1 |
subroutine igrf_sub(xlat,xlong,year,height, |
c subroutine igrf_sub(xlat,xlong,year,height, |
2 |
& xl,icode,dip,dec) |
c & xl,icode,dip,dec) |
3 |
c---------------------------------------------------------------- |
c---------------------------------------------------------------- |
4 |
c INPUT: |
c INPUT: |
5 |
c xlat geodatic latitude in degrees |
c xlat geodatic latitude in degrees |
6 |
c xlong geodatic longitude in degrees |
c xlong geodatic longitude in degrees |
7 |
c year decimal year (year+month/12.0-0.5 or year+day-of-year/365 |
c year decimal year (year+month/12.0-0.5 or year+day-of-year/365 |
8 |
c or 366 if leap year) |
c or 366 if leap year) |
9 |
c height height in km |
c height height in km |
10 |
c OUTPUT: |
c OUTPUT: |
11 |
c xl L value |
c xl L value |
12 |
c icode =1 L is correct; =2 L is not correct; |
c icode =1 L is correct; =2 L is not correct; |
13 |
c =3 an approximation is used |
c =3 an approximation is used |
14 |
c dip geomagnetic inclination in degrees |
c dip geomagnetic inclination in degrees |
15 |
c dec geomagnetic declination in degress |
c dec geomagnetic declination in degress |
16 |
c---------------------------------------------------------------- |
c---------------------------------------------------------------- |
17 |
|
c |
18 |
REAL LATI,LONGI |
c REAL LATI,LONGI |
19 |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
c COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
20 |
SAVE /GENER/ |
c SAVE /GENER/ |
21 |
C |
C |
22 |
CALL INITIZE |
c CALL INITIZE |
23 |
ibbb=0 |
c ibbb=0 |
24 |
ALOG2=ALOG(2.) |
c ALOG2=ALOG(2.) |
25 |
ISTART=1 |
c ISTART=1 |
26 |
lati=xlat |
c lati=xlat |
27 |
longi=xlong |
c longi=xlong |
28 |
c |
c |
29 |
C----------------CALCULATE PROFILES----------------------------------- |
C----------------CALCULATE PROFILES----------------------------------- |
30 |
c |
c |
31 |
CALL FELDCOF(YEAR,DIMO) |
c CALL FELDCOF(YEAR,DIMO) |
32 |
CALL FELDG(LATI,LONGI,HEIGHT,BNORTH,BEAST,BDOWN,BABS) |
c CALL FELDG(LATI,LONGI,HEIGHT,BNORTH,BEAST,BDOWN,BABS) |
33 |
CALL SHELLG(LATI,LONGI,HEIGHT,DIMO,XL,ICODE,BAB1) |
c CALL SHELLG(LATI,LONGI,HEIGHT,DIMO,XL,ICODE,BAB1) |
34 |
DIP=ASIN(BDOWN/BABS)/UMR |
c DIP=ASIN(BDOWN/BABS)/UMR |
35 |
DEC=ASIN(BEAST/SQRT(BEAST*BEAST+BNORTH*BNORTH))/UMR |
c DEC=ASIN(BEAST/SQRT(BEAST*BEAST+BNORTH*BNORTH))/UMR |
36 |
RETURN |
c RETURN |
37 |
END |
c END |
38 |
c |
c |
39 |
c |
c |
40 |
C SHELLIG.FOR, Version 2.0, January 1992 |
C SHELLIG.FOR, Version 2.0, January 1992 |
191 |
C B0 MAGNETIC FIELD STRENGTH IN GAUSS |
C B0 MAGNETIC FIELD STRENGTH IN GAUSS |
192 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
193 |
DIMENSION V(3),U(3,3),P(8,100),SP(3) |
DIMENSION V(3),U(3,3),P(8,100),SP(3) |
194 |
COMMON X(3),H(144) |
