| 1 |
mocchiut |
1.1 |
#include <iostream> |
| 2 |
|
|
#include <stdio.h> |
| 3 |
|
|
#include <TObject.h> |
| 4 |
|
|
#include <TString.h> |
| 5 |
|
|
#include <TMatrixD.h> |
| 6 |
pam-mep |
1.4 |
#include <TVector3.h> |
| 7 |
mocchiut |
1.1 |
|
| 8 |
|
|
#include <OrientationInfo.h> |
| 9 |
|
|
|
| 10 |
|
|
ClassImp(OrientationInfo) |
| 11 |
|
|
|
| 12 |
|
|
|
| 13 |
|
|
using namespace std; |
| 14 |
|
|
|
| 15 |
|
|
OrientationInfo::OrientationInfo() : TObject(){ |
| 16 |
|
|
a = 360/(2*TMath::Pi()); |
| 17 |
|
|
Re = 6000000; |
| 18 |
|
|
} |
| 19 |
|
|
|
| 20 |
|
|
OrientationInfo::~OrientationInfo(){ |
| 21 |
|
|
} |
| 22 |
|
|
|
| 23 |
|
|
TMatrixD OrientationInfo::QuatoECI(Float_t q0, Float_t q1, Float_t q2, Float_t q3){ |
| 24 |
|
|
TMatrixD Pij(3,3); |
| 25 |
|
|
Pij(0,0) = pow(q0,2)+pow(q1,2)-pow(q2,2)-pow(q3,2); |
| 26 |
|
|
Pij(0,1) = /*2*(q1*q2+q0*q3);/*/ 2*(q1*q2-q0*q3); |
| 27 |
|
|
Pij(0,2) = /*2*(q1*q3-q0*q2);/*/ 2*(q1*q3+q0*q2); |
| 28 |
|
|
Pij(1,0) = /*2*(q1*q2-q0*q3);/*/ 2*(q1*q2+q0*q3); |
| 29 |
|
|
Pij(1,1) = pow(q0,2)-pow(q1,2)+pow(q2,2)-pow(q3,2); |
| 30 |
|
|
Pij(1,2) = /*2*(q2*q3+q0*q1);/*/ 2*(q2*q3-q0*q1); |
| 31 |
|
|
Pij(2,0) = /*2*(q1*q3+q0*q2);/*/ 2*(q1*q3-q0*q2); |
| 32 |
|
|
Pij(2,1) = /*2*(q2*q3-q0*q1);/*/ 2*(q2*q3+q0*q1); |
| 33 |
|
|
Pij(2,2) = pow(q0,2)-pow(q1,2)-pow(q2,2)+pow(q3,2); |
| 34 |
|
|
return Pij; |
| 35 |
|
|
} |
| 36 |
|
|
|
| 37 |
|
|
TMatrixD OrientationInfo::ECItoGreenwich(TMatrixD Aij, UInt_t t){ |
| 38 |
|
|
TMatrixD Gij(3,3); |
| 39 |
malakhov |
1.5 |
UInt_t t1=t-t%86400; |
| 40 |
|
|
UInt_t t2=t1+86400; |
| 41 |
pam-mep |
1.2 |
Double_t omg = (7.292115e-5)*a; // Earth rotation velosity (Around polar axis); |
| 42 |
malakhov |
1.5 |
Double_t d = (t1-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t; |
| 43 |
mocchiut |
1.1 |
d = d/86400; |
| 44 |
|
|
Double_t T = d/36525; //Number of Julian centuries; |
| 45 |
malakhov |
1.5 |
Double_t Se = 6*3600+41*60+236.555367908*d+0.093104*T*T-(6.2e-6)*T*T*T; //18 <-> 6 |
| 46 |
|
|
Double_t tr = (t1-10957*86400)%86400; |
| 47 |
|
|
Double_t Somg1 = (Se+49.077+omg*86400*tr/360.)*360/86400.; |
| 48 |
pam-mep |
1.2 |
|
| 49 |
malakhov |
1.5 |
