1 |
subroutine igrf_sub(xlat,xlong,year,height, |
c subroutine igrf_sub(xlat,xlong,year,height, |
2 |
& xl,icode,dip,dec) |
c & xl,icode,dip,dec) |
3 |
c---------------------------------------------------------------- |
c---------------------------------------------------------------- |
4 |
c INPUT: |
c INPUT: |
5 |
c xlat geodatic latitude in degrees |
c xlat geodatic latitude in degrees |
6 |
c xlong geodatic longitude in degrees |
c xlong geodatic longitude in degrees |
7 |
c year decimal year (year+month/12.0-0.5 or year+day-of-year/365 |
c year decimal year (year+month/12.0-0.5 or year+day-of-year/365 |
8 |
c or 366 if leap year) |
c or 366 if leap year) |
9 |
c height height in km |
c height height in km |
10 |
c OUTPUT: |
c OUTPUT: |
11 |
c xl L value |
c xl L value |
12 |
c icode =1 L is correct; =2 L is not correct; |
c icode =1 L is correct; =2 L is not correct; |
13 |
c =3 an approximation is used |
c =3 an approximation is used |
14 |
c dip geomagnetic inclination in degrees |
c dip geomagnetic inclination in degrees |
15 |
c dec geomagnetic declination in degress |
c dec geomagnetic declination in degress |
16 |
c---------------------------------------------------------------- |
c---------------------------------------------------------------- |
17 |
|
c |
18 |
REAL LATI,LONGI |
c REAL LATI,LONGI |
19 |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
c COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
20 |
SAVE /GENER/ |
c SAVE /GENER/ |
21 |
C |
C |
22 |
CALL INITIZE |
c CALL INITIZE |
23 |
ibbb=0 |
c ibbb=0 |
24 |
ALOG2=ALOG(2.) |
c ALOG2=ALOG(2.) |
25 |
ISTART=1 |
c ISTART=1 |
26 |
lati=xlat |
c lati=xlat |
27 |
longi=xlong |
c longi=xlong |
28 |
c |
c |
29 |
C----------------CALCULATE PROFILES----------------------------------- |
C----------------CALCULATE PROFILES----------------------------------- |
30 |
c |
c |
31 |
CALL FELDCOF(YEAR,DIMO) |
c CALL FELDCOF(YEAR,DIMO) |
32 |
CALL FELDG(LATI,LONGI,HEIGHT,BNORTH,BEAST,BDOWN,BABS) |
c CALL FELDG(LATI,LONGI,HEIGHT,BNORTH,BEAST,BDOWN,BABS) |
33 |
CALL SHELLG(LATI,LONGI,HEIGHT,DIMO,XL,ICODE,BAB1) |
c CALL SHELLG(LATI,LONGI,HEIGHT,DIMO,XL,ICODE,BAB1) |
34 |
DIP=ASIN(BDOWN/BABS)/UMR |
c DIP=ASIN(BDOWN/BABS)/UMR |
35 |
DEC=ASIN(BEAST/SQRT(BEAST*BEAST+BNORTH*BNORTH))/UMR |
c DEC=ASIN(BEAST/SQRT(BEAST*BEAST+BNORTH*BNORTH))/UMR |
36 |
RETURN |
c RETURN |
37 |
END |
c END |
38 |
c |
c |
39 |
c |
c |
40 |
C SHELLIG.FOR, Version 2.0, January 1992 |
