*XX+8.3232531E-13)*XX+1.0066362E-9)*XX+ |
373 |
18.1048663E-8)*XX+3.2916354E-6)*XX+8.2711096E-5)*XX+1.3714667E-3)* |
18.1048663E-8)*XX+3.2916354E-6)*XX+8.2711096E-5)*XX+1.3714667E-3)* |
385 |
1E-3)*XX+1.2038224E-1)*XX-1.8461796E-1)*XX+2.0007187E0 |
1E-3)*XX+1.2038224E-1)*XX-1.8461796E-1)*XX+2.0007187E0 |
386 |
GOTO777 |
GOTO777 |
387 |
776 GG=XX-3.0460681E0 |
776 GG=XX-3.0460681E0 |
388 |
777 FL=EXP(ALOG((1.+EXP(GG))*DIMOB0)/3.0) |
777 FL=EXP(dLOG((1.+EXP(GG))*DIMOB0)/3.0) |
389 |
RETURN |
RETURN |
390 |
C*****APPROXIMATION FOR HIGH VALUES OF L. |
C*****APPROXIMATION FOR HIGH VALUES OF L. |
391 |
30 ICODE=3 |
30 ICODE=3 |
396 |
C |
C |
397 |
C |
C |
398 |
SUBROUTINE STOER(P,BQ,R) |
SUBROUTINE STOER(P,BQ,R) |
399 |
|
IMPLICIT REAL(8)(A-H) |
400 |
|
IMPLICIT REAL(8)(O-Z) |
401 |
|
|
402 |
C******************************************************************* |
C******************************************************************* |
403 |
C* SUBROUTINE USED FOR FIELD LINE TRACING IN SHELLG * |
C* SUBROUTINE USED FOR FIELD LINE TRACING IN SHELLG * |
404 |
C* CALLS ENTRY POINT FELDI IN GEOMAGNETIC FIELD SUBROUTINE FELDG * |
C* CALLS ENTRY POINT FELDI IN GEOMAGNETIC FIELD SUBROUTINE FELDG * |
405 |
C******************************************************************* |
C******************************************************************* |
406 |
|
REAL(8) P,ZM,FLI,WR,XM,R,YM,XI,DR |
407 |
DIMENSION P(7),U(3,3) |
DIMENSION P(7),U(3,3) |
408 |
COMMON XI(3),H(144) |
COMMON XI(3),H(196) |
409 |
C*****XM,YM,ZM ARE GEOMAGNETIC CARTESIAN INVERSE CO-ORDINATES |
C*****XM,YM,ZM ARE GEOMAGNETIC CARTESIAN INVERSE CO-ORDINATES |
410 |
ZM=P(3) |
ZM=P(3) |
411 |
FLI=P(1)*P(1)+P(2)*P(2)+1E-15 |
FLI=P(1)*P(1)+P(2)*P(2)+1E-15 |
445 |
C |
C |
446 |
C |
C |
447 |
SUBROUTINE FELDG(GLAT,GLON,ALT,BNORTH,BEAST,BDOWN,BABS) |
SUBROUTINE FELDG(GLAT,GLON,ALT,BNORTH,BEAST,BDOWN,BABS) |
448 |
|
IMPLICIT REAL(8)(A-H) |
449 |
|
IMPLICIT REAL(8)(O-Z) |
450 |
C------------------------------------------------------------------- |
C------------------------------------------------------------------- |
451 |
C CALCULATES EARTH MAGNETIC FIELD FROM SPHERICAL HARMONICS MODEL |
C CALCULATES EARTH MAGNETIC FIELD FROM SPHERICAL HARMONICS MODEL |
452 |
C REF: G. KLUGE, EUROPEAN SPACE OPERATIONS CENTRE, INTERNAL NOTE 61, |
C REF: G. KLUGE, EUROPEAN SPACE OPERATIONS CENTRE, INTERNAL NOTE 61, |
489 |
C POINTING IN THE TANGENTIAL PLANE TO THE NORTH, EAST |
C POINTING IN THE TANGENTIAL PLANE TO THE NORTH, EAST |
490 |
C AND DOWNWARD. |
C AND DOWNWARD. |
491 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
492 |
DIMENSION V(3),B(3),G(144) |
REAL(8) G,H,X,Z,F,S,T,XI,Y,XXX,BXXX,BYYY,BZZZ,B |
493 |
|