d = (t2-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t; |
| 50 |
|
|
d = d/86400; |
| 51 |
|
|
T = d/36525; //Number of Julian centuries; |
| 52 |
|
|
Se = 6*3600+41*60+236.555367908*d+0.093104*T*T-(6.2e-6)*T*T*T; //18 <-> 6 |
| 53 |
|
|
tr = (t2-10957*86400)%86400; |
| 54 |
|
|
Double_t Somg2 = (Se+49.077+omg*86400*tr/360.)*360/86400.; |
| 55 |
|
|
Somg2+=360.0; |
| 56 |
|
|
|
| 57 |
|
|
Double_t kk=(Somg2-Somg1)/(t2-t1); |
| 58 |
|
|
Double_t bb= Somg1-kk*t1; |
| 59 |
|
|
Double_t Somg=kk*t+bb; |
| 60 |
pam-mep |
1.2 |
|
| 61 |
mocchiut |
1.1 |
Gij(0,0) = cos(Somg/a); |
| 62 |
|
|
Gij(0,1) = -sin(Somg/a); |
| 63 |
|
|
Gij(0,2) = 0; |
| 64 |
|
|
Gij(1,0) = sin(Somg/a); |
| 65 |
|
|
Gij(1,1) = cos(Somg/a); |
| 66 |
|
|
Gij(1,2) = 0; |
| 67 |
|
|
Gij(2,0) = 0; |
| 68 |
|
|
Gij(2,1) = 0; |
| 69 |
|
|
Gij(2,2) = 1; |
| 70 |
|
|
Gij.Invert(); |
| 71 |
|
|
return Gij*Aij; |
| 72 |
|
|
} |
| 73 |
|
|
|
| 74 |
|
|
TMatrixD OrientationInfo::GreenwichtoGEO(Double_t lat, Double_t lon, TMatrixD Aij){ |
| 75 |
pam-mep |
1.2 |
|
| 76 |
mocchiut |
1.1 |
TMatrixD Gij(3,3); |
| 77 |
|
|
TMatrixD Fij(3,3); |
| 78 |
|
|
|
| 79 |
pam-mep |
1.2 |
lon=(-lon)/a; lat=(-lat)/a; // here has the same result as Gij.Invert() in ECItoGreenwich function |
| 80 |
|
|
|
| 81 |
|
|
Gij(0,0) = cos(lon); // rotation around z-axis: |
| 82 |
mocchiut |
1.1 |
Gij(0,1) = -sin(lon); |
| 83 |
pam-mep |
1.2 |
Gij(0,2) = 0; // | cos(lon) -sin(lon) 0| |
| 84 |
|
|
Gij(1,0) = sin(lon); // | sin(lon) cos(lon) 0| |
| 85 |
|
|
Gij(1,1) = cos(lon); // | 0 0 1| |
| 86 |
mocchiut |
1.1 |
Gij(1,2) = 0; |
| 87 |
|
|
Gij(2,0) = 0; |
| 88 |
|
|
Gij(2,1) = 0; |
| 89 |
|
|
Gij(2,2) = 1; |
| 90 |
|
|
|
| 91 |
pam-mep |
1.2 |
Fij(0,0) = cos(lat); // rotation around y-axis at angle -lat, cause rotation around y from x to z axis is negative |
| 92 |
|
|
Fij(0,1) = 0; // |
| 93 |
|
|
Fij(0,2) = -sin(lat); // |cos(-lat) 0 sin(-lat)| |cos(lat) 0 -sin(lat)| |
| 94 |
|
|
Fij(1,0) = 0; // | 0 1 0 | ==> | 0 1 0 | |
| 95 |
|
|
Fij(1,1) = 1; // |-sin(-lat) 0 cos(-lat)| |sin(lat) 0 cos(lat) | |
| 96 |
mocchiut |
1.1 |
Fij(1,2) = 0; |
| 97 |
|
|
Fij(2,0) = sin(lat); |
| 98 |
|
|
Fij(2,1) = 0; |
| 99 |
|
|
Fij(2,2) = cos(lat); |
| 100 |
pam-mep |