COMMON X(3),H(196) |
195 |
COMMON/FIDB0/ SP |
COMMON/FIDB0/ SP |
196 |
SAVE /FIDB0/ |
SAVE /FIDB0/ |
197 |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
308 |
RQ=R*R |
RQ=R*R |
309 |
FF=SQRT(1.+3.*ZQ/RQ) |
FF=SQRT(1.+3.*ZQ/RQ) |
310 |
RADIK=B0-((D2*T+D1)*T+D0)*R*RQ*FF |
RADIK=B0-((D2*T+D1)*T+D0)*R*RQ*FF |
311 |
IF(R-RMAX)44,44,45 |
IF((R-RMAX).le.0.) goto 44 |
312 |
|
IF((R-RMAX).gt.0.) goto 45 |
313 |
45 ICODE=2 |
45 ICODE=2 |
314 |
RADIK=RADIK-12.*(R-RMAX)**2 |
RADIK=RADIK-12.*(R-RMAX)**2 |
315 |
44 IF(RADIK+RADIK.LE.ORADIK) GOTO 10 |
44 IF(RADIK+RADIK.LE.ORADIK) GOTO 10 |
342 |
C-- because 1E-38 is the minimal allowable arg. for ALOG in our envir. |
C-- because 1E-38 is the minimal allowable arg. for ALOG in our envir. |
343 |
C-- D. Bilitza, Nov 87. |
C-- D. Bilitza, Nov 87. |
344 |
C |
C |
345 |
11 FI=0.5*ABS(FI)/SQRT(B0)+1E-12 |
11 FI=0.5*ABS(FI)/SQRT(B0)+1E-12 |
346 |
C |
C |
347 |
C*****COMPUTE L FROM B AND I. SAME AS CARMEL IN INVAR. |
C*****COMPUTE L FROM B AND I. SAME AS CARMEL IN INVAR. |
348 |
C |
C |
349 |
C-- Correct dipole moment is used here. D. Bilitza, Nov 87. |
C-- Correct dipole moment is used here. D. Bilitza, Nov 87. |
350 |
C |
C |
351 |
DIMOB0=DIMO/B0 |
DIMOB0=DIMO/B0 |
352 |
arg1=alog(FI) |
arg1=alog(FI) |
353 |
arg2=alog(DIMOB0) |
arg2=alog(DIMOB0) |
354 |
c arg = FI*FI*FI/DIMOB0 |
c arg = FI*FI*FI/DIMOB0 |
355 |
c if(abs(arg).gt.88.0) arg=88.0 |
c if(abs(arg).gt.88.0) arg=88.0 |
356 |
XX=3*arg1-arg2 |
XX=3*arg1-arg2 |
357 |
IF(XX.GT.23.0) GOTO 776 |
IF(XX.GT.23.0) GOTO 776 |
358 |
IF(XX.GT.11.7) GOTO 775 |
IF(XX.GT.11.7) GOTO 775 |
359 |
IF(XX.GT.+3.0) GOTO 774 |
IF(XX.GT.+3.0) GOTO 774 |
360 |
IF(XX.GT.-3.0) GOTO 773 |
IF(XX.GT.-3.0) GOTO 773 |
361 |
IF(XX.GT.-22.) GOTO 772 |
IF(XX.GT.-22.) GOTO 772 |
362 |
771 GG=3.33338E-1*XX+3.0062102E-1 |
c 771 GG=3.33338E-1*XX+3.0062102E-1 |
363 |
|
GG=3.33338E-1*XX+3.0062102E-1 |
364 |
GOTO777 |
GOTO777 |
365 |
772 GG=((((((((-8.1537735E-14*XX+8.3232531E-13)*XX+1.0066362E-9)*XX+ |
772 GG=((((((((-8.1537735E-14*XX+8.3232531E-13)*XX+1.0066362E-9)*XX+ |
366 |
18.1048663E-8)*XX+3.2916354E-6)*XX+8.2711096E-5)*XX+1.3714667E-3)* |
18.1048663E-8)*XX+3.2916354E-6)*XX+8.2711096E-5)*XX+1.3714667E-3)* |
394 |
C* CALLS ENTRY POINT FELDI IN GEOMAGNETIC FIELD SUBROUTINE FELDG * |
C* CALLS ENTRY POINT FELDI IN GEOMAGNETIC FIELD SUBROUTINE FELDG * |
395 |
C******************************************************************* |
C******************************************************************* |
396 |
DIMENSION P(7),U(3,3) |
DIMENSION P(7),U(3,3) |
397 |
COMMON XI(3),H(144) |
COMMON XI(3),H(196) |
398 |
C*****XM,YM,ZM ARE GEOMAGNETIC CARTESIAN INVERSE CO-ORDINATES |
C*****XM,YM,ZM ARE GEOMAGNETIC CARTESIAN INVERSE CO-ORDINATES |
399 |
ZM=P(3) |
ZM=P(3) |
400 |
