/[PAMELA software]/DarthVader/OrbitalInfo/src/OrientationInfo.cpp
ViewVC logotype

Contents of /DarthVader/OrbitalInfo/src/OrientationInfo.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.2 - (show annotations) (download)
Tue Nov 15 09:31:28 2011 UTC (13 years ago) by pam-mep
Branch: MAIN
Changes since 1.1: +84 -100 lines
new functions

1 #include <iostream>
2 #include <stdio.h>
3 #include <TObject.h>
4 #include <TString.h>
5 #include <TMatrixD.h>
6
7 #include <OrientationInfo.h>
8
9 ClassImp(OrientationInfo)
10
11
12 using namespace std;
13
14 OrientationInfo::OrientationInfo() : TObject(){
15 a = 360/(2*TMath::Pi());
16 Re = 6000000;
17 }
18
19 OrientationInfo::~OrientationInfo(){
20 }
21
22 TMatrixD OrientationInfo::QuatoECI(Float_t q0, Float_t q1, Float_t q2, Float_t q3){
23 TMatrixD Pij(3,3);
24 Pij(0,0) = pow(q0,2)+pow(q1,2)-pow(q2,2)-pow(q3,2);
25 Pij(0,1) = /*2*(q1*q2+q0*q3);/*/ 2*(q1*q2-q0*q3);
26 Pij(0,2) = /*2*(q1*q3-q0*q2);/*/ 2*(q1*q3+q0*q2);
27 Pij(1,0) = /*2*(q1*q2-q0*q3);/*/ 2*(q1*q2+q0*q3);
28 Pij(1,1) = pow(q0,2)-pow(q1,2)+pow(q2,2)-pow(q3,2);
29 Pij(1,2) = /*2*(q2*q3+q0*q1);/*/ 2*(q2*q3-q0*q1);
30 Pij(2,0) = /*2*(q1*q3+q0*q2);/*/ 2*(q1*q3-q0*q2);
31 Pij(2,1) = /*2*(q2*q3-q0*q1);/*/ 2*(q2*q3+q0*q1);
32 Pij(2,2) = pow(q0,2)-pow(q1,2)-pow(q2,2)+pow(q3,2);
33 return Pij;
34 }
35
36 TMatrixD OrientationInfo::ECItoGreenwich(TMatrixD Aij, UInt_t t){
37 TMatrixD Gij(3,3);
38 Double_t omg = (7.292115e-5)*a; // Earth rotation velosity (Around polar axis);
39 Double_t d = (t-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t;
40 d = d/86400;
41 Double_t T = d/36525; //Number of Julian centuries;
42
43 Double_t Se = 6*3600+41*60+236.555367908*d+0.093104*pow(T,2)-(6.2e-6)*pow(T,3);
44
45 Int_t tr = (t-10957*86400)%86400;
46
47 Double_t Somg = (Se+49.077+omg*86400*tr/360)*360/86400;
48
49 //Somg = 25; //for test transition
50
51 Gij(0,0) = cos(Somg/a);
52 Gij(0,1) = -sin(Somg/a);
53 Gij(0,2) = 0;
54 Gij(1,0) = sin(Somg/a);
55 Gij(1,1) = cos(Somg/a);
56 Gij(1,2) = 0;
57 Gij(2,0) = 0;
58 Gij(2,1) = 0;
59 Gij(2,2) = 1;
60 Gij.Invert();
61 return Gij*Aij;
62 }
63
64 TMatrixD OrientationInfo::GreenwichtoGEO(Double_t lat, Double_t lon, TMatrixD Aij){
65
66 TMatrixD Gij(3,3);
67 TMatrixD Fij(3,3);
68
69 lon=(-lon)/a; lat=(-lat)/a; // here has the same result as Gij.Invert() in ECItoGreenwich function
70
71 Gij(0,0) = cos(lon); // rotation around z-axis:
72 Gij(0,1) = -sin(lon);
73 Gij(0,2) = 0; // | cos(lon) -sin(lon) 0|
74 Gij(1,0) = sin(lon); // | sin(lon) cos(lon) 0|
75 Gij(1,1) = cos(lon); // | 0 0 1|
76 Gij(1,2) = 0;
77 Gij(2,0) = 0;
78 Gij(2,1) = 0;
79 Gij(2,2) = 1;
80
81 Fij(0,0) = cos(lat); // rotation around y-axis at angle -lat, cause rotation around y from x to z axis is negative
82 Fij(0,1) = 0; //
83 Fij(0,2) = -sin(lat); // |cos(-lat) 0 sin(-lat)| |cos(lat) 0 -sin(lat)|
84 Fij(1,0) = 0; // | 0 1 0 | ==> | 0 1 0 |
85 Fij(1,1) = 1; // |-sin(-lat) 0 cos(-lat)| |sin(lat) 0 cos(lat) |
86 Fij(1,2) = 0;
87 Fij(2,0) = sin(lat);
88 Fij(2,1) = 0;
89 Fij(2,2) = cos(lat);
90
91 return Fij*(Gij*Aij);
92 }
93
94 TMatrixD OrientationInfo::GEOtoGeomag(TMatrixD Aij,Double_t Bnorth, Double_t Beast, Double_t Bup){ //Geomagnetic geodetic reference frame