1.2 |
|
| 101 |
mocchiut |
1.1 |
return Fij*(Gij*Aij); |
| 102 |
|
|
} |
| 103 |
|
|
|
| 104 |
pam-mep |
1.4 |
TMatrixD OrientationInfo::EulertoEci(Double_t x0, Double_t y0, Double_t z0, Double_t Vx0, Double_t Vy0, Double_t Vz0, Double_t Bank, Double_t Yaw, Double_t SPitch){ |
| 105 |
|
|
//cerr.precision(12); |
| 106 |
|
|
//cerr<<"Position:\t"<<x0<<"\t"<<y0<<"\t"<<z0<<"\tVelocity:\t"<<Vx0<<"\t"<<Vy0<<"\t"<<Vz0<<endl; |
| 107 |
|
|
//Sangur to Resurs transition |
| 108 |
|
|
TMatrixD Zij(3,3); |
| 109 |
|
|
Zij(0,0) = 0.0; Zij(0,1) = 0.0; Zij(0,2) = -1.0; |
| 110 |
|
|
Zij(1,0) = -1.0; Zij(1,1) = 0.0; Zij(1,2) = 0.0; |
| 111 |
|
|
Zij(2,0) = 0.0; Zij(2,1) = 1.0; Zij(2,2) = 0.0; |
| 112 |
|
|
|
| 113 |
|
|
//Spacecraft velosity referenca frame in Eci |
| 114 |
|
|
TMatrixD Aij(3,3); |
| 115 |
|
|
Double_t C1 = y0*Vz0 - z0*Vy0; |
| 116 |
|
|
Double_t C2 = z0*Vx0 - x0*Vz0; |
| 117 |
|
|
Double_t C3 = x0*Vy0 - y0*Vx0; |
| 118 |
|
|
Double_t C = sqrt(C1*C1 + C2*C2 + C3*C3); |
| 119 |
|
|
Double_t V0 = sqrt(Vx0*Vx0+Vy0*Vy0 + Vz0*Vz0); |
| 120 |
|
|
Aij(0,0) = Vx0/V0; Aij(0,1) = C1/C; Aij(0,2) = (Vy0*C3-Vz0*C2)/(V0*C); |
| 121 |
|
|
Aij(1,0) = Vy0/V0; Aij(1,1) = C2/C; Aij(1,2) = (Vz0*C1-Vx0*C3)/(V0*C); |
| 122 |
|
|
Aij(2,0) = Vz0/V0; Aij(2,1) = C3/C; Aij(2,2) = (Vx0*C2-Vy0*C1)/(V0*C); |
| 123 |
|
|
|
| 124 |
|
|
//Elements of matrix elements described orientation of spacecraft on velocity reference frame |
| 125 |
|
|
Double_t u10 = tan(Bank*TMath::DegToRad())/sqrt(tan(Bank*TMath::DegToRad())*tan(Bank*TMath::DegToRad())+1); |
| 126 |
|
|
Double_t u11 = -sqrt((1-u10*u10))/(1+tan(Yaw*TMath::DegToRad())*tan(Yaw*TMath::DegToRad())); |
| 127 |
|
|
Double_t u12 = u11*tan(Yaw*TMath::DegToRad()); |
| 128 |
|
|
Double_t u20 = -sqrt((1-u10*u10)/(1+tan(SPitch*TMath::DegToRad())*tan(SPitch*TMath::DegToRad()))); |
| 129 |
|
|
Double_t u00 = -u20*tan(SPitch*TMath::DegToRad()); |
| 130 |
|
|
|
| 131 |
|
|
Double_t ab = 1+(u20*u20/(u00*u00)); |
| 132 |
|
|
Double_t by = 2*u10*u11*u20/(u00*u00); |
| 133 |
|
|
Double_t cy = (1+u10*u10/(u00*u00))*u11*u11-1; |
| 134 |
|
|
Double_t bz = 2*u10*u12*u20/(u00*u00); |
| 135 |
|
|
Double_t cz = (1+u10*u10/(u00*u00))*u12*u12-1; |
| 136 |
|