REAL(8) YYY,ZZZ,BABS,BEAST,BRHO,BNORTH,BDOWN,ST,CT,CP,SP |
494 |
|
REAL(8) ERA, AQUAD, BQUAD,ALT,RHO,RQ,D |
495 |
|
DIMENSION V(3),B(3),G(196) |
496 |
CHARACTER*258 NAME |
CHARACTER*258 NAME |
497 |
INTEGER NMAX |
INTEGER NMAX |
498 |
REAL TIME |
REAL TIME |
499 |
COMMON XI(3),H(144) |
COMMON XI(3),H(196) |
500 |
|
|
501 |
COMMON/MODEL/ G,NMAX,TIME,NAME |
COMMON/MODEL/ G,NMAX,TIME,NAME |
502 |
SAVE/MODEL/ |
SAVE/MODEL/ |
503 |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
COMMON/GENER/ ERA,AQUAD,BQUAD,UMR |
504 |
SAVE/GENER/ |
SAVE/GENER/ |
505 |
C |
C |
506 |
C-- IS RECORDS ENTRY POINT |
C-- IS RECORDS ENTRY POINT |
547 |
Y=XI(2)*F |
Y=XI(2)*F |
548 |
Z=XI(3)*(F+F) |
Z=XI(3)*(F+F) |
549 |
I=I-2 |
I=I-2 |
550 |
IF(I-1)5,4,2 |
c print *,' I ',I |
551 |
|
IF((I-1).lt.0) goto 5 |
552 |
|
IF((I-1).eq.0) goto 4 |
553 |
|
IF((I-1).gt.0) goto 2 |
554 |
2 DO 3 M=3,I,2 |
2 DO 3 M=3,I,2 |
555 |
H(IL+M+1)=G(IL+M+1)+Z*H(IH+M+1)+X*(H(IH+M+3)-H(IH+M-1)) |
H(IL+M+1)=G(IL+M+1)+Z*H(IH+M+1)+X*(H(IH+M+3)-H(IH+M-1)) |
556 |
A -Y*(H(IH+M+2)+H(IH+M-2)) |
A -Y*(H(IH+M+2)+H(IH+M-2)) |
582 |
END |
END |
583 |
C |
C |
584 |
C |
C |
585 |
SUBROUTINE FELDCOF(YEAR,DIMO) |
SUBROUTINE FELDCOF(YEAR,DIMO) |
586 |
|
IMPLICIT REAL(8)(A-H) |
587 |
|
IMPLICIT REAL(8)(O-Z) |
588 |
C------------------------------------------------------------------------ |
C------------------------------------------------------------------------ |
589 |
C DETERMINES COEFFICIENTS AND DIPOL MOMENT FROM IGRF MODELS |
C DETERMINES COEFFICIENTS AND DIPOL MOMENT FROM IGRF MODELS |
590 |
C |
C |
591 |
C INPUT: YEAR DECIMAL YEAR FOR WHICH GEOMAGNETIC FIELD IS TO |
C INPUT: YEAR DECIMAL YEAR FOR WHICH GEOMAGNETIC FIELD IS TO |
592 |
C BE CALCULATED |
C BE CALCULATED |
593 |
C OUTPUT: DIMO GEOMAGNETIC DIPOL MOMENT IN GAUSS (NORMALIZED |
C OUTPUT: DIMO GEOMAGNETIC DIPOL MOMENT IN GAUSS (NORMALIZED |
594 |
C TO EARTH'S RADIUS) AT THE TIME (YEAR) |
C TO EARTH'S RADIUS) AT THE TIME (YEAR) |
595 |
C D. BILITZA, NSSDC, GSFC, CODE 633, GREENBELT, MD 20771, |
C D. BILITZA, NSSDC, GSFC, CODE 633, GREENBELT, MD 20771, |
596 |
C (301)286-9536 NOV 1987. |
C (301)286-9536 NOV 1987. |
597 |
C ### updated to IGRF-2000 version -dkb- 5/31/2000 |
C ### updated to IGRF-2000 version -dkb- 5/31/2000 |
598 |
C ### updated to IGRF-2005 version -dkb- 3/24/2000 |
C ### updated to IGRF-2005 version -dkb- 3/24/2000 |
599 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
600 |
CHARACTER*258 FIL1, FIL2 |
CHARACTER*258 FIL1, FIL2 |
601 |
CHARACTER*258 FILMOD |
CHARACTER*258 FILMOD |
602 |
C ### FILMOD, DTEMOD arrays +1 |
C ### FILMOD, DTEMOD arrays +1 |
603 |
c DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(14),DTEMOD(14) |
c DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(14),DTEMOD(14) |
604 |
DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(3),DTEMOD(3) |
REAL(8) GH1, GH2, GHA |
605 |
DOUBLE PRECISION X,F0,F |
DIMENSION GH1(196),GH2(196),GHA(196),FILMOD(3),DTEMOD(3) |
606 |
INTEGER L1,L2,L3 |
DOUBLE PRECISION X,F0,F |
607 |
INTEGER NMAX |
DOUBLE PRECISION DIMO |
608 |
REAL TIME |
INTEGER L1,L2,L3 |
609 |
CHARACTER *258 P1,P2,P3 |
INTEGER NMAX |
610 |
COMMON/PPATH/ L1,L2,L3,P1, P2, P3 |
REAL YEAR |
611 |
SAVE/PPATH/ |
REAL TIME |
612 |
COMMON/MODEL/ GH1,NMAX,TIME,FIL1 |
CHARACTER *258 P1,P2,P3 |
613 |
SAVE/MODEL/ |
REAL(8) AQUAD,BQUAD,ERAD |
614 |
COMMON/GENER/ UMR,ERAD,AQUAD,BQUAD |
COMMON/PPATH/ L1,L2,L3,P1, P2, P3 |
615 |
SAVE/GENER/ |
SAVE/PPATH/ |
616 |
C ### updated to 2005 |
COMMON/MODEL/ GH1,NMAX,TIME,FIL1 |
617 |
C CHARACTER COEFPATH*80, COEF1*80, COEF2*80, COEF3*80 |
SAVE/MODEL/ |
618 |
|
COMMON/GENER/ ERAD,AQUAD,BQUAD,UMR |
619 |
c COEFPATH = 'OrbitalInfo/src/' |
SAVE/GENER/ |
620 |
c COEF1 = 'dgrf00.dat' |
C ### updated to 2005 |
621 |
c COEF2 = 'igrf05.dat' |
C CHARACTER COEFPATH*80, COEF1*80, COEF2*80, COEF3*80 |
622 |
c COEF3 = 'igrf05s.dat' |
|
623 |
c COEF1 = COEFPATH(1:16)//COEF1 |
c COEFPATH = 'OrbitalInfo/src/' |
624 |
c COEF2 = COEFPATH(1:16)//COEF2 |
c COEF1 = 'dgrf00.dat' |
625 |
c COEF3 = COEFPATH(1:16)//COEF3 |
c COEF2 = 'igrf05.dat' |
626 |
c FILMOD(1) = COEF1 |
c COEF3 = 'igrf05s.dat' |
627 |
c FILMOD(2) = COEF2 |
c COEF1 = COEFPATH(1:16)//COEF1 |
628 |
c FILMOD(3) = COEF3 |
c COEF2 = COEFPATH(1:16)//COEF2 |
629 |
|
c COEF3 = COEFPATH(1:16)//COEF3 |
630 |
|
c FILMOD(1) = COEF1 |
631 |
|
c FILMOD(2) = COEF2 |
632 |
|
c FILMOD(3) = COEF3 |
633 |
|
c print *, "qui" |
634 |
FILMOD(1) = P1(1:L1) |
FILMOD(1) = P1(1:L1) |
635 |
FILMOD(2) = P2(1:L2) |
FILMOD(2) = P2(1:L2) |
636 |
FILMOD(3) = P3(1:L3) |
FILMOD(3) = P3(1:L3) |
637 |
c FILMOD(1) = 'OrbitalInfo/src/dgrf00.dat' |
c print *, "qua" |
638 |
c FILMOD(2) = 'OrbitalInfo/src/igrf05.dat' |
c FILMOD(1) = 'OrbitalInfo/src/dgrf00.dat' |
639 |
c FILMOD(3) = 'OrbitalInfo/src/igrf05s.dat' |
c FILMOD(2) = 'OrbitalInfo/src/igrf05.dat' |
640 |
|
c FILMOD(3) = 'OrbitalInfo/src/igrf05s.dat' |
641 |
c WRITE(*,*) FILMOD(1) |
c WRITE(*,*) FILMOD(1) |
642 |
c WRITE(*,*) FILMOD(2) |
c WRITE(*,*) FILMOD(2) |
643 |
c WRITE(*,*) FILMOD(3) |
c WRITE(*,*) FILMOD(3) |
644 |
c DATA FILMOD / 'dgrf00.dat', 'igrf05.dat', 'igrf05s.dat'/ |
c DATA FILMOD / 'dgrf00.dat', 'igrf05.dat', 'igrf05s.dat'/ |
645 |
DATA DTEMOD / 2000., 2005., 2010./ |
DATA DTEMOD / 2005., 2010., 2015./ |
646 |
c |
c |
647 |
c DATA FILMOD /'dgrf45.dat', 'dgrf50.dat', |
c DATA FILMOD /'dgrf45.dat', 'dgrf50.dat', |
648 |
c 1 'dgrf55.dat', 'dgrf60.dat', 'dgrf65.dat', |