C SHELLIG.FOR, Version 2.0, January 1992 |
191 |
C B0 MAGNETIC FIELD STRENGTH IN GAUSS |
C B0 MAGNETIC FIELD STRENGTH IN GAUSS |
192 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
193 |
DIMENSION V(3),U(3,3),P(8,100),SP(3) |
DIMENSION V(3),U(3,3),P(8,100),SP(3) |
194 |
COMMON X(3),H(144) |
COMMON X(3),H(196) |
195 |
COMMON/FIDB0/ SP |
COMMON/FIDB0/ SP |
196 |
SAVE /FIDB0/ |
SAVE /FIDB0/ |
197 |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
198 |
SAVE /GENER/ |
SAVE /GENER/ |
199 |
|
REAL FLS |
200 |
C |
C |
201 |
C-- RMIN, RMAX ARE BOUNDARIES FOR IDENTIFICATION OF ICODE=2 AND 3 |
C-- RMIN, RMAX ARE BOUNDARIES FOR IDENTIFICATION OF ICODE=2 AND 3 |
202 |
C-- STEP IS STEP SIZE FOR FIELD LINE TRACING |
C-- STEP IS STEP SIZE FOR FIELD LINE TRACING |
204 |
C |
C |
205 |
DATA RMIN,RMAX /0.05,1.01/ |
DATA RMIN,RMAX /0.05,1.01/ |
206 |
DATA STEP,STEQ /0.20,0.03/ |
DATA STEP,STEQ /0.20,0.03/ |
207 |
BEQU=1.E10 |
BEQU=1.E10 |
208 |
|
FLS = FL |
209 |
C*****ENTRY POINT SHELLG TO BE USED WITH GEODETIC CO-ORDINATES |
C*****ENTRY POINT SHELLG TO BE USED WITH GEODETIC CO-ORDINATES |
210 |
RLAT=GLAT*UMR |
RLAT=GLAT*UMR |
211 |
CT=SIN(RLAT) |
CT=SIN(RLAT) |
306 |
HLI=0.5*(((C3*T+C2)*T+C1)*T+C0) |
HLI=0.5*(((C3*T+C2)*T+C1)*T+C0) |
307 |
ZQ=Z*Z |
ZQ=Z*Z |
308 |
R=HLI+SQRT(HLI*HLI+ZQ) |
R=HLI+SQRT(HLI*HLI+ZQ) |
309 |
|
IF(R.NE.R)THEN |
310 |
|
FL = FLS |
311 |
|
RETURN |
312 |
|
ENDIF |
313 |
IF(R.LE.RMIN)GOTO30 |
IF(R.LE.RMIN)GOTO30 |
314 |
RQ=R*R |
RQ=R*R |
315 |
FF=SQRT(1.+3.*ZQ/RQ) |
FF=SQRT(1.+3.*ZQ/RQ) |
348 |
C-- because 1E-38 is the minimal allowable arg. for ALOG in our envir. |
C-- because 1E-38 is the minimal allowable arg. for ALOG in our envir. |
349 |
C-- D. Bilitza, Nov 87. |
C-- D. Bilitza, Nov 87. |
350 |
C |
C |
351 |
11 FI=0.5*ABS(FI)/SQRT(B0)+1E-12 |
11 FI=0.5*ABS(FI)/SQRT(B0)+1E-12 |
352 |
C |
C |
353 |
C*****COMPUTE L FROM B AND I. SAME AS CARMEL IN INVAR. |
C*****COMPUTE L FROM B AND I. SAME AS CARMEL IN INVAR. |
354 |
C |
C |
355 |
C-- Correct dipole moment is used here. D. Bilitza, Nov 87. |
C-- Correct dipole moment is used here. D. Bilitza, Nov 87. |
356 |
C |
C |
357 |
DIMOB0=DIMO/B0 |
DIMOB0=DIMO/B0 |
358 |
arg1=alog(FI) |
arg1=alog(FI) |
359 |
arg2=alog(DIMOB0) |
arg2=alog(DIMOB0) |
360 |
c arg = FI*FI*FI/DIMOB0 |
c arg = FI*FI*FI/DIMOB0 |
361 |
c if(abs(arg).gt.88.0) arg=88.0 |
c if(abs(arg).gt.88.0) arg=88.0 |
362 |
XX=3*arg1-arg2 |
XX=3*arg1-arg2 |
363 |
IF(XX.GT.23.0) GOTO 776 |
IF(XX.GT.23.0) GOTO 776 |
364 |