FLI=P(1)*P(1)+P(2)*P(2)+1E-15 |
FLI=P(1)*P(1)+P(2)*P(2)+1E-15 |
476 |
C POINTING IN THE TANGENTIAL PLANE TO THE NORTH, EAST |
C POINTING IN THE TANGENTIAL PLANE TO THE NORTH, EAST |
477 |
C AND DOWNWARD. |
C AND DOWNWARD. |
478 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
479 |
DIMENSION V(3),B(3),G(144) |
DIMENSION V(3),B(3),G(196) |
480 |
CHARACTER*258 NAME |
CHARACTER*258 NAME |
481 |
INTEGER NMAX |
INTEGER NMAX |
482 |
REAL TIME |
REAL TIME |
483 |
COMMON XI(3),H(144) |
COMMON XI(3),H(196) |
484 |
COMMON/MODEL/ G,NMAX,TIME,NAME |
COMMON/MODEL/ G,NMAX,TIME,NAME |
485 |
SAVE/MODEL/ |
SAVE/MODEL/ |
486 |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
530 |
Y=XI(2)*F |
Y=XI(2)*F |
531 |
Z=XI(3)*(F+F) |
Z=XI(3)*(F+F) |
532 |
I=I-2 |
I=I-2 |
533 |
IF(I-1)5,4,2 |
c print *,' I ',I |
534 |
|
IF((I-1).lt.0) goto 5 |
535 |
|
IF((I-1).eq.0) goto 4 |
536 |
|
IF((I-1).gt.0) goto 2 |
537 |
2 DO 3 M=3,I,2 |
2 DO 3 M=3,I,2 |
538 |
H(IL+M+1)=G(IL+M+1)+Z*H(IH+M+1)+X*(H(IH+M+3)-H(IH+M-1)) |
H(IL+M+1)=G(IL+M+1)+Z*H(IH+M+1)+X*(H(IH+M+3)-H(IH+M-1)) |
539 |
A -Y*(H(IH+M+2)+H(IH+M-2)) |
A -Y*(H(IH+M+2)+H(IH+M-2)) |
565 |
END |
END |
566 |
C |
C |
567 |
C |
C |
568 |
SUBROUTINE FELDCOF(YEAR,DIMO) |
SUBROUTINE FELDCOF(YEAR,DIMO) |
569 |
C------------------------------------------------------------------------ |
C------------------------------------------------------------------------ |
570 |
C DETERMINES COEFFICIENTS AND DIPOL MOMENT FROM IGRF MODELS |
C DETERMINES COEFFICIENTS AND DIPOL MOMENT FROM IGRF MODELS |
571 |
C |
C |
572 |
C INPUT: YEAR DECIMAL YEAR FOR WHICH GEOMAGNETIC FIELD IS TO |
C INPUT: YEAR DECIMAL YEAR FOR WHICH GEOMAGNETIC FIELD IS TO |
573 |
C BE CALCULATED |
C BE CALCULATED |
574 |
C OUTPUT: DIMO GEOMAGNETIC DIPOL MOMENT IN GAUSS (NORMALIZED |
C OUTPUT: DIMO GEOMAGNETIC DIPOL MOMENT IN GAUSS (NORMALIZED |
575 |
C TO EARTH'S RADIUS) AT THE TIME (YEAR) |
C TO EARTH'S RADIUS) AT THE TIME (YEAR) |
576 |
C D. BILITZA, NSSDC, GSFC, CODE 633, GREENBELT, MD 20771, |
C D. BILITZA, NSSDC, GSFC, CODE 633, GREENBELT, MD 20771, |
577 |
C (301)286-9536 NOV 1987. |
C (301)286-9536 NOV 1987. |
578 |
C ### updated to IGRF-2000 version -dkb- 5/31/2000 |
C ### updated to IGRF-2000 version -dkb- 5/31/2000 |
579 |
C ### updated to IGRF-2005 version -dkb- 3/24/2000 |
C ### updated to IGRF-2005 version -dkb- 3/24/2000 |
580 |
C----------------------------------------------------------------------- |
C----------------------------------------------------------------------- |
581 |
CHARACTER*258 FIL1, FIL2 |
CHARACTER*258 FIL1, FIL2 |
582 |
CHARACTER*258 FILMOD |
CHARACTER*258 FILMOD |
583 |
C ### FILMOD, DTEMOD arrays +1 |
C ### FILMOD, DTEMOD arrays +1 |
584 |
c DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(14),DTEMOD(14) |
c DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(14),DTEMOD(14) |
585 |
DIMENSION GH1(144),GH2(120),GHA(144),FILMOD(3),DTEMOD(3) |
DIMENSION GH1(196),GH2(196),GHA(196),FILMOD(3),DTEMOD(3) |
586 |
DOUBLE PRECISION X,F0,F |
DOUBLE PRECISION X,F0,F |
587 |
INTEGER L1,L2,L3 |
INTEGER L1,L2,L3 |
588 |
INTEGER NMAX |
INTEGER NMAX |
589 |
REAL TIME |
REAL TIME |
590 |
CHARACTER *258 P1,P2,P3 |
CHARACTER *258 P1,P2,P3 |
591 |
COMMON/PPATH/ L1,L2,L3,P1, P2, P3 |
COMMON/PPATH/ L1,L2,L3,P1, P2, P3 |
592 |
SAVE/PPATH/ |
SAVE/PPATH/ |
593 |
COMMON/MODEL/ GH1,NMAX,TIME,FIL1 |
COMMON/MODEL/ GH1,NMAX,TIME,FIL1 |
594 |
SAVE/MODEL/ |
SAVE/MODEL/ |
595 |
COMMON/GENER/ UMR,ERAD,AQUAD,BQUAD |
COMMON/GENER/ UMR,ERAD,AQUAD,BQUAD |
596 |
SAVE/GENER/ |
SAVE/GENER/ |
597 |
C ### updated to 2005 |
C ### updated to 2005 |
598 |
C CHARACTER COEFPATH*80, COEF1*80, COEF2*80, COEF3*80 |
C CHARACTER COEFPATH*80, COEF1*80, COEF2*80, COEF3*80 |
599 |
|
|
600 |
c COEFPATH = 'OrbitalInfo/src/' |
c COEFPATH = 'OrbitalInfo/src/' |
601 |
c COEF1 = 'dgrf00.dat' |
c COEF1 = 'dgrf00.dat' |
602 |
c COEF2 = 'igrf05.dat' |
c COEF2 = 'igrf05.dat' |
603 |
c COEF3 = 'igrf05s.dat' |
c COEF3 = 'igrf05s.dat' |
604 |
c COEF1 = COEFPATH(1:16)//COEF1 |
c COEF1 = COEFPATH(1:16)//COEF1 |
605 |
c COEF2 = COEFPATH(1:16)//COEF2 |
c COEF2 = COEFPATH(1:16)//COEF2 |
606 |
c COEF3 = COEFPATH(1:16)//COEF3 |
c COEF3 = COEFPATH(1:16)//COEF3 |
607 |
c FILMOD(1) = COEF1 |
c FILMOD(1) = COEF1 |
608 |
c FILMOD(2) = COEF2 |
c FILMOD(2) = COEF2 |
609 |
c FILMOD(3) = COEF3 |
c FILMOD(3) = COEF3 |
610 |
|
c print *, "qui" |
611 |
FILMOD(1) = P1(1:L1) |
FILMOD(1) = P1(1:L1) |
612 |
FILMOD(2) = P2(1:L2) |
FILMOD(2) = P2(1:L2) |
613 |
FILMOD(3) = P3(1:L3) |
FILMOD(3) = P3(1:L3) |
614 |
c FILMOD(1) = 'OrbitalInfo/src/dgrf00.dat' |
c print *, "qua" |
615 |
c FILMOD(2) = 'OrbitalInfo/src/igrf05.dat' |
c FILMOD(1) = 'OrbitalInfo/src/dgrf00.dat' |
616 |
c FILMOD(3) = 'OrbitalInfo/src/igrf05s.dat' |
c FILMOD(2) = 'OrbitalInfo/src/igrf05.dat' |
617 |
|
c FILMOD(3) = 'OrbitalInfo/src/igrf05s.dat' |
618 |
c WRITE(*,*) FILMOD(1) |
c WRITE(*,*) FILMOD(1) |
619 |
c WRITE(*,*) FILMOD(2) |
c WRITE(*,*) FILMOD(2) |
620 |
c WRITE(*,*) FILMOD(3) |
c WRITE(*,*) FILMOD(3) |
621 |
c DATA FILMOD / 'dgrf00.dat', 'igrf05.dat', 'igrf05s.dat'/ |
c DATA FILMOD / 'dgrf00.dat', 'igrf05.dat', 'igrf05s.dat'/ |
622 |
DATA DTEMOD / 2000., 2005., 2010./ |
DATA DTEMOD / 2005., 2010., 2015./ |
623 |
c |
c |
624 |
c DATA FILMOD /'dgrf45.dat', 'dgrf50.dat', |
c DATA FILMOD /'dgrf45.dat', 'dgrf50.dat', |
625 |
c 1 'dgrf55.dat', 'dgrf60.dat', 'dgrf65.dat', |
c 1 'dgrf55.dat', 'dgrf60.dat', 'dgrf65.dat', |
626 |
c 2 'dgrf70.dat', 'dgrf75.dat', 'dgrf80.dat', |
c 2 'dgrf70.dat', 'dgrf75.dat', 'dgrf80.dat', |
