1 |
#include <iostream> |
2 |
#include <stdio.h> |
3 |
#include <TObject.h> |
4 |
#include <TString.h> |
5 |
#include <TMatrixD.h> |
6 |
#include <TVector3.h> |
7 |
|
8 |
#include <OrientationInfo.h> |
9 |
|
10 |
ClassImp(OrientationInfo) |
11 |
|
12 |
|
13 |
using namespace std; |
14 |
|
15 |
OrientationInfo::OrientationInfo() : TObject(){ |
16 |
a = 360/(2*TMath::Pi()); |
17 |
Re = 6000000; |
18 |
} |
19 |
|
20 |
OrientationInfo::~OrientationInfo(){ |
21 |
} |
22 |
|
23 |
TMatrixD OrientationInfo::QuatoECI(Float_t q0, Float_t q1, Float_t q2, Float_t q3){ |
24 |
TMatrixD Pij(3,3); |
25 |
Pij(0,0) = pow(q0,2)+pow(q1,2)-pow(q2,2)-pow(q3,2); |
26 |
Pij(0,1) = /*2*(q1*q2+q0*q3);/*/ 2*(q1*q2-q0*q3); |
27 |
Pij(0,2) = /*2*(q1*q3-q0*q2);/*/ 2*(q1*q3+q0*q2); |
28 |
Pij(1,0) = /*2*(q1*q2-q0*q3);/*/ 2*(q1*q2+q0*q3); |
29 |
Pij(1,1) = pow(q0,2)-pow(q1,2)+pow(q2,2)-pow(q3,2); |
30 |
Pij(1,2) = /*2*(q2*q3+q0*q1);/*/ 2*(q2*q3-q0*q1); |
31 |
Pij(2,0) = /*2*(q1*q3+q0*q2);/*/ 2*(q1*q3-q0*q2); |
32 |
Pij(2,1) = /*2*(q2*q3-q0*q1);/*/ 2*(q2*q3+q0*q1); |
33 |
Pij(2,2) = pow(q0,2)-pow(q1,2)-pow(q2,2)+pow(q3,2); |
34 |
return Pij; |
35 |
} |
36 |
|
37 |
TMatrixD OrientationInfo::ECItoGreenwich(TMatrixD Aij, UInt_t t){ |
38 |
TMatrixD Gij(3,3); |
39 |
UInt_t t1=t-t%86400; |
40 |
UInt_t t2=t1+86400; |
41 |
Double_t omg = (7.292115e-5)*a; // Earth rotation velosity (Around polar axis); |
42 |
Double_t d = (t1-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t; |
43 |
d = d/86400; |
44 |
Double_t T = d/36525; //Number of Julian centuries; |
45 |
Double_t Se = 6*3600+41*60+236.555367908*d+0.093104*T*T-(6.2e-6)*T*T*T; //18 <-> 6 |
46 |
Double_t tr = (t1-10957*86400)%86400; |
47 |
Double_t Somg1 = (Se+49.077+omg*86400*tr/360.)*360/86400.; |
48 |
|
49 |
d = (t2-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t; |
50 |
d = d/86400; |
51 |
T = d/36525; //Number of Julian centuries; |
52 |
Se = 6*3600+41*60+236.555367908*d+0.093104*T*T-(6.2e-6)*T*T*T; //18 <-> 6 |
53 |
tr = (t2-10957*86400)%86400; |
54 |
Double_t Somg2 = (Se+49.077+omg*86400*tr/360.)*360/86400.; |
55 |
Somg2+=360.0; |
56 |
|
57 |
Double_t kk=(Somg2-Somg1)/(t2-t1); |
58 |
Double_t bb= Somg1-kk*t1; |
59 |
Double_t Somg=kk*t+bb; |
60 |
|
61 |
Gij(0,0) = cos(Somg/a); |
62 |
Gij(0,1) = -sin(Somg/a); |
63 |
Gij(0,2) = 0; |
64 |
Gij(1,0) = sin(Somg/a); |
65 |
Gij(1,1) = cos(Somg/a); |
66 |
Gij(1,2) = 0; |
67 |
Gij(2,0) = 0; |
68 |
Gij(2,1) = 0; |
69 |
Gij(2,2) = 1; |
70 |
Gij.Invert(); |
71 |
return Gij*Aij; |
72 |
} |
73 |
|
74 |