c 1 'dgrf55.dat', 'dgrf60.dat', 'dgrf65.dat', |
649 |
c 2 'dgrf70.dat', 'dgrf75.dat', 'dgrf80.dat', |
c 2 'dgrf70.dat', 'dgrf75.dat', 'dgrf80.dat', |
650 |
c 3 'dgrf85.dat', 'dgrf90.dat', 'dgrf95.dat', |
c 3 'dgrf85.dat', 'dgrf90.dat', 'dgrf95.dat', |
651 |
c 4 'dgrf00.dat','igrf05.dat','igrf05s.dat'/ |
c 4 'dgrf00.dat','igrf05.dat','igrf05s.dat'/ |
652 |
c DATA DTEMOD / 1945., 1950., 1955., 1960., 1965., 1970., |
c DATA DTEMOD / 1945., 1950., 1955., 1960., 1965., 1970., |
653 |
c 1 1975., 1980., 1985., 1990., 1995., 2000.,2005.,2010./ |
c 1 1975., 1980., 1985., 1990., 1995., 2000.,2005.,2010./ |
654 |
C |
C |
655 |
C ### numye = numye + 1 ; is number of years represented by IGRF |
C ### numye = numye + 1 ; is number of years represented by IGRF |
656 |
C |
C |
657 |
c NUMYE=13 |
c NUMYE=13 |
658 |
NUMYE=2 |
NUMYE=2 |
659 |
|
c print *, "quo" |
660 |
C |
|
661 |
C IS=0 FOR SCHMIDT NORMALIZATION IS=1 GAUSS NORMALIZATION |
C |
662 |
C IU IS INPUT UNIT NUMBER FOR IGRF COEFFICIENT SETS |
C IS=0 FOR SCHMIDT NORMALIZATION IS=1 GAUSS NORMALIZATION |
663 |
C |
C IU IS INPUT UNIT NUMBER FOR IGRF COEFFICIENT SETS |
664 |
IU = 10 |
C |
665 |
IS = 0 |
IU = 10 |
666 |
C-- DETERMINE IGRF-YEARS FOR INPUT-YEAR |
IS = 0 |
667 |
TIME = YEAR |
C-- DETERMINE IGRF-YEARS FOR INPUT-YEAR |
668 |
IYEA = INT(YEAR/5.)*5 |
TIME = YEAR |
669 |
c L = (IYEA - 1945)/5 + 1 |
IYEA = INT(YEAR/5.)*5 |
670 |
L = (IYEA - 2000)/5 + 1 |
c L = (IYEA - 1945)/5 + 1 |
671 |
IF(L.LT.1) L=1 |
L = (IYEA - 2000)/5 + 1 |
672 |
IF(L.GT.NUMYE) L=NUMYE |
IF(L.LT.1) L=1 |
673 |
DTE1 = DTEMOD(L) |
IF(L.GT.NUMYE) L=NUMYE |
674 |
FIL1 = FILMOD(L) |
DTE1 = DTEMOD(L) |
675 |
DTE2 = DTEMOD(L+1) |
FIL1 = FILMOD(L) |
676 |
FIL2 = FILMOD(L+1) |
DTE2 = DTEMOD(L+1) |
677 |
C-- GET IGRF COEFFICIENTS FOR THE BOUNDARY YEARS |
FIL2 = FILMOD(L+1) |
678 |
CALL GETSHC (IU, FIL1, NMAX1, ERAD, GH1, IER) |
c WRITE(*,*) FIL1 |
679 |
IF (IER .NE. 0) STOP |
c WRITE(*,*) FIL2 |
680 |
CALL GETSHC (IU, FIL2, NMAX2, ERAD, GH2, IER) |
c print *, "que" |
681 |
IF (IER .NE. 0) STOP |
C-- GET IGRF COEFFICIENTS FOR THE BOUNDARY YEARS |
682 |
C-- DETERMINE IGRF COEFFICIENTS FOR YEAR |
CALL GETSHC (IU, FIL1, NMAX1, ERAD, GH1, IER) |
683 |
IF (L .LE. NUMYE-1) THEN |
IF (IER .NE. 0) STOP |
684 |
CALL INTERSHC (YEAR, DTE1, NMAX1, GH1, DTE2, |
c print *, "quessss" |
685 |
1 NMAX2, GH2, NMAX, GHA) |
CALL GETSHC (IU, FIL2, NMAX2, ERAD, GH2, IER) |
686 |
ELSE |
IF (IER .NE. 0) STOP |
687 |
CALL EXTRASHC (YEAR, DTE1, NMAX1, GH1, NMAX2, |
c print *, "quj" |
688 |
1 GH2, NMAX, GHA) |
C-- DETERMINE IGRF COEFFICIENTS FOR YEAR |
689 |
ENDIF |
IF (L .LE. NUMYE-1) THEN |
690 |
C-- DETERMINE MAGNETIC DIPOL MOMENT AND COEFFIECIENTS G |