|
|
| 137 |
|
|
Int_t uj = TMath::Sign(1.,Yaw)*TMath::Sign(1.,SPitch); |
| 138 |
|
|
//long double by_l = by; |
| 139 |
|
|
Double_t Ds = by*by-4*ab*cy; |
| 140 |
|
|
if(Ds<0) Ds = 0.; |
| 141 |
|
|
Double_t u21 = (-by+uj*sqrt(Ds))/(2*ab); |
| 142 |
|
|
Double_t u21s = -TMath::Sign(1.,Bank)*TMath::Abs(u21); |
| 143 |
|
|
Double_t u01 = TMath::Sign(1.,Yaw)*TMath::Abs((u10*u11+u20*u21)/u00); |
| 144 |
malakhov |
1.5 |
|
| 145 |
pam-mep |
1.4 |
Int_t fj=1; |
| 146 |
|
|
if(TMath::Sign(1.,SPitch)>0 && TMath::Sign(1.,Yaw)>0) fj=-1; |
| 147 |
|
|
|
| 148 |
|
|
Double_t u22 = (-bz+fj*sqrt(bz*bz-4*ab*cz))/(2*ab); |
| 149 |
|
|
Double_t u22s = -TMath::Sign(1.,SPitch)*TMath::Abs(u22); |
| 150 |
|
|
Double_t u02 = -TMath::Abs((u10*u12+u20*u22)/u00); |
| 151 |
|
|
|
| 152 |
|
|
TMatrixD Dij(3,3); |
| 153 |
|
|
Dij(0,0) = u00; Dij(0,1) = u01; Dij(0,2) = u02; |
| 154 |
|
|
Dij(1,0) = u10; Dij(1,1) = u11; Dij(1,2) = u12; |
| 155 |
|
|
Dij(2,0) = u20; Dij(2,1) = u21s; Dij(2,2) = u22s; |
| 156 |
|
|
|
| 157 |
|
|
TMatrixD Shij(3,3); |
| 158 |
|
|
TMatrixD Usij(3,3); |
| 159 |
|
|
Usij = (Aij*Dij); |
| 160 |
|
|
Usij.Invert(); |
| 161 |
|
|
Shij = Zij*Usij; |
| 162 |
|
|
Shij.Invert(); |
| 163 |
|
|
|
| 164 |
|
|
return Shij; |
| 165 |
|
|
} |
| 166 |
|
|
|
| 167 |
|
|
TMatrixD OrientationInfo::ECItoGEO(TMatrixD Aij, UInt_t t, Double_t lat, Double_t lon){ |
| 168 |
|
|
TMatrixD Gij(3,3); |
| 169 |
malakhov |
1.5 |
UInt_t t1=t-t%86400; |
| 170 |
|
|
UInt_t t2=t1+86400; |
| 171 |
pam-mep |
1.4 |
Double_t omg = (7.292115e-5)*a; // Earth rotation velosity (Around polar axis); |
| 172 |
malakhov |
1.5 |
Double_t d = (t1-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t; |
| 173 |
pam-mep |
1.4 |
d = d/86400; |
| 174 |
|
|
Double_t T = d/36525; //Number of Julian centuries; |
| 175 |
malakhov |
1.5 |
Double_t Se = 6*3600+41*60+236.555367908*d+0.093104*T*T-(6.2e-6)*T*T*T; //18 <-> 6 |
| 176 |
|
|
Double_t tr = (t1-10957*86400)%86400; |
| 177 |
|
|
Double_t Somg1 = (Se+49.077+omg*86400*tr/360.)*360/86400.; |
| 178 |
pam-mep |
1.4 |
|
| 179 |
malakhov |
1.5 |
d = (t2-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t; |
| 180 |
|
|
d = d/86400; |
| 181 |
|
|