TMatrixD OrientationInfo::GreenwichtoGEO(Double_t lat, Double_t lon, TMatrixD Aij){ |
75 |
|
76 |
TMatrixD Gij(3,3); |
77 |
TMatrixD Fij(3,3); |
78 |
|
79 |
lon=(-lon)/a; lat=(-lat)/a; // here has the same result as Gij.Invert() in ECItoGreenwich function |
80 |
|
81 |
Gij(0,0) = cos(lon); // rotation around z-axis: |
82 |
Gij(0,1) = -sin(lon); |
83 |
Gij(0,2) = 0; // | cos(lon) -sin(lon) 0| |
84 |
Gij(1,0) = sin(lon); // | sin(lon) cos(lon) 0| |
85 |
Gij(1,1) = cos(lon); // | 0 0 1| |
86 |
Gij(1,2) = 0; |
87 |
Gij(2,0) = 0; |
88 |
Gij(2,1) = 0; |
89 |
Gij(2,2) = 1; |
90 |
|
91 |
Fij(0,0) = cos(lat); // rotation around y-axis at angle -lat, cause rotation around y from x to z axis is negative |
92 |
Fij(0,1) = 0; // |
93 |
Fij(0,2) = -sin(lat); // |cos(-lat) 0 sin(-lat)| |cos(lat) 0 -sin(lat)| |
94 |
Fij(1,0) = 0; // | 0 1 0 | ==> | 0 1 0 | |
95 |
Fij(1,1) = 1; // |-sin(-lat) 0 cos(-lat)| |sin(lat) 0 cos(lat) | |
96 |
Fij(1,2) = 0; |
97 |
Fij(2,0) = sin(lat); |
98 |
Fij(2,1) = 0; |
99 |
Fij(2,2) = cos(lat); |
100 |
|
101 |
return Fij*(Gij*Aij); |
102 |
} |
103 |
|
104 |
TMatrixD OrientationInfo::EulertoEci(Double_t x0, Double_t y0, Double_t z0, Double_t Vx0, Double_t Vy0, Double_t Vz0, Double_t Bank, Double_t Yaw, Double_t SPitch){ |
105 |
//cerr.precision(12); |
106 |
//cerr<<"Position:\t"<<x0<<"\t"<<y0<<"\t"<<z0<<"\tVelocity:\t"<<Vx0<<"\t"<<Vy0<<"\t"<<Vz0<<endl; |
107 |
//Sangur to Resurs transition |
108 |
TMatrixD Zij(3,3); |
109 |
Zij(0,0) = 0.0; Zij(0,1) = 0.0; Zij(0,2) = -1.0; |
110 |
Zij(1,0) = -1.0; Zij(1,1) = 0.0; Zij(1,2) = 0.0; |
111 |
Zij(2,0) = 0.0; Zij(2,1) = 1.0; Zij(2,2) = 0.0; |
112 |
|
113 |
//Spacecraft velosity referenca frame in Eci |
114 |
TMatrixD Aij(3,3); |
115 |
Double_t C1 = y0*Vz0 - z0*Vy0; |
116 |
Double_t C2 = z0*Vx0 - x0*Vz0; |
117 |
Double_t C3 = x0*Vy0 - y0*Vx0; |
118 |
Double_t C = sqrt(C1*C1 + C2*C2 + C3*C3); |
119 |
Double_t V0 = sqrt(Vx0*Vx0+Vy0*Vy0 + Vz0*Vz0); |
120 |
Aij(0,0) = Vx0/V0; Aij(0,1) = C1/C; Aij(0,2) = (Vy0*C3-Vz0*C2)/(V0*C); |
121 |
Aij(1,0) = Vy0/V0; Aij(1,1) = C2/C; Aij(1,2) = (Vz0*C1-Vx0*C3)/(V0*C); |
122 |
Aij(2,0) = Vz0/V0; Aij(2,1) = C3/C; Aij(2,2) = (Vx0*C2-Vy0*C1)/(V0*C); |
123 |
|
124 |
//Elements of matrix elements described orientation of spacecraft on velocity reference frame |
125 |
Double_t u10 = tan(Bank*TMath::DegToRad())/sqrt(tan(Bank*TMath::DegToRad())*tan(Bank*TMath::DegToRad())+1); |
126 |
Double_t u11 = -sqrt((1-u10*u10))/(1+tan(Yaw*TMath::DegToRad())*tan(Yaw*TMath::DegToRad())); |
127 |
Double_t u12 = u11*tan(Yaw*TMath::DegToRad()); |
128 |