627 |
c 3 'dgrf85.dat', 'dgrf90.dat', 'dgrf95.dat', |
c 3 'dgrf85.dat', 'dgrf90.dat', 'dgrf95.dat', |
628 |
c 4 'dgrf00.dat','igrf05.dat','igrf05s.dat'/ |
c 4 'dgrf00.dat','igrf05.dat','igrf05s.dat'/ |
629 |
c DATA DTEMOD / 1945., 1950., 1955., 1960., 1965., 1970., |
c DATA DTEMOD / 1945., 1950., 1955., 1960., 1965., 1970., |
630 |
c 1 1975., 1980., 1985., 1990., 1995., 2000.,2005.,2010./ |
c 1 1975., 1980., 1985., 1990., 1995., 2000.,2005.,2010./ |
631 |
C |
C |
632 |
C ### numye = numye + 1 ; is number of years represented by IGRF |
C ### numye = numye + 1 ; is number of years represented by IGRF |
633 |
C |
C |
634 |
c NUMYE=13 |
c NUMYE=13 |
635 |
NUMYE=2 |
NUMYE=2 |
636 |
|
c print *, "quo" |
637 |
C |
|
638 |
C IS=0 FOR SCHMIDT NORMALIZATION IS=1 GAUSS NORMALIZATION |
C |
639 |
C IU IS INPUT UNIT NUMBER FOR IGRF COEFFICIENT SETS |
C IS=0 FOR SCHMIDT NORMALIZATION IS=1 GAUSS NORMALIZATION |
640 |
C |
C IU IS INPUT UNIT NUMBER FOR IGRF COEFFICIENT SETS |
641 |
IU = 10 |
C |
642 |
IS = 0 |
IU = 10 |
643 |
C-- DETERMINE IGRF-YEARS FOR INPUT-YEAR |
IS = 0 |
644 |
TIME = YEAR |
C-- DETERMINE IGRF-YEARS FOR INPUT-YEAR |
645 |
IYEA = INT(YEAR/5.)*5 |
TIME = YEAR |
646 |
c L = (IYEA - 1945)/5 + 1 |
IYEA = INT(YEAR/5.)*5 |
647 |
L = (IYEA - 2000)/5 + 1 |
c L = (IYEA - 1945)/5 + 1 |
648 |
IF(L.LT.1) L=1 |
L = (IYEA - 2000)/5 + 1 |
649 |
IF(L.GT.NUMYE) L=NUMYE |
IF(L.LT.1) L=1 |
650 |
DTE1 = DTEMOD(L) |
IF(L.GT.NUMYE) L=NUMYE |
651 |
FIL1 = FILMOD(L) |
DTE1 = DTEMOD(L) |
652 |
DTE2 = DTEMOD(L+1) |
FIL1 = FILMOD(L) |
653 |
FIL2 = FILMOD(L+1) |
DTE2 = DTEMOD(L+1) |
654 |
C-- GET IGRF COEFFICIENTS FOR THE BOUNDARY YEARS |
FIL2 = FILMOD(L+1) |
655 |
CALL GETSHC (IU, FIL1, NMAX1, ERAD, GH1, IER) |
c WRITE(*,*) FIL1 |
656 |
IF (IER .NE. 0) STOP |
c WRITE(*,*) FIL2 |
657 |
CALL GETSHC (IU, FIL2, NMAX2, ERAD, GH2, IER) |
c print *, "que" |
658 |
IF (IER .NE. 0) STOP |
C-- GET IGRF COEFFICIENTS FOR THE BOUNDARY YEARS |
659 |
C-- DETERMINE IGRF COEFFICIENTS FOR YEAR |
CALL GETSHC (IU, FIL1, NMAX1, ERAD, GH1, IER) |
660 |
IF (L .LE. NUMYE-1) THEN |
IF (IER .NE. 0) STOP |
661 |
CALL INTERSHC (YEAR, DTE1, NMAX1, GH1, DTE2, |
c print *, "quessss" |
662 |
1 NMAX2, GH2, NMAX, GHA) |
CALL GETSHC (IU, FIL2, NMAX2, ERAD, GH2, IER) |
663 |
ELSE |
IF (IER .NE. 0) STOP |
664 |
CALL EXTRASHC (YEAR, DTE1, NMAX1, GH1, NMAX2, |
c print *, "quj" |
665 |
1 GH2, NMAX, GHA) |
C-- DETERMINE IGRF COEFFICIENTS FOR YEAR |
666 |
ENDIF |
IF (L .LE. NUMYE-1) THEN |
667 |
C-- DETERMINE MAGNETIC DIPOL MOMENT AND COEFFIECIENTS G |
CALL INTERSHC (YEAR, DTE1, NMAX1, GH1, DTE2, |
668 |
F0=0.D0 |
1 NMAX2, GH2, NMAX, GHA) |
669 |
DO 1234 J=1,3 |
ELSE |
670 |
F = GHA(J) * 1.D-5 |
CALL EXTRASHC (YEAR, DTE1, NMAX1, GH1, NMAX2, |
671 |
F0 = F0 + F * F |
1 GH2, NMAX, GHA) |