T = d/36525; //Number of Julian centuries; |
| 182 |
|
|
Se = 6*3600+41*60+236.555367908*d+0.093104*T*T-(6.2e-6)*T*T*T; //18 <-> 6 |
| 183 |
|
|
tr = (t2-10957*86400)%86400; |
| 184 |
|
|
Double_t Somg2 = (Se+49.077+omg*86400*tr/360.)*360/86400.; |
| 185 |
|
|
Somg2+=360.0; |
| 186 |
|
|
|
| 187 |
|
|
Double_t kk=(Somg2-Somg1)/(t2-t1); |
| 188 |
|
|
Double_t bb= Somg1-kk*t1; |
| 189 |
|
|
Double_t Somg=kk*t+bb; |
| 190 |
pam-mep |
1.4 |
|
| 191 |
|
|
lon=(-lon)/a; lat=(-lat)/a; |
| 192 |
|
|
|
| 193 |
|
|
Gij(0,0)=cos(lat)*cos(lon)*cos(Somg/a)+cos(lat)*sin(lon)*sin(Somg/a); |
| 194 |
|
|
Gij(0,1)=cos(lat)*cos(lon)*sin(Somg/a)-cos(lat)*sin(lon)*cos(Somg/a); |
| 195 |
|
|
Gij(0,2)=-sin(lat); |
| 196 |
|
|
Gij(1,0)=sin(lon)*cos(Somg/a)-cos(lon)*sin(Somg/a); |
| 197 |
|
|
Gij(1,1)=sin(lon)*sin(Somg/a)+cos(lon)*cos(Somg/a); |
| 198 |
|
|
Gij(1,2)=0; |
| 199 |
|
|
Gij(2,0)=sin(lat)*cos(lon)*cos(Somg/a)+sin(lat)*sin(lon)*sin(Somg/a); |
| 200 |
|
|
Gij(2,1)=sin(lat)*cos(lon)*sin(Somg/a)-sin(lat)*sin(lon)*cos(Somg/a); |
| 201 |
|
|
Gij(2,2)=cos(lat); |
| 202 |
|
|
|
| 203 |
|
|
TMatrixD Tij=Gij*Aij; |
| 204 |
|
|
|
| 205 |
|
|
return Tij; |
| 206 |
|
|
} |
| 207 |
|
|
|
| 208 |
|
|
TMatrixD OrientationInfo::GEOtoECI(TMatrixD Aij, UInt_t t, Double_t lat, Double_t lon){ |
| 209 |
|
|
TMatrixD Gij(3,3); |
| 210 |
malakhov |
1.5 |
UInt_t t1=t-t%86400; |
| 211 |
|
|
UInt_t t2=t1+86400; |
| 212 |
|
|
Double_t omg = (7.292115e-5)*a; // Earth rotation velosity (Around polar axis); |
| 213 |
|
|
Double_t d = (t1-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t; |
| 214 |
|
|
d = d/86400; |
| 215 |
|
|
Double_t T = d/36525; //Number of Julian centuries; |
| 216 |
|
|
Double_t Se = 6*3600+41*60+236.555367908*d+0.093104*T*T-(6.2e-6)*T*T*T; //18 <-> 6 |
| 217 |
|
|
Double_t tr = (t1-10957*86400)%86400; |
| 218 |
|
|
Double_t Somg1 = (Se+49.077+omg*86400*tr/360.)*360/86400.; |
| 219 |
pam-mep |
1.4 |
|
| 220 |
malakhov |
1.5 |
d = (t2-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t; |
| 221 |
|
|
d = d/86400; |
| 222 |
|
|
T = d/36525; //Number of Julian centuries; |
| 223 |
|
|
Se = 6*3600+41*60+236.555367908*d+0.093104*T*T-(6.2e-6)*T*T*T; //18 <-> 6 |
| 224 |
|
|
tr = (t2-10957*86400)%86400; |