Double_t u20 = -sqrt((1-u10*u10)/(1+tan(SPitch*TMath::DegToRad())*tan(SPitch*TMath::DegToRad()))); |
129 |
Double_t u00 = -u20*tan(SPitch*TMath::DegToRad()); |
130 |
|
131 |
Double_t ab = 1+(u20*u20/(u00*u00)); |
132 |
Double_t by = 2*u10*u11*u20/(u00*u00); |
133 |
Double_t cy = (1+u10*u10/(u00*u00))*u11*u11-1; |
134 |
Double_t bz = 2*u10*u12*u20/(u00*u00); |
135 |
Double_t cz = (1+u10*u10/(u00*u00))*u12*u12-1; |
136 |
|
137 |
Int_t uj = TMath::Sign(1.,Yaw)*TMath::Sign(1.,SPitch); |
138 |
//long double by_l = by; |
139 |
Double_t Ds = by*by-4*ab*cy; |
140 |
if(Ds<0) Ds = 0.; |
141 |
Double_t u21 = (-by+uj*sqrt(Ds))/(2*ab); |
142 |
Double_t u21s = -TMath::Sign(1.,Bank)*TMath::Abs(u21); |
143 |
Double_t u01 = TMath::Sign(1.,Yaw)*TMath::Abs((u10*u11+u20*u21)/u00); |
144 |
|
145 |
Int_t fj=1; |
146 |
if(TMath::Sign(1.,SPitch)>0 && TMath::Sign(1.,Yaw)>0) fj=-1; |
147 |
|
148 |
Double_t u22 = (-bz+fj*sqrt(bz*bz-4*ab*cz))/(2*ab); |
149 |
Double_t u22s = -TMath::Sign(1.,SPitch)*TMath::Abs(u22); |
150 |
Double_t u02 = -TMath::Abs((u10*u12+u20*u22)/u00); |
151 |
|
152 |
TMatrixD Dij(3,3); |
153 |
Dij(0,0) = u00; Dij(0,1) = u01; Dij(0,2) = u02; |
154 |
Dij(1,0) = u10; Dij(1,1) = u11; Dij(1,2) = u12; |
155 |
Dij(2,0) = u20; Dij(2,1) = u21s; Dij(2,2) = u22s; |
156 |
|
157 |
TMatrixD Shij(3,3); |
158 |
TMatrixD Usij(3,3); |
159 |
Usij = (Aij*Dij); |
160 |
Usij.Invert(); |
161 |
Shij = Zij*Usij; |
162 |
Shij.Invert(); |
163 |
|
164 |
return Shij; |
165 |
} |
166 |
|
167 |
TMatrixD OrientationInfo::ECItoGEO(TMatrixD Aij, UInt_t t, Double_t lat, Double_t lon){ |
168 |
TMatrixD Gij(3,3); |
169 |
UInt_t t1=t-t%86400; |
170 |
UInt_t t2=t1+86400; |
171 |
Double_t omg = (7.292115e-5)*a; // Earth rotation velosity (Around polar axis); |
172 |
Double_t d = (t1-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t; |
173 |
d = d/86400; |
174 |
Double_t T = d/36525; //Number of Julian centuries; |
175 |
Double_t Se = 6*3600+41*60+236.555367908*d+0.093104*T*T-(6.2e-6)*T*T*T; //18 <-> 6 |
176 |
Double_t tr = (t1-10957*86400)%86400; |
177 |
Double_t Somg1 = (Se+49.077+omg*86400*tr/360.)*360/86400.; |
178 |
|
179 |
d = (t2-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t; |
180 |
d = d/86400; |
181 |
T = d/36525; //Number of Julian centuries; |
182 |
Se = 6*3600+41*60+236.555367908*d+0.093104*T*T-(6.2e-6)*T*T*T; //18 <-> 6 |
183 |
tr = (t2-10957*86400)%86400; |
184 |
Double_t Somg2 = (Se+49.077+omg*86400*tr/360.)*360/86400.; |
185 |
Somg2+=360.0; |
186 |
|
187 |
Double_t kk=(Somg2-Somg1)/(t2-t1); |
188 |
Double_t bb= Somg1-kk*t1; |
189 |