CALL INTERSHC (YEAR, DTE1, NMAX1, GH1, DTE2, |
691 |
F0=0.D0 |
1 NMAX2, GH2, NMAX, GHA) |
692 |
DO 1234 J=1,3 |
ELSE |
693 |
F = GHA(J) * 1.D-5 |
CALL EXTRASHC (YEAR, DTE1, NMAX1, GH1, NMAX2, |
694 |
F0 = F0 + F * F |
1 GH2, NMAX, GHA) |
695 |
1234 CONTINUE |
ENDIF |
696 |
DIMO = DSQRT(F0) |
c print *, "quw" |
697 |
|
C-- DETERMINE MAGNETIC DIPOL MOMENT AND COEFFIECIENTS G |
698 |
GH1(1) = 0.0 |
F0=0.D0 |
699 |
I=2 |
DO 1234 J=1,3 |
700 |
F0=1.D-5 |
F = GHA(J) * 1.D-5 |
701 |
IF(IS.EQ.0) F0=-F0 |
F0 = F0 + F * F |
702 |
SQRT2=SQRT(2.) |
1234 CONTINUE |
703 |
|
DIMO = DSQRT(F0) |
704 |
|
|
705 |
|
GH1(1) = 0.0 |
706 |
|
I=2 |
707 |
|
F0=1.D-5 |
708 |
|
IF(IS.EQ.0) F0=-F0 |
709 |
|
SQRT2=SQRT(2.) |
710 |
|
|
711 |
|
c print *, "quq" |
712 |
|
|
713 |
DO 9 N=1,NMAX |
DO 9 N=1,NMAX |
714 |
X = N |
X = N |
715 |
F0 = F0 * X * X / (4.D0 * X - 2.D0) |
F0 = F0 * X * X / (4.D0 * X - 2.D0) |
716 |
IF(IS.EQ.0) F0 = F0 * (2.D0 * X - 1.D0) / X |
IF(IS.EQ.0) F0 = F0 * (2.D0 * X - 1.D0) / X |
717 |
F = F0 * 0.5D0 |
F = F0 * 0.5D0 |
718 |
IF(IS.EQ.0) F = F * SQRT2 |
IF(IS.EQ.0) F = F * SQRT2 |
719 |
GH1(I) = GHA(I-1) * F0 |
GH1(I) = GHA(I-1) * F0 |
720 |
I = I+1 |
I = I+1 |
721 |
DO 9 M=1,N |
DO 9 M=1,N |
722 |
F = F * (X + M) / (X - M + 1.D0) |
F = F * (X + M) / (X - M + 1.D0) |
723 |
IF(IS.EQ.0) F = F * DSQRT((X - M + 1.D0) / (X + M)) |
IF(IS.EQ.0) F = F * DSQRT((X - M + 1.D0) / (X + M)) |
724 |
GH1(I) = GHA(I-1) * F |
GH1(I) = GHA(I-1) * F |
725 |
GH1(I+1) = GHA(I) * F |
GH1(I+1) = GHA(I) * F |
726 |
I=I+2 |
I=I+2 |
727 |
9 CONTINUE |
9 CONTINUE |
728 |
RETURN |
RETURN |
729 |
END |
END |
730 |
C |
C |
731 |
C |
C |
732 |
SUBROUTINE GETSHC (IU, FSPEC, NMAX, ERAD, GH, IER) |
SUBROUTINE GETSHC (IU, FSPEC, NMAX, ERAD, GH, IER) |
733 |
|
IMPLICIT REAL(8)(A-H) |
734 |
|
IMPLICIT REAL(8)(O-Z) |
735 |
C =============================================================== |
C =============================================================== |
736 |
C |
C |
737 |
C Version 1.01 |
C Version 1.01 |
738 |
C |
C |
739 |
C Reads spherical harmonic coefficients from the specified |
C Reads spherical harmonic coefficients from the specified |
740 |
C file into an array. |
C file into an array. |
741 |
C |
C |
742 |
C Input: |
C Input: |
743 |
C IU - Logical unit number |
C IU - Logical unit number |
744 |
C FSPEC - File specification |
C FSPEC - File specification |
745 |
C |
C |
746 |
C Output: |
C Output: |
747 |
C NMAX - Maximum degree and order of model |
C NMAX - Maximum degree and order of model |
748 |
C ERAD - Earth's radius associated with the spherical |
C ERAD - Earth's radius associated with the spherical |
749 |
C harmonic coefficients, in the same units as |
C harmonic coefficients, in the same units as |