IF(XX.GT.11.7) GOTO 775 |
IF(XX.GT.11.7) GOTO 775 |
400 |
C* CALLS ENTRY POINT FELDI IN GEOMAGNETIC FIELD SUBROUTINE FELDG * |
C* CALLS ENTRY POINT FELDI IN GEOMAGNETIC FIELD SUBROUTINE FELDG * |
401 |
C******************************************************************* |
C******************************************************************* |
402 |
DIMENSION P(7),U(3,3) |
DIMENSION P(7),U(3,3) |
403 |
COMMON XI(3),H(144) |
COMMON XI(3),H(196) |
404 |
C*****XM,YM,ZM ARE GEOMAGNETIC CARTESIAN INVERSE CO-ORDINATES |
C*****XM,YM,ZM ARE GEOMAGNETIC CARTESIAN INVERSE CO-ORDINATES |
405 |
ZM=P(3) |
ZM=P(3) |
406 |
FLI=P(1)*P(1)+P(2)*P(2)+1E-15 |
FLI=P(1)*P(1)+P(2)*P(2)+1E-15 |
482 |
C POINTING IN THE TANGENTIAL PLANE TO THE NORTH, EAST |
C POINTING IN THE TANGENTIAL PLANE TO THE NORTH, EAST |
483 |
C AND DOWNWARD. |
C AND DOWNWARD. |
484 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
485 |
DIMENSION V(3),B(3),G(144) |
DIMENSION V(3),B(3),G(196) |
486 |
CHARACTER*258 NAME |
CHARACTER*258 NAME |
487 |
INTEGER NMAX |
INTEGER NMAX |
488 |
REAL TIME |
REAL TIME |
489 |
COMMON XI(3),H(144) |
COMMON XI(3),H(196) |
490 |
COMMON/MODEL/ G,NMAX,TIME,NAME |
COMMON/MODEL/ G,NMAX,TIME,NAME |
491 |
SAVE/MODEL/ |
SAVE/MODEL/ |
492 |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
587 |
CHARACTER*258 FIL1, FIL2 |
CHARACTER*258 FIL1, FIL2 |
588 |
CHARACTER*258 FILMOD |
CHARACTER*258 FILMOD |
589 |
C ### FILMOD, DTEMOD arrays +1 |
C ### FILMOD, DTEMOD arrays +1 |
590 |
c DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(14),DTEMOD(14) |
c DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(14),DTEMOD(14) |
591 |
DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(3),DTEMOD(3) |
DIMENSION GH1(196),GH2(196),GHA(196),FILMOD(3),DTEMOD(3) |
592 |
DOUBLE PRECISION X,F0,F |
DOUBLE PRECISION X,F0,F |
593 |
INTEGER L1,L2,L3 |
INTEGER L1,L2,L3 |
594 |
INTEGER NMAX |
INTEGER NMAX |
621 |
c FILMOD(1) = 'OrbitalInfo/src/dgrf00.dat' |
c FILMOD(1) = 'OrbitalInfo/src/dgrf00.dat' |
622 |
c FILMOD(2) = 'OrbitalInfo/src/igrf05.dat' |
c FILMOD(2) = 'OrbitalInfo/src/igrf05.dat' |
623 |
c FILMOD(3) = 'OrbitalInfo/src/igrf05s.dat' |
c FILMOD(3) = 'OrbitalInfo/src/igrf05s.dat' |
624 |
c WRITE(*,*) FILMOD(1) |
c WRITE(*,*) FILMOD(1) |
625 |
c WRITE(*,*) FILMOD(2) |
c WRITE(*,*) FILMOD(2) |
626 |
c WRITE(*,*) FILMOD(3) |
c WRITE(*,*) FILMOD(3) |
627 |
c DATA FILMOD / 'dgrf00.dat', 'igrf05.dat', 'igrf05s.dat'/ |
c DATA FILMOD / 'dgrf00.dat', 'igrf05.dat', 'igrf05s.dat'/ |