672 |
1234 CONTINUE |
ENDIF |
673 |
DIMO = DSQRT(F0) |
c print *, "quw" |
674 |
|
C-- DETERMINE MAGNETIC DIPOL MOMENT AND COEFFIECIENTS G |
675 |
GH1(1) = 0.0 |
F0=0.D0 |
676 |
I=2 |
DO 1234 J=1,3 |
677 |
F0=1.D-5 |
F = GHA(J) * 1.D-5 |
678 |
IF(IS.EQ.0) F0=-F0 |
F0 = F0 + F * F |
679 |
SQRT2=SQRT(2.) |
1234 CONTINUE |
680 |
|
DIMO = REAL(DSQRT(F0)) |
681 |
|
|
682 |
|
GH1(1) = 0.0 |
683 |
|
I=2 |
684 |
|
F0=1.D-5 |
685 |
|
IF(IS.EQ.0) F0=-F0 |
686 |
|
SQRT2=SQRT(2.) |
687 |
|
|
688 |
|
c print *, "quq" |
689 |
|
|
690 |
DO 9 N=1,NMAX |
DO 9 N=1,NMAX |
691 |
X = N |
X = N |
692 |
F0 = F0 * X * X / (4.D0 * X - 2.D0) |
F0 = F0 * X * X / (4.D0 * X - 2.D0) |
693 |
IF(IS.EQ.0) F0 = F0 * (2.D0 * X - 1.D0) / X |
IF(IS.EQ.0) F0 = F0 * (2.D0 * X - 1.D0) / X |
694 |
F = F0 * 0.5D0 |
F = F0 * 0.5D0 |
695 |
IF(IS.EQ.0) F = F * SQRT2 |
IF(IS.EQ.0) F = F * SQRT2 |
696 |
GH1(I) = GHA(I-1) * F0 |
GH1(I) = GHA(I-1) * REAL(F0) |
697 |
I = I+1 |
I = I+1 |
698 |
DO 9 M=1,N |
DO 9 M=1,N |
699 |
F = F * (X + M) / (X - M + 1.D0) |
F = F * (X + M) / (X - M + 1.D0) |
700 |
IF(IS.EQ.0) F = F * DSQRT((X - M + 1.D0) / (X + M)) |
IF(IS.EQ.0) F = F * DSQRT((X - M + 1.D0) / (X + M)) |
701 |
GH1(I) = GHA(I-1) * F |
GH1(I) = GHA(I-1) * REAL(F) |
702 |
GH1(I+1) = GHA(I) * F |
GH1(I+1) = GHA(I) * REAL(F) |
703 |
I=I+2 |
I=I+2 |
704 |
9 CONTINUE |
9 CONTINUE |
705 |
RETURN |
RETURN |
706 |
END |
END |
707 |
C |
C |
708 |
C |
C |
709 |
SUBROUTINE GETSHC (IU, FSPEC, NMAX, ERAD, GH, IER) |
SUBROUTINE GETSHC (IU, FSPEC, NMAX, ERAD, GH, IER) |
710 |
|
|
711 |
C =============================================================== |
C =============================================================== |
712 |
C |
C |
713 |
C Version 1.01 |
C Version 1.01 |
714 |
C |
C |
715 |
C Reads spherical harmonic coefficients from the specified |
C Reads spherical harmonic coefficients from the specified |
716 |
C file into an array. |
C file into an array. |
717 |
C |
C |
718 |
C Input: |
C Input: |
719 |
C IU - Logical unit number |
C IU - Logical unit number |
720 |
C FSPEC - File specification |
C FSPEC - File specification |
721 |
C |
C |
722 |
C Output: |
C Output: |
723 |
C NMAX - Maximum degree and order of model |
C NMAX - Maximum degree and order of model |
724 |
C ERAD - Earth's radius associated with the spherical |
C ERAD - Earth's radius associated with the spherical |
725 |
C harmonic coefficients, in the same units as |
C harmonic coefficients, in the same units as |
726 |
C elevation |
C elevation |
727 |
C GH - Schmidt quasi-normal internal spherical |
C GH - Schmidt quasi-normal internal spherical |
728 |
C harmonic coefficients |
C harmonic coefficients |
729 |
C IER - Error number: = 0, no error |
C IER - Error number: = 0, no error |
730 |