| 225 |
|
|
Double_t Somg2 = (Se+49.077+omg*86400*tr/360.)*360/86400.; |
| 226 |
|
|
Somg2+=360.0; |
| 227 |
|
|
|
| 228 |
|
|
Double_t kk=(Somg2-Somg1)/(t2-t1); |
| 229 |
|
|
Double_t bb= Somg1-kk*t1; |
| 230 |
|
|
Double_t Somg=kk*t+bb; |
| 231 |
pam-mep |
1.4 |
|
| 232 |
|
|
lon=(-lon)/a; lat=(-lat)/a; |
| 233 |
|
|
|
| 234 |
|
|
Gij(0,0)=cos(lat)*cos(lon)*cos(Somg/a)+cos(lat)*sin(lon)*sin(Somg/a); |
| 235 |
|
|
Gij(1,0)=cos(lat)*cos(lon)*sin(Somg/a)-cos(lat)*sin(lon)*cos(Somg/a); |
| 236 |
|
|
Gij(2,0)=-sin(lat); |
| 237 |
|
|
Gij(0,1)=sin(lon)*cos(Somg/a)-cos(lon)*sin(Somg/a); |
| 238 |
|
|
Gij(1,1)=sin(lon)*sin(Somg/a)+cos(lon)*cos(Somg/a); |
| 239 |
|
|
Gij(2,1)=0; |
| 240 |
|
|
Gij(0,2)=sin(lat)*cos(lon)*cos(Somg/a)+sin(lat)*sin(lon)*sin(Somg/a); |
| 241 |
|
|
Gij(1,2)=sin(lat)*cos(lon)*sin(Somg/a)-sin(lat)*sin(lon)*cos(Somg/a); |
| 242 |
|
|
Gij(2,2)=cos(lat); |
| 243 |
|
|
|
| 244 |
|
|
return Gij*Aij; |
| 245 |
|
|
} |
| 246 |
|
|
|
| 247 |
|
|
|
| 248 |
pam-mep |
1.2 |
TMatrixD OrientationInfo::GEOtoGeomag(TMatrixD Aij,Double_t Bnorth, Double_t Beast, Double_t Bup){ //Geomagnetic geodetic reference frame |
| 249 |
|
|
Double_t alpha = 0; |
| 250 |
|
|
if(Beast==0. && Bnorth>0) alpha = 0; else |
| 251 |
|
|
if(Beast==0. && Bnorth<0) alpha = 180.; else{ |
| 252 |
|
|
if(Beast > 0) alpha = TMath::ATan(Bnorth/Beast)*TMath::RadToDeg() - 90.; |
| 253 |
|
|
if(Beast < 0) alpha = TMath::ATan(Bnorth/Beast)*TMath::RadToDeg() + 90.; |
| 254 |
|
|
} |
| 255 |
|
|
alpha = alpha*TMath::DegToRad(); |
| 256 |
|
|
Double_t beta = TMath::ATan(Bup/sqrt(pow(Bnorth,2)+pow(Beast,2))); |
| 257 |
|
|
//if(Bup<0.0) beta = TMath::ATan(TMath::Abs(Bup/sqrt(pow(Bnorth,2)+pow(Beast,2)))); |
| 258 |
|
|
//if(Bup>0.0) beta = TMath::ATan(TMath::Abs(sqrt(pow(Bnorth,2)+pow(Beast,2))/Bup)); |
| 259 |
|
|
//cout<<"GEOtomag:alpha = "<<alpha*TMath::RadToDeg()<<"\tbeta = "<<beta*TMath::RadToDeg()<<endl; |
| 260 |
|
|
TMatrixD Gij(3,3); |
| 261 |
|
|
TMatrixD Fij(3,3); |
| 262 |
|
|
Gij(0,0) = 1; //rotation around x-axis at angle alpha |
| 263 |
|
|
Gij(0,1) = 0; |
| 264 |
|
|
Gij(0,2) = 0; // |1 0 0 | |
| 265 |
|
|
Gij(1,0) = 0; // |0 cos(alpha) -sin(alpha) | |
| 266 |
|
|