Double_t Somg=kk*t+bb; |
190 |
|
191 |
lon=(-lon)/a; lat=(-lat)/a; |
192 |
|
193 |
Gij(0,0)=cos(lat)*cos(lon)*cos(Somg/a)+cos(lat)*sin(lon)*sin(Somg/a); |
194 |
Gij(0,1)=cos(lat)*cos(lon)*sin(Somg/a)-cos(lat)*sin(lon)*cos(Somg/a); |
195 |
Gij(0,2)=-sin(lat); |
196 |
Gij(1,0)=sin(lon)*cos(Somg/a)-cos(lon)*sin(Somg/a); |
197 |
Gij(1,1)=sin(lon)*sin(Somg/a)+cos(lon)*cos(Somg/a); |
198 |
Gij(1,2)=0; |
199 |
Gij(2,0)=sin(lat)*cos(lon)*cos(Somg/a)+sin(lat)*sin(lon)*sin(Somg/a); |
200 |
Gij(2,1)=sin(lat)*cos(lon)*sin(Somg/a)-sin(lat)*sin(lon)*cos(Somg/a); |
201 |
Gij(2,2)=cos(lat); |
202 |
|
203 |
TMatrixD Tij=Gij*Aij; |
204 |
|
205 |
return Tij; |
206 |
} |
207 |
|
208 |
TMatrixD OrientationInfo::GEOtoECI(TMatrixD Aij, UInt_t t, Double_t lat, Double_t lon){ |
209 |
TMatrixD Gij(3,3); |
210 |
UInt_t t1=t-t%86400; |
211 |
UInt_t t2=t1+86400; |
212 |
Double_t omg = (7.292115e-5)*a; // Earth rotation velosity (Around polar axis); |
213 |
Double_t d = (t1-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t; |
214 |
d = d/86400; |
215 |
Double_t T = d/36525; //Number of Julian centuries; |
216 |
Double_t Se = 6*3600+41*60+236.555367908*d+0.093104*T*T-(6.2e-6)*T*T*T; //18 <-> 6 |
217 |
Double_t tr = (t1-10957*86400)%86400; |
218 |
Double_t Somg1 = (Se+49.077+omg*86400*tr/360.)*360/86400.; |
219 |
|
220 |
d = (t2-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t; |
221 |
d = d/86400; |
222 |
T = d/36525; //Number of Julian centuries; |
223 |
Se = 6*3600+41*60+236.555367908*d+0.093104*T*T-(6.2e-6)*T*T*T; //18 <-> 6 |
224 |
tr = (t2-10957*86400)%86400; |
225 |
Double_t Somg2 = (Se+49.077+omg*86400*tr/360.)*360/86400.; |
226 |
Somg2+=360.0; |
227 |
|
228 |
Double_t kk=(Somg2-Somg1)/(t2-t1); |
229 |
Double_t bb= Somg1-kk*t1; |
230 |
Double_t Somg=kk*t+bb; |
231 |
|
232 |
lon=(-lon)/a; lat=(-lat)/a; |
233 |
|
234 |
Gij(0,0)=cos(lat)*cos(lon)*cos(Somg/a)+cos(lat)*sin(lon)*sin(Somg/a); |
235 |
Gij(1,0)=cos(lat)*cos(lon)*sin(Somg/a)-cos(lat)*sin(lon)*cos(Somg/a); |
236 |
Gij(2,0)=-sin(lat); |
237 |
Gij(0,1)=sin(lon)*cos(Somg/a)-cos(lon)*sin(Somg/a); |
238 |
Gij(1,1)=sin(lon)*sin(Somg/a)+cos(lon)*cos(Somg/a); |
239 |
Gij(2,1)=0; |
240 |
Gij(0,2)=sin(lat)*cos(lon)*cos(Somg/a)+sin(lat)*sin(lon)*sin(Somg/a); |
241 |
Gij(1,2)=sin(lat)*cos(lon)*sin(Somg/a)-sin(lat)*sin(lon)*cos(Somg/a); |
242 |
Gij(2,2)=cos(lat); |
243 |
|
244 |
return Gij*Aij; |
245 |
} |
246 |
|
247 |
|
248 |
TMatrixD OrientationInfo::GEOtoGeomag(TMatrixD Aij,Double_t Bnorth, Double_t Beast, Double_t Bup){ //Geomagnetic geodetic reference frame |
249 |
Double_t alpha = 0; |