C = -2, records out of order |
C = -2, records out of order |
731 |
C = FORTRAN run-time error number |
C = FORTRAN run-time error number |
732 |
C |
C |
733 |
C A. Zunde |
C A. Zunde |
734 |
C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225 |
C USGS, MS 964, Box 25046 Federal Center, Denver, CO 80225 |
735 |
C |
C |
736 |
C =============================================================== |
C =============================================================== |
737 |
|
|
738 |
CHARACTER FSPEC*(*), FOUT*258 |
CHARACTER FSPEC*(*), FOUT*258 |
739 |
DIMENSION GH(*) |
DIMENSION GH(*) |
740 |
C --------------------------------------------------------------- |
C --------------------------------------------------------------- |
741 |
C Open coefficient file. Read past first header record. |
C Open coefficient file. Read past first header record. |
742 |
C Read degree and order of model and Earth's radius. |
C Read degree and order of model and Earth's radius. |
743 |
C --------------------------------------------------------------- |
C --------------------------------------------------------------- |
744 |
WRITE(FOUT,667) FSPEC |
WRITE(FOUT,667) FSPEC |
745 |
c 667 FORMAT('/usr/local/etc/httpd/cgi-bin/natasha/IRI/',A12) |
c 667 FORMAT('/usr/local/etc/httpd/cgi-bin/natasha/IRI/',A12) |
746 |
667 FORMAT(A258) |
667 FORMAT(A258) |
747 |
|
c print *," gui" |
748 |
OPEN (IU, FILE=FOUT, STATUS='OLD', IOSTAT=IER, ERR=999) |
OPEN (IU, FILE=FOUT, STATUS='OLD', IOSTAT=IER, ERR=999) |
749 |
|
c print *," gua" |
750 |
READ (IU, *, IOSTAT=IER, ERR=999) |
READ (IU, *, IOSTAT=IER, ERR=999) |
751 |
|
c print *," gue" |
752 |
READ (IU, *, IOSTAT=IER, ERR=999) NMAX, ERAD |
READ (IU, *, IOSTAT=IER, ERR=999) NMAX, ERAD |
753 |
|
c print *," guo" |
754 |
C --------------------------------------------------------------- |
C --------------------------------------------------------------- |
755 |
C Read the coefficient file, arranged as follows: |
C Read the coefficient file, arranged as follows: |
756 |
C |
C |
772 |
C --------------------------------------------------------------- |
C --------------------------------------------------------------- |
773 |
|
|
774 |
I = 0 |
I = 0 |
775 |
DO 2211 NN = 1, NMAX |
DO 2211 NN = 1, NMAX |
776 |
DO 2233 MM = 0, NN |
DO 2233 MM = 0, NN |
777 |
READ (IU, *, IOSTAT=IER, ERR=999) N, M, G, H |
READ (IU, *, IOSTAT=IER, ERR=999) N, M, G, H |
778 |
IF (NN .NE. N .OR. MM .NE. M) THEN |
IF (NN .NE. N .OR. MM .NE. M) THEN |
779 |
IER = -2 |
IER = -2 |
787 |
ENDIF |
ENDIF |
788 |
2233 CONTINUE |
2233 CONTINUE |
789 |
2211 CONTINUE |
2211 CONTINUE |
790 |
|
c print *," guj" |
791 |
|
|
792 |
999 CLOSE (IU) |
999 CLOSE (IU) |
793 |
|
c print *," guw IER",IER |
794 |
|