750 |
C elevation |
C elevation |
751 |
C GH - Schmidt quasi-normal internal spherical |
C GH - Schmidt quasi-normal internal spherical |
752 |
C harmonic coefficients |
C harmonic coefficients |
753 |
C IER - Error number: = 0, no error |
C IER - Error number: = 0, no error |
754 |
C = -2, records out of order |
C = -2, records out of order |
755 |
C = FORTRAN run-time error number |
C = FORTRAN run-time error number |
756 |
C |
C |
757 |
C A. Zunde |
C A. Zunde |
758 |
C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225 |
C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225 |
759 |
C |
C |
760 |
C =============================================================== |
C =============================================================== |
761 |
|
|
762 |
CHARACTER FSPEC*(*), FOUT*258 |
CHARACTER FSPEC*(*), FOUT*258 |
763 |
DIMENSION GH(*) |
REAL(8) GH,ERAD |
764 |
C --------------------------------------------------------------- |
DIMENSION GH(*) |
765 |
C Open coefficient file. Read past first header record. |
C --------------------------------------------------------------- |
766 |
C Read degree and order of model and Earth's radius. |
C Open coefficient file. Read past first header record. |
767 |
C --------------------------------------------------------------- |
C Read degree and order of model and Earth's radius. |
768 |
|
C --------------------------------------------------------------- |
769 |
WRITE(FOUT,667) FSPEC |
WRITE(FOUT,667) FSPEC |
770 |
c 667 FORMAT('/usr/local/etc/httpd/cgi-bin/natasha/IRI/',A12) |
c 667 FORMAT('/usr/local/etc/httpd/cgi-bin/natasha/IRI/',A12) |
771 |
667 FORMAT(A258) |
667 FORMAT(A258) |
772 |
|
c print *," gui" |
773 |
OPEN (IU, FILE=FOUT, STATUS='OLD', IOSTAT=IER, ERR=999) |
OPEN (IU, FILE=FOUT, STATUS='OLD', IOSTAT=IER, ERR=999) |
774 |
|
c print *," gua" |
775 |
READ (IU, *, IOSTAT=IER, ERR=999) |
READ (IU, *, IOSTAT=IER, ERR=999) |
776 |
|
c print *," gue" |
777 |
READ (IU, *, IOSTAT=IER, ERR=999) NMAX, ERAD |
READ (IU, *, IOSTAT=IER, ERR=999) NMAX, ERAD |
778 |
|
c print *," guo" |
779 |
C --------------------------------------------------------------- |
C --------------------------------------------------------------- |
780 |
C Read the coefficient file, arranged as follows: |
C Read the coefficient file, arranged as follows: |
781 |
C |
C |
797 |
C --------------------------------------------------------------- |
C --------------------------------------------------------------- |
798 |
|
|
799 |
I = 0 |
I = 0 |
800 |
DO 2211 NN = 1, NMAX |
DO 2211 NN = 1, NMAX |
801 |
DO 2233 MM = 0, NN |
DO 2233 MM = 0, NN |
802 |
READ (IU, *, IOSTAT=IER, ERR=999) N, M, G, H |
READ (IU, *, IOSTAT=IER, ERR=999) N, M, G, H |