250 |
if(Beast==0. && Bnorth>0) alpha = 0; else |
251 |
if(Beast==0. && Bnorth<0) alpha = 180.; else{ |
252 |
if(Beast > 0) alpha = TMath::ATan(Bnorth/Beast)*TMath::RadToDeg() - 90.; |
253 |
if(Beast < 0) alpha = TMath::ATan(Bnorth/Beast)*TMath::RadToDeg() + 90.; |
254 |
} |
255 |
alpha = alpha*TMath::DegToRad(); |
256 |
Double_t beta = TMath::ATan(Bup/sqrt(pow(Bnorth,2)+pow(Beast,2))); |
257 |
//if(Bup<0.0) beta = TMath::ATan(TMath::Abs(Bup/sqrt(pow(Bnorth,2)+pow(Beast,2)))); |
258 |
//if(Bup>0.0) beta = TMath::ATan(TMath::Abs(sqrt(pow(Bnorth,2)+pow(Beast,2))/Bup)); |
259 |
//cout<<"GEOtomag:alpha = "<<alpha*TMath::RadToDeg()<<"\tbeta = "<<beta*TMath::RadToDeg()<<endl; |
260 |
TMatrixD Gij(3,3); |
261 |
TMatrixD Fij(3,3); |
262 |
Gij(0,0) = 1; //rotation around x-axis at angle alpha |
263 |
Gij(0,1) = 0; |
264 |
Gij(0,2) = 0; // |1 0 0 | |
265 |
Gij(1,0) = 0; // |0 cos(alpha) -sin(alpha) | |
266 |
Gij(1,1) = cos(alpha); // |0 sin(alpha) cos(alpha) | |
267 |
Gij(1,2) = -sin(alpha); |
268 |
Gij(2,0) = 0; |
269 |
Gij(2,1) = sin(alpha); |
270 |
Gij(2,2) = cos(alpha); |
271 |
Gij.Invert(); |
272 |
Fij(0,0) = cos(beta); //rotation around y-axis at angle beta |
273 |
Fij(0,1) = 0; |
274 |
Fij(0,2) = sin(beta); // |cos(beta) 0 sin(beta)| |
275 |
Fij(1,0) = 0; // | 0 1 0 | |
276 |
Fij(1,1) = 1; // |-sin(beta) 0 cos(beta)| |
277 |
Fij(1,2) = 0; |
278 |
Fij(2,0) = -sin(beta); |
279 |
Fij(2,1) = 0; |
280 |
Fij(2,2) = cos(beta); |
281 |
Fij.Invert(); |
282 |
//Int_t tri; |
283 |
//cin >> tri; |
284 |
return Fij*(Gij*Aij); |
285 |
} |
286 |
|
287 |
TMatrixD OrientationInfo::PamelatoGEO(TMatrixD Aij, Double_t B1, Double_t B2, Double_t B3){ |
288 |
//TMatrixD Gij(3,3); |
289 |
TMatrixD Hij(3,1); |
290 |
TMatrixD Bij(3,1); |
291 |
Bij(0,0) = B1; |
292 |
Bij(1,0) = B2; |
293 |
Bij(2,0) = B3; |
294 |
Hij=Aij*Bij; |
295 |
return Hij; |
296 |
} |
297 |
|
298 |
TMatrixD OrientationInfo::ColPermutation(TMatrixD Aij){ |
299 |
TMatrixD Gij(3,3); |
300 |
Gij(0,0) = 1; Gij(0,1) = 0; Gij(0,2) = 0; |
301 |
Gij(1,0) = 0; Gij(1,1) = 0; Gij(1,2) = 1; |
302 |
Gij(2,0) = 0; Gij(2,1) = -1; Gij(2,2) = 0; |
303 |
return Aij*Gij; |
304 |
} |
305 |
|
306 |
TVector3 OrientationInfo::GetSunPosition(UInt_t atime){ |
307 |
TVector3 sunout; |
308 |
Float_t JD=atime/86400.+2440587.5; |
309 |
//SAV |
310 |
// cout << "JD = " << JD <<endl; |
311 |
//SAV |
312 |
//test June 1997 JD=2451545.0-877.047; |
313 |
Float_t Tm = (JD - 2451545.0)/36525.; |
314 |
Float_t Mo = (357.52910+35999.05030*Tm-0.0001559*Tm*Tm-0.00000048*Tm*Tm*Tm); |
315 |
