| 1 |
#include <iostream> |
| 2 |
#include <stdio.h> |
| 3 |
#include <TObject.h> |
| 4 |
#include <TString.h> |
| 5 |
#include <TMatrixD.h> |
| 6 |
|
| 7 |
#include <OrientationInfo.h> |
| 8 |
|
| 9 |
ClassImp(OrientationInfo) |
| 10 |
|
| 11 |
|
| 12 |
using namespace std; |
| 13 |
|
| 14 |
OrientationInfo::OrientationInfo() : TObject(){ |
| 15 |
a = 360/(2*TMath::Pi()); |
| 16 |
Re = 6000000; |
| 17 |
} |
| 18 |
|
| 19 |
OrientationInfo::~OrientationInfo(){ |
| 20 |
} |
| 21 |
|
| 22 |
TMatrixD OrientationInfo::QuatoECI(Float_t q0, Float_t q1, Float_t q2, Float_t q3){ |
| 23 |
TMatrixD Pij(3,3); |
| 24 |
Pij(0,0) = pow(q0,2)+pow(q1,2)-pow(q2,2)-pow(q3,2); |
| 25 |
Pij(0,1) = /*2*(q1*q2+q0*q3);/*/ 2*(q1*q2-q0*q3); |
| 26 |
Pij(0,2) = /*2*(q1*q3-q0*q2);/*/ 2*(q1*q3+q0*q2); |
| 27 |
Pij(1,0) = /*2*(q1*q2-q0*q3);/*/ 2*(q1*q2+q0*q3); |
| 28 |
Pij(1,1) = pow(q0,2)-pow(q1,2)+pow(q2,2)-pow(q3,2); |
| 29 |
Pij(1,2) = /*2*(q2*q3+q0*q1);/*/ 2*(q2*q3-q0*q1); |
| 30 |
Pij(2,0) = /*2*(q1*q3+q0*q2);/*/ 2*(q1*q3-q0*q2); |
| 31 |
Pij(2,1) = /*2*(q2*q3-q0*q1);/*/ 2*(q2*q3+q0*q1); |
| 32 |
Pij(2,2) = pow(q0,2)-pow(q1,2)-pow(q2,2)+pow(q3,2); |
| 33 |
return Pij; |
| 34 |
} |
| 35 |
|
| 36 |
TMatrixD OrientationInfo::ECItoGreenwich(TMatrixD Aij, UInt_t t){ |
| 37 |
TMatrixD Gij(3,3); |
| 38 |
Double_t omg = (7.292115e-5)*a; // Earth rotation velosity (Around polar axis); |
| 39 |
Double_t d = (t-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t; |
| 40 |
d = d/86400; |
| 41 |
Double_t T = d/36525; //Number of Julian centuries; |
| 42 |
|
| 43 |
Double_t Se = 6*3600+41*60+236.555367908*d+0.093104*pow(T,2)-(6.2e-6)*pow(T,3); |
| 44 |
|
| 45 |
Int_t tr = (t-10957*86400)%86400; |
| 46 |
|
| 47 |
Double_t Somg = (Se+49.077+omg*86400*tr/360)*360/86400; |
| 48 |
|
| 49 |
//Somg = 25; //for test transition |
| 50 |
|
| 51 |
Gij(0,0) = cos(Somg/a); |
| 52 |
Gij(0,1) = -sin(Somg/a); |
| 53 |
Gij(0,2) = 0; |
| 54 |
Gij(1,0) = sin(Somg/a); |
| 55 |
Gij(1,1) = cos(Somg/a); |
| 56 |
Gij(1,2) = 0; |
| 57 |
Gij(2,0) = 0; |
| 58 |
Gij(2,1) = 0; |
| 59 |
Gij(2,2) = 1; |
| 60 |
Gij.Invert(); |
| 61 |
return Gij*Aij; |
| 62 |
} |
| 63 |
|
| 64 |
TMatrixD OrientationInfo::GreenwichtoGEO(Double_t lat, Double_t lon, TMatrixD Aij){ |
| 65 |
|
| 66 |
TMatrixD Gij(3,3); |
| 67 |
TMatrixD Fij(3,3); |
| 68 |
|
| 69 |