if ( IER .eq. -1 ) IER = 0 ! gfortran 4.1.2 bug workaround... hoping not to create problems with other versions |
795 |
|
|
796 |
RETURN |
RETURN |
797 |
END |
END |
846 |
ELSE IF (NMAX1 .GT. NMAX2) THEN |
ELSE IF (NMAX1 .GT. NMAX2) THEN |
847 |
K = NMAX2 * (NMAX2 + 2) |
K = NMAX2 * (NMAX2 + 2) |
848 |
L = NMAX1 * (NMAX1 + 2) |
L = NMAX1 * (NMAX1 + 2) |
849 |
DO 1122 I = K + 1, L |
DO 1122 I = K + 1, L |
850 |
1122 GH(I) = GH1(I) + FACTOR * (-GH1(I)) |
1122 GH(I) = GH1(I) + FACTOR * (-GH1(I)) |
851 |
NMAX = NMAX1 |
NMAX = NMAX1 |
852 |
ELSE |
ELSE |
853 |
K = NMAX1 * (NMAX1 + 2) |
K = NMAX1 * (NMAX1 + 2) |
854 |
L = NMAX2 * (NMAX2 + 2) |
L = NMAX2 * (NMAX2 + 2) |
855 |
DO 1133 I = K + 1, L |
DO 1133 I = K + 1, L |
856 |
1133 GH(I) = FACTOR * GH2(I) |
1133 GH(I) = FACTOR * GH2(I) |
857 |
NMAX = NMAX2 |
NMAX = NMAX2 |
858 |
ENDIF |
ENDIF |
859 |
|
|
860 |
DO 1144 I = 1, K |
DO 1144 I = 1, K |
861 |
1144 GH(I) = GH1(I) + FACTOR * (GH2(I) - GH1(I)) |
1144 GH(I) = GH1(I) + FACTOR * (GH2(I) - GH1(I)) |
862 |
|
|
863 |
RETURN |
RETURN |
913 |
ELSE IF (NMAX1 .GT. NMAX2) THEN |
ELSE IF (NMAX1 .GT. NMAX2) THEN |
914 |
K = NMAX2 * (NMAX2 + 2) |
K = NMAX2 * (NMAX2 + 2) |
915 |
L = NMAX1 * (NMAX1 + 2) |
L = NMAX1 * (NMAX1 + 2) |
916 |
DO 1155 I = K + 1, L |
DO 1155 I = K + 1, L |
917 |
1155 GH(I) = GH1(I) |
1155 GH(I) = GH1(I) |
918 |
NMAX = NMAX1 |
NMAX = NMAX1 |
919 |
ELSE |
ELSE |
920 |
K = NMAX1 * (NMAX1 + 2) |
K = NMAX1 * (NMAX1 + 2) |
921 |
L = NMAX2 * (NMAX2 + 2) |
L = NMAX2 * (NMAX2 + 2) |
922 |
DO 1166 I = K + 1, L |
DO 1166 I = K + 1, L |
923 |
1166 GH(I) = FACTOR * GH2(I) |
1166 GH(I) = FACTOR * GH2(I) |
924 |
NMAX = NMAX2 |
NMAX = NMAX2 |
925 |
ENDIF |
ENDIF |
926 |
|
|
927 |
DO 1177 I = 1, K |
DO 1177 I = 1, K |
928 |
1177 GH(I) = GH1(I) + FACTOR * GH2(I) |
1177 GH(I) = GH1(I) + FACTOR * GH2(I) |
929 |
|
|
930 |
RETURN |
RETURN |
947 |
C ASTRONOMICAL UNION . |
C ASTRONOMICAL UNION . |
948 |
C----------------------------------------------------------------- |
C----------------------------------------------------------------- |
949 |
INTEGER TL1,TL2,TL3 |
INTEGER TL1,TL2,TL3 |
950 |
CHARACTER *258 TP1,TP2,TP3 |
CHARACTER (len=258) TP1,TP2,TP3 |
951 |
INTEGER L1,L2,L3 |
INTEGER L1,L2,L3 |
952 |
CHARACTER *258 P1,P2,P3 |
CHARACTER *258 P1,P2,P3 |
953 |
COMMON/PPATH/ L1,L2,L3,P1, P2, P3 |
COMMON/PPATH/ L1,L2,L3,P1, P2, P3 |
954 |
SAVE/PPATH/ |
SAVE/PPATH/ |
955 |
|
|
956 |
COMMON/GENER/ UMR,ERA,AQUAD,BQUAD |
COMMON/GENER/UMR,ERA,AQUAD,BQUAD |
957 |
SAVE/GENER/ |
SAVE/GENER/ |
958 |
|
|
|
P1 = TP1 |
|
|
P2 = TP2 |
|
|
P3 = TP3 |
|
959 |
L1 = TL1 |
L1 = TL1 |
960 |
L2 = TL2 |
L2 = TL2 |
961 |
L3 = TL3 |
L3 = TL3 |
962 |
|
P1 = TP1(1:L1) |
963 |
|
P2 = TP2(1:L2) |
964 |
|
P3 = TP3(1:L3) |
965 |
|
|
966 |
ERA=6371.2 |
ERA=6371.2 |
967 |
EREQU=6378.16 |
EREQU=6378.16 |