//SAV |
316 |
// cout<<"Tm = " << Tm << "Mo = " << Mo <<endl; |
317 |
//SAV |
318 |
Mo=Mo*TMath::DegToRad(); |
319 |
|
320 |
Float_t Co = ((1.914600 - 0.004817*Tm - 0.00014*Tm*Tm)*sin(Mo) + (0.019993 - 0.000101*Tm)* sin(2.*Mo) + 0.000290* sin(3.*Mo)); |
321 |
Co=Co* TMath::DegToRad(); |
322 |
|
323 |
Float_t Lo = (280.46645 + 36000.76983*Tm +0.0003032*Tm*Tm); |
324 |
Lo=Lo*TMath::DegToRad(); |
325 |
|
326 |
Float_t theta = (Lo + Co); // * TMath::DegToRad(); |
327 |
|
328 |
Float_t eps = (23.+26./60.+21.448/3600. - 46.8150/3600.*Tm - 0.00059/3600.*Tm*Tm + 0.001813*Tm*Tm*Tm)*TMath::DegToRad(); |
329 |
|
330 |
//SAV |
331 |
// cout << "Co = " << Co*TMath::RadToDeg() << "\tLo = " << Lo*TMath::RadToDeg() << "\ttheta = " << theta << "\teps = " << eps << endl; |
332 |
//SAV |
333 |
|
334 |
Float_t YY=cos(eps)*sin(theta); |
335 |
Float_t XX=cos(theta); |
336 |
//SAV |
337 |
// cout << "XX = " << XX << "\tYY" << YY << endl; |
338 |
//SAV |
339 |
Float_t RASun=atan(YY/XX); |
340 |
if(XX<0. ) RASun=RASun+TMath::Pi(); |
341 |
if(XX >0. && YY <0.) RASun=RASun+2*TMath::Pi(); |
342 |
Float_t DESun = asin(sin(eps)*sin(theta)); |
343 |
//SAV |
344 |
// cout << "DE = " << DESun << "\t" << RASun << endl; |
345 |
//SAV |
346 |
sunout.SetMagThetaPhi(1.0,TMath::Pi()/2.-DESun,RASun); |
347 |
return sunout; |
348 |
} |
349 |
|
350 |
Float_t OrientationInfo::Larmor(Float_t Ek,Float_t Bm,Int_t iZ,Float_t xA){ //Ek in MeV, Bm in nT, Pitch-angle, rad |
351 |
Float_t mp = 938.272029;// Float_t amu = 931.494043e0; |
352 |
Float_t cc = 299792458.; |
353 |
Float_t ee = 1.60217653e-19; |
354 |
Float_t kg = 1.7826619e-30; |
355 |
Float_t gam = (Ek+mp)/mp; |
356 |
Float_t mm = mp*kg; |
357 |
Float_t omega = iZ*ee*Bm*1e-9/(gam*mm); |
358 |
Float_t larmor = 1e-3*sqrt(1e0-1e0/pow(gam,2))*cc/omega; |
359 |
larmor = 1e-3*Ek*cc/omega; //Ek here is p or for onecharged particle R; larmor in m |
360 |
return larmor; |
361 |
} |
362 |
|
363 |
TMatrixD OrientationInfo::GetDirectiontoGirocenter(Float_t R, Float_t Px, Float_t Py){ |
364 |
TMatrixD GirDir(3,1); |
365 |
if(R>0){ |
366 |
GirDir(0,0) = Py; |
367 |
GirDir(1,0) = -Px; |
368 |
}else{ |
369 |
GirDir(0,0) = -Py; |
370 |
GirDir(1,0) = Px; |
371 |
} |
372 |
GirDir(2,0) = 0.; |
373 |
return GirDir; |
374 |
} |
375 |
|
376 |
Double_t OrientationInfo::GetPitchAngle(Double_t x1, Double_t y1, Double_t z1, Double_t x2, Double_t y2, Double_t z2){ |
377 |
return TMath::ACos((x1*x2 + y1*y2 + z1*z2)/(sqrt(pow(x1,2)+pow(y1,2)+pow(z1,2))*sqrt(pow(x2,2)+pow(y2,2)+pow(z2,2)))) * TMath::RadToDeg(); |
378 |
} |