803 |
IF (NN .NE. N .OR. MM .NE. M) THEN |
IF (NN .NE. N .OR. MM .NE. M) THEN |
804 |
IER = -2 |
IER = -2 |
812 |
ENDIF |
ENDIF |
813 |
2233 CONTINUE |
2233 CONTINUE |
814 |
2211 CONTINUE |
2211 CONTINUE |
815 |
|
c print *," guj" |
816 |
|
|
817 |
999 CLOSE (IU) |
999 CLOSE (IU) |
818 |
|
c print *," guw IER",IER |
819 |
|
if ( IER .eq. -1 ) IER = 0 ! gfortran 4.1.2 bug workaround... hoping not to create problems with other versions |
820 |
|
|
821 |
RETURN |
RETURN |
822 |
END |
END |
824 |
C |
C |
825 |
SUBROUTINE INTERSHC (DATE, DTE1, NMAX1, GH1, DTE2, |
SUBROUTINE INTERSHC (DATE, DTE1, NMAX1, GH1, DTE2, |
826 |
1 NMAX2, GH2, NMAX, GH) |
1 NMAX2, GH2, NMAX, GH) |
827 |
|
IMPLICIT REAL(8)(A-H) |
828 |
|
IMPLICIT REAL(8)(O-Z) |
829 |
|
REAL DATE |
830 |
C =============================================================== |
C =============================================================== |
831 |
C |
C |
832 |
C Version 1.01 |
C Version 1.01 |
854 |
C |
C |
855 |
C =============================================================== |
C =============================================================== |
856 |
|
|
857 |
|
REAL(8) GH1, GH2, GH |
858 |
DIMENSION GH1(*), GH2(*), GH(*) |
DIMENSION GH1(*), GH2(*), GH(*) |
859 |
|
|
860 |
C --------------------------------------------------------------- |
C --------------------------------------------------------------- |
874 |
ELSE IF (NMAX1 .GT. NMAX2) THEN |
ELSE IF (NMAX1 .GT. NMAX2) THEN |
875 |
K = NMAX2 * (NMAX2 + 2) |
K = NMAX2 * (NMAX2 + 2) |
876 |
L = NMAX1 * (NMAX1 + 2) |
L = NMAX1 * (NMAX1 + 2) |
877 |
DO 1122 I = K + 1, L |
DO 1122 I = K + 1, L |
878 |
1122 GH(I) = GH1(I) + FACTOR * (-GH1(I)) |
1122 GH(I) = GH1(I) + FACTOR * (-GH1(I)) |
879 |
NMAX = NMAX1 |
NMAX = NMAX1 |
880 |
ELSE |
ELSE |
881 |
K = NMAX1 * (NMAX1 + 2) |
K = NMAX1 * (NMAX1 + 2) |
882 |
L = NMAX2 * (NMAX2 + 2) |
L = NMAX2 * (NMAX2 + 2) |
883 |
DO 1133 I = K + 1, L |
DO 1133 I = K + 1, L |
884 |
1133 GH(I) = FACTOR * GH2(I) |
1133 GH(I) = FACTOR * GH2(I) |
885 |
NMAX = NMAX2 |
NMAX = NMAX2 |
886 |
ENDIF |
ENDIF |
887 |
|
|
888 |
DO 1144 I = 1, K |
DO 1144 I = 1, K |
889 |
1144 GH(I) = GH1(I) + FACTOR * (GH2(I) - GH1(I)) |
1144 GH(I) = GH1(I) + FACTOR * (GH2(I) - GH1(I)) |
890 |
|
|
891 |
RETURN |
RETURN |
894 |
C |
C |
895 |
SUBROUTINE EXTRASHC (DATE, DTE1, NMAX1, GH1, NMAX2, |
SUBROUTINE EXTRASHC (DATE, DTE1, NMAX1, GH1, NMAX2, |
896 |
1 GH2, NMAX, GH) |
1 GH2, NMAX, GH) |
897 |
|
IMPLICIT REAL(8)(A-H) |
898 |
|
IMPLICIT REAL(8)(O-Z) |
899 |
|
REAL DATE |
900 |
|
|
901 |
C =============================================================== |
C =============================================================== |
902 |
C |