lon=(-lon)/a; lat=(-lat)/a; // here has the same result as Gij.Invert() in ECItoGreenwich function |
| 70 |
|
| 71 |
Gij(0,0) = cos(lon); // rotation around z-axis: |
| 72 |
Gij(0,1) = -sin(lon); |
| 73 |
Gij(0,2) = 0; // | cos(lon) -sin(lon) 0| |
| 74 |
Gij(1,0) = sin(lon); // | sin(lon) cos(lon) 0| |
| 75 |
Gij(1,1) = cos(lon); // | 0 0 1| |
| 76 |
Gij(1,2) = 0; |
| 77 |
Gij(2,0) = 0; |
| 78 |
Gij(2,1) = 0; |
| 79 |
Gij(2,2) = 1; |
| 80 |
|
| 81 |
Fij(0,0) = cos(lat); // rotation around y-axis at angle -lat, cause rotation around y from x to z axis is negative |
| 82 |
Fij(0,1) = 0; // |
| 83 |
Fij(0,2) = -sin(lat); // |cos(-lat) 0 sin(-lat)| |cos(lat) 0 -sin(lat)| |
| 84 |
Fij(1,0) = 0; // | 0 1 0 | ==> | 0 1 0 | |
| 85 |
Fij(1,1) = 1; // |-sin(-lat) 0 cos(-lat)| |sin(lat) 0 cos(lat) | |
| 86 |
Fij(1,2) = 0; |
| 87 |
Fij(2,0) = sin(lat); |
| 88 |
Fij(2,1) = 0; |
| 89 |
Fij(2,2) = cos(lat); |
| 90 |
|
| 91 |
return Fij*(Gij*Aij); |
| 92 |
} |
| 93 |
|
| 94 |
TMatrixD OrientationInfo::GEOtoGeomag(TMatrixD Aij,Double_t Bnorth, Double_t Beast, Double_t Bup){ //Geomagnetic geodetic reference frame |
| 95 |
Double_t alpha = 0; |
| 96 |
if(Beast==0. && Bnorth>0) alpha = 0; else |
| 97 |
if(Beast==0. && Bnorth<0) alpha = 180.; else{ |
| 98 |
if(Beast > 0) alpha = TMath::ATan(Bnorth/Beast)*TMath::RadToDeg() - 90.; |
| 99 |
if(Beast < 0) alpha = TMath::ATan(Bnorth/Beast)*TMath::RadToDeg() + 90.; |
| 100 |
} |
| 101 |
alpha = alpha*TMath::DegToRad(); |
| 102 |
Double_t beta = TMath::ATan(Bup/sqrt(pow(Bnorth,2)+pow(Beast,2))); |
| 103 |
//if(Bup<0.0) beta = TMath::ATan(TMath::Abs(Bup/sqrt(pow(Bnorth,2)+pow(Beast,2)))); |
| 104 |
//if(Bup>0.0) beta = TMath::ATan(TMath::Abs(sqrt(pow(Bnorth,2)+pow(Beast,2))/Bup)); |
| 105 |
//cout<<"GEOtomag:alpha = "<<alpha*TMath::RadToDeg()<<"\tbeta = "<<beta*TMath::RadToDeg()<<endl; |
| 106 |
TMatrixD Gij(3,3); |
| 107 |
TMatrixD Fij(3,3); |
| 108 |
Gij(0,0) = 1; //rotation around x-axis at angle alpha |
| 109 |
Gij(0,1) = 0; |
| 110 |
Gij(0,2) = 0; // |1 0 0 | |
| 111 |
Gij(1,0) = 0; // |0 cos(alpha) -sin(alpha) | |
| 112 |
Gij(1,1) = cos(alpha); // |0 sin(alpha) cos(alpha) | |
| 113 |
Gij(1,2) = -sin(alpha); |
| 114 |
Gij(2,0) = 0; |
| 115 |
Gij(2,1) = sin(alpha); |
| 116 |
Gij(2,2) = cos(alpha); |
| 117 |
Gij.Invert(); |
| 118 |
Fij(0,0) = cos(beta); //rotation around y-axis at angle beta |