95 Double_t alpha = 0;
96 if(Beast==0. && Bnorth>0) alpha = 0; else
97 if(Beast==0. && Bnorth<0) alpha = 180.; else{
98 if(Beast > 0) alpha = TMath::ATan(Bnorth/Beast)*TMath::RadToDeg() - 90.;
99 if(Beast < 0) alpha = TMath::ATan(Bnorth/Beast)*TMath::RadToDeg() + 90.;
100 }
101 alpha = alpha*TMath::DegToRad();
102 Double_t beta = TMath::ATan(Bup/sqrt(pow(Bnorth,2)+pow(Beast,2)));
103 //if(Bup<0.0) beta = TMath::ATan(TMath::Abs(Bup/sqrt(pow(Bnorth,2)+pow(Beast,2))));
104 //if(Bup>0.0) beta = TMath::ATan(TMath::Abs(sqrt(pow(Bnorth,2)+pow(Beast,2))/Bup));
105 //cout<<"GEOtomag:alpha = "<<alpha*TMath::RadToDeg()<<"\tbeta = "<<beta*TMath::RadToDeg()<<endl;
106 TMatrixD Gij(3,3);
107 TMatrixD Fij(3,3);
108 Gij(0,0) = 1; //rotation around x-axis at angle alpha
109 Gij(0,1) = 0;
110 Gij(0,2) = 0; // |1 0 0 |
111 Gij(1,0) = 0; // |0 cos(alpha) -sin(alpha) |
112 Gij(1,1) = cos(alpha); // |0 sin(alpha) cos(alpha) |
113 Gij(1,2) = -sin(alpha);
114 Gij(2,0) = 0;
115 Gij(2,1) = sin(alpha);
116 Gij(2,2) = cos(alpha);
117 Gij.Invert();
118 Fij(0,0) = cos(beta); //rotation around y-axis at angle beta
119 Fij(0,1) = 0;
120 Fij(0,2) = sin(beta); // |cos(beta) 0 sin(beta)|
121 Fij(1,0) = 0; // | 0 1 0 |
122 Fij(1,1) = 1; // |-sin(beta) 0 cos(beta)|
123 Fij(1,2) = 0;
124 Fij(2,0) = -sin(beta);
125 Fij(2,1) = 0;
126 Fij(2,2) = cos(beta);
127 Fij.Invert();
128 //Int_t tri;
129 //cin >> tri;
130 return Fij*(Gij*Aij);
131 }
132
133 TMatrixD OrientationInfo::PamelatoGEO(TMatrixD Aij, Double_t B1, Double_t B2, Double_t B3){
134 //TMatrixD Gij(3,3);
135 TMatrixD Hij(3,1);
136 TMatrixD Bij(3,1);
137 Bij(0,0) = B1;
138 Bij(1,0) = B2;
139 Bij(2,0) = B3;
140 Hij=Aij*Bij;
141 return Hij;
142 }
143
144 TMatrixD OrientationInfo::ColPermutation(TMatrixD Aij){
145 TMatrixD Gij(3,3);
146 Gij(0,0) = 1; Gij(0,1) = 0; Gij(0,2) = 0;
147 Gij(1,0) = 0; Gij(1,1) = 0; Gij(1,2) = 1;
148 Gij(2,0) = 0; Gij(2,1) = -1; Gij(2,2) = 0;
149 return Aij*Gij;
150 }
151
152 Float_t OrientationInfo::Larmor(Float_t Ek,Float_t Bm,Int_t iZ,Float_t xA){ //Ek in MeV, Bm in nT, Pitch-angle, rad
153 Float_t mp = 938.272029; Float_t amu = 931.494043e0;
154 Float_t cc = 299792458.;
155 Float_t ee = 1.60217653e-19;
156 Float_t kg = 1.7826619e-30;
157 Float_t gam = (Ek+mp)/mp;
158 Float_t mm = mp*kg;
159 Float_t omega = iZ*ee*Bm*1e-9/(gam*mm);
160 Float_t larmor = 1e-3*sqrt(1e0-1e0/pow(gam,2))*cc/omega;
161 larmor = 1e-3*Ek*cc/omega; //Ek here is p or for onecharged particle R;
162 return larmor;
163 }
164
165 TMatrixD OrientationInfo::GetDirectiontoGirocenter(Float_t R, Float_t Px, Float_t Py){
166 TMatrixD GirDir(3,1);
167 if(R>0){
168 GirDir(0,0) = Py;
169 GirDir(1,0) = -Px;
170 }else{
171 GirDir(0,0) = -Py;
172 GirDir(1,0) = Px;
173 }
174 GirDir(2,0) = 0.;
175 return GirDir;
176 }
177
178 Double_t OrientationInfo::GetPitchAngle(Double_t x1, Double_t y1, Double_t z1, Double_t x2, Double_t y2, Double_t z2){
179 return TMath::ACos((x1*x2 + y1*y2 + z1*z2)/(sqrt(pow(x1,2)+pow(y1,2)+pow(z1,2))*sqrt(pow(x2,2)+pow(y2,2)+pow(z2,2)))) * TMath::RadToDeg();
180 }

  ViewVC Help
Powered by ViewVC 1.1.23