C |
925 |
C |
C |
926 |
C =============================================================== |
C =============================================================== |
927 |
|
|
928 |
|
REAL(8) GH1, GH2, GH |
929 |
DIMENSION GH1(*), GH2(*), GH(*) |
DIMENSION GH1(*), GH2(*), GH(*) |
930 |
|
|
931 |
C --------------------------------------------------------------- |
C --------------------------------------------------------------- |
945 |
ELSE IF (NMAX1 .GT. NMAX2) THEN |
ELSE IF (NMAX1 .GT. NMAX2) THEN |
946 |
K = NMAX2 * (NMAX2 + 2) |
K = NMAX2 * (NMAX2 + 2) |
947 |
L = NMAX1 * (NMAX1 + 2) |
L = NMAX1 * (NMAX1 + 2) |
948 |
DO 1155 I = K + 1, L |
DO 1155 I = K + 1, L |
949 |
1155 GH(I) = GH1(I) |
1155 GH(I) = GH1(I) |
950 |
NMAX = NMAX1 |
NMAX = NMAX1 |
951 |
ELSE |
ELSE |
952 |
K = NMAX1 * (NMAX1 + 2) |
K = NMAX1 * (NMAX1 + 2) |
953 |
L = NMAX2 * (NMAX2 + 2) |
L = NMAX2 * (NMAX2 + 2) |
954 |
DO 1166 I = K + 1, L |
DO 1166 I = K + 1, L |
955 |
1166 GH(I) = FACTOR * GH2(I) |
1166 GH(I) = FACTOR * GH2(I) |
956 |
NMAX = NMAX2 |
NMAX = NMAX2 |
957 |
ENDIF |
ENDIF |
958 |
|
|
959 |
DO 1177 I = 1, K |
DO 1177 I = 1, K |
960 |
1177 GH(I) = GH1(I) + FACTOR * GH2(I) |
1177 GH(I) = GH1(I) + FACTOR * GH2(I) |
961 |
|
|
962 |
RETURN |
RETURN |
964 |
C |
C |
965 |
C |
C |
966 |
SUBROUTINE INITIZE(TP1,TL1,TP2,TL2,TP3,TL3) |
SUBROUTINE INITIZE(TP1,TL1,TP2,TL2,TP3,TL3) |
967 |
|
IMPLICIT REAL(8)(A-H) |
968 |
|
IMPLICIT REAL(8)(O-Z) |
969 |
C---------------------------------------------------------------- |
C---------------------------------------------------------------- |
970 |
C Initializes the parameters in COMMON/GENER/ |
C Initializes the parameters in COMMON/GENER/ |
971 |
C |
C |
981 |
C ASTRONOMICAL UNION . |
C ASTRONOMICAL UNION . |
982 |
C----------------------------------------------------------------- |
C----------------------------------------------------------------- |
983 |
INTEGER TL1,TL2,TL3 |
INTEGER TL1,TL2,TL3 |
984 |
CHARACTER *258 TP1,TP2,TP3 |
CHARACTER (len=258) TP1,TP2,TP3 |
985 |
INTEGER L1,L2,L3 |
INTEGER L1,L2,L3 |
986 |
CHARACTER *258 P1,P2,P3 |
CHARACTER *258 P1,P2,P3 |
987 |
|
REAL(8) AQUAD,BQUAD,ERA |
988 |
|
|
989 |
COMMON/PPATH/ L1,L2,L3,P1, P2, P3 |
COMMON/PPATH/ L1,L2,L3,P1, P2, P3 |
990 |
SAVE/PPATH/ |
SAVE/PPATH/ |
991 |
|
|
992 |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
COMMON/GENER/ERA,AQUAD,BQUAD,UMR |
993 |
SAVE/GENER/ |
SAVE/GENER/ |
994 |
|
|
|
P1 = TP1 |
|
|
P2 = TP2 |
|
|
P3 = TP3 |
|
995 |
L1 = TL1 |
L1 = TL1 |
996 |
L2 = TL2 |
L2 = TL2 |
997 |
L3 = TL3 |
L3 = TL3 |
998 |
|
P1 = TP1(1:L1) |
999 |
|
P2 = TP2(1:L2) |
1000 |
|
P3 = TP3(1:L3) |
1001 |
|
|
1002 |
ERA=6371.2 |
ERA=6371.2 |
1003 |
EREQU=6378.16 |
EREQU=6378.16 |