628 |
DATA DTEMOD / 2000., 2005., 2010./ |
DATA DTEMOD / 2005., 2010., 2015./ |
629 |
c |
c |
630 |
c DATA FILMOD /'dgrf45.dat', 'dgrf50.dat', |
c DATA FILMOD /'dgrf45.dat', 'dgrf50.dat', |
631 |
c 1 'dgrf55.dat', 'dgrf60.dat', 'dgrf65.dat', |
c 1 'dgrf55.dat', 'dgrf60.dat', 'dgrf65.dat', |
658 |
FIL1 = FILMOD(L) |
FIL1 = FILMOD(L) |
659 |
DTE2 = DTEMOD(L+1) |
DTE2 = DTEMOD(L+1) |
660 |
FIL2 = FILMOD(L+1) |
FIL2 = FILMOD(L+1) |
661 |
|
c WRITE(*,*) FIL1 |
662 |
|
c WRITE(*,*) FIL2 |
663 |
c print *, "que" |
c print *, "que" |
664 |
C-- GET IGRF COEFFICIENTS FOR THE BOUNDARY YEARS |
C-- GET IGRF COEFFICIENTS FOR THE BOUNDARY YEARS |
665 |
CALL GETSHC (IU, FIL1, NMAX1, ERAD, GH1, IER) |
CALL GETSHC (IU, FIL1, NMAX1, ERAD, GH1, IER) |
666 |
IF (IER .NE. 0) STOP |
IF (IER .NE. 0) STOP |
667 |
|
c print *, "quessss" |
668 |
CALL GETSHC (IU, FIL2, NMAX2, ERAD, GH2, IER) |
CALL GETSHC (IU, FIL2, NMAX2, ERAD, GH2, IER) |
669 |
IF (IER .NE. 0) STOP |
IF (IER .NE. 0) STOP |
670 |
c print *, "quj" |
c print *, "quj" |
683 |
F = GHA(J) * 1.D-5 |
F = GHA(J) * 1.D-5 |
684 |
F0 = F0 + F * F |
F0 = F0 + F * F |
685 |
1234 CONTINUE |
1234 CONTINUE |
686 |
DIMO = DSQRT(F0) |
DIMO = REAL(DSQRT(F0)) |
687 |
|
|
688 |
GH1(1) = 0.0 |
GH1(1) = 0.0 |
689 |
I=2 |
I=2 |
699 |
IF(IS.EQ.0) F0 = F0 * (2.D0 * X - 1.D0) / X |
IF(IS.EQ.0) F0 = F0 * (2.D0 * X - 1.D0) / X |
700 |
F = F0 * 0.5D0 |
F = F0 * 0.5D0 |
701 |
IF(IS.EQ.0) F = F * SQRT2 |
IF(IS.EQ.0) F = F * SQRT2 |
702 |
GH1(I) = GHA(I-1) * F0 |
GH1(I) = GHA(I-1) * REAL(F0) |
703 |
I = I+1 |
I = I+1 |
704 |
DO 9 M=1,N |
DO 9 M=1,N |
705 |
F = F * (X + M) / (X - M + 1.D0) |
F = F * (X + M) / (X - M + 1.D0) |
706 |
IF(IS.EQ.0) F = F * DSQRT((X - M + 1.D0) / (X + M)) |
IF(IS.EQ.0) F = F * DSQRT((X - M + 1.D0) / (X + M)) |
707 |
GH1(I) = GHA(I-1) * F |
GH1(I) = GHA(I-1) * REAL(F) |
708 |
GH1(I+1) = GHA(I) * F |
GH1(I+1) = GHA(I) * REAL(F) |
709 |
I=I+2 |
I=I+2 |
710 |
9 CONTINUE |
9 CONTINUE |
711 |
RETURN |
RETURN |
953 |
C ASTRONOMICAL UNION . |
C ASTRONOMICAL UNION . |
954 |
C----------------------------------------------------------------- |
C----------------------------------------------------------------- |
955 |
INTEGER TL1,TL2,TL3 |
INTEGER TL1,TL2,TL3 |
956 |
CHARACTER *258 TP1,TP2,TP3 |
CHARACTER (len=*) :: TP1,TP2,TP3 |
957 |
INTEGER L1,L2,L3 |
INTEGER L1,L2,L3 |
958 |
CHARACTER *258 P1,P2,P3 |
CHARACTER *258 P1,P2,P3 |
959 |
COMMON/PPATH/ L1,L2,L3,P1, P2, P3 |
COMMON/PPATH/ L1,L2,L3,P1, P2, P3 |