| 119 |
Fij(0,1) = 0; |
| 120 |
Fij(0,2) = sin(beta); // |cos(beta) 0 sin(beta)| |
| 121 |
Fij(1,0) = 0; // | 0 1 0 | |
| 122 |
Fij(1,1) = 1; // |-sin(beta) 0 cos(beta)| |
| 123 |
Fij(1,2) = 0; |
| 124 |
Fij(2,0) = -sin(beta); |
| 125 |
Fij(2,1) = 0; |
| 126 |
Fij(2,2) = cos(beta); |
| 127 |
Fij.Invert(); |
| 128 |
//Int_t tri; |
| 129 |
//cin >> tri; |
| 130 |
return Fij*(Gij*Aij); |
| 131 |
} |
| 132 |
|
| 133 |
TMatrixD OrientationInfo::PamelatoGEO(TMatrixD Aij, Double_t B1, Double_t B2, Double_t B3){ |
| 134 |
//TMatrixD Gij(3,3); |
| 135 |
TMatrixD Hij(3,1); |
| 136 |
TMatrixD Bij(3,1); |
| 137 |
Bij(0,0) = B1; |
| 138 |
Bij(1,0) = B2; |
| 139 |
Bij(2,0) = B3; |
| 140 |
Hij=Aij*Bij; |
| 141 |
return Hij; |
| 142 |
} |
| 143 |
|
| 144 |
TMatrixD OrientationInfo::ColPermutation(TMatrixD Aij){ |
| 145 |
TMatrixD Gij(3,3); |
| 146 |
Gij(0,0) = 1; Gij(0,1) = 0; Gij(0,2) = 0; |
| 147 |
Gij(1,0) = 0; Gij(1,1) = 0; Gij(1,2) = 1; |
| 148 |
Gij(2,0) = 0; Gij(2,1) = -1; Gij(2,2) = 0; |
| 149 |
return Aij*Gij; |
| 150 |
} |
| 151 |
|
| 152 |
Float_t OrientationInfo::Larmor(Float_t Ek,Float_t Bm,Int_t iZ,Float_t xA){ //Ek in MeV, Bm in nT, Pitch-angle, rad |
| 153 |
Float_t mp = 938.272029; Float_t amu = 931.494043e0; |
| 154 |
Float_t cc = 299792458.; |
| 155 |
Float_t ee = 1.60217653e-19; |
| 156 |
Float_t kg = 1.7826619e-30; |
| 157 |
Float_t gam = (Ek+mp)/mp; |
| 158 |
Float_t mm = mp*kg; |
| 159 |
Float_t omega = iZ*ee*Bm*1e-9/(gam*mm); |
| 160 |
Float_t larmor = 1e-3*sqrt(1e0-1e0/pow(gam,2))*cc/omega; |
| 161 |
larmor = 1e-3*Ek*cc/omega; //Ek here is p or for onecharged particle R; |
| 162 |
return larmor; |
| 163 |
} |
| 164 |
|
| 165 |
TMatrixD OrientationInfo::GetDirectiontoGirocenter(Float_t R, Float_t Px, Float_t Py){ |
| 166 |
TMatrixD GirDir(3,1); |
| 167 |
if(R>0){ |
| 168 |
GirDir(0,0) = Py; |
| 169 |
GirDir(1,0) = -Px; |
| 170 |
}else{ |
| 171 |
GirDir(0,0) = -Py; |
| 172 |
GirDir(1,0) = Px; |
| 173 |
} |
| 174 |
GirDir(2,0) = 0.; |
| 175 |
return GirDir; |
| 176 |
} |
| 177 |
|
| 178 |
Double_t OrientationInfo::GetPitchAngle(Double_t x1, Double_t y1, Double_t z1, Double_t x2, Double_t y2, Double_t z2){ |
| 179 |
return TMath::ACos((x1*x2 + y1*y2 + z1*z2)/(sqrt(pow(x1,2)+pow(y1,2)+pow(z1,2))*sqrt(pow(x2,2)+pow(y2,2)+pow(z2,2)))) * TMath::RadToDeg(); |
| 180 |
} |