Gij(1,1) = cos(alpha); // |0 sin(alpha) cos(alpha) | |
| 267 |
|
|
Gij(1,2) = -sin(alpha); |
| 268 |
|
|
Gij(2,0) = 0; |
| 269 |
|
|
Gij(2,1) = sin(alpha); |
| 270 |
|
|
Gij(2,2) = cos(alpha); |
| 271 |
|
|
Gij.Invert(); |
| 272 |
|
|
Fij(0,0) = cos(beta); //rotation around y-axis at angle beta |
| 273 |
|
|
Fij(0,1) = 0; |
| 274 |
|
|
Fij(0,2) = sin(beta); // |cos(beta) 0 sin(beta)| |
| 275 |
|
|
Fij(1,0) = 0; // | 0 1 0 | |
| 276 |
|
|
Fij(1,1) = 1; // |-sin(beta) 0 cos(beta)| |
| 277 |
|
|
Fij(1,2) = 0; |
| 278 |
|
|
Fij(2,0) = -sin(beta); |
| 279 |
|
|
Fij(2,1) = 0; |
| 280 |
|
|
Fij(2,2) = cos(beta); |
| 281 |
|
|
Fij.Invert(); |
| 282 |
|
|
//Int_t tri; |
| 283 |
|
|
//cin >> tri; |
| 284 |
|
|
return Fij*(Gij*Aij); |
| 285 |
|
|
} |
| 286 |
|
|
|
| 287 |
mocchiut |
1.1 |
TMatrixD OrientationInfo::PamelatoGEO(TMatrixD Aij, Double_t B1, Double_t B2, Double_t B3){ |
| 288 |
|
|
//TMatrixD Gij(3,3); |
| 289 |
|
|
TMatrixD Hij(3,1); |
| 290 |
|
|
TMatrixD Bij(3,1); |
| 291 |
|
|
Bij(0,0) = B1; |
| 292 |
|
|
Bij(1,0) = B2; |
| 293 |
|
|
Bij(2,0) = B3; |
| 294 |
|
|
Hij=Aij*Bij; |
| 295 |
|
|
return Hij; |
| 296 |
|
|
} |
| 297 |
|
|
|
| 298 |
|
|
TMatrixD OrientationInfo::ColPermutation(TMatrixD Aij){ |
| 299 |
|
|
TMatrixD Gij(3,3); |
| 300 |
|
|
Gij(0,0) = 1; Gij(0,1) = 0; Gij(0,2) = 0; |
| 301 |
|
|
Gij(1,0) = 0; Gij(1,1) = 0; Gij(1,2) = 1; |
| 302 |
|
|
Gij(2,0) = 0; Gij(2,1) = -1; Gij(2,2) = 0; |
| 303 |
|
|
return Aij*Gij; |
| 304 |
|
|
} |
| 305 |
|
|
|
| 306 |
pam-mep |
1.4 |
TVector3 OrientationInfo::GetSunPosition(UInt_t atime){ |
| 307 |
|
|
TVector3 sunout; |
| 308 |
|
|
Float_t JD=atime/86400.+2440587.5; |
| 309 |
|
|
//SAV |
| 310 |
|
|
// cout << "JD = " << JD <<endl; |
| 311 |
|
|
//SAV |
| 312 |
|
|
//test June 1997 JD=2451545.0-877.047; |
| 313 |
|
|
Float_t Tm = (JD - 2451545.0)/36525.; |
| 314 |
|
|
Float_t Mo = (357.52910+35999.05030*Tm-0.0001559*Tm*Tm-0.00000048*Tm*Tm*Tm); |
| 315 |
|
|
//SAV |
| 316 |
|
|
// cout<<"Tm = " << Tm << "Mo = " << Mo <<endl; |
| 317 |
|
|
//SAV |
| 318 |
|
|
Mo=Mo*TMath::DegToRad(); |
| 319 |
|
|
|
| 320 |
|
|
Float_t Co = ((1.914600 - 0.004817*Tm - 0.00014*Tm*Tm)*sin(Mo) + (0.019993 - 0.000101*Tm)* sin(2.*Mo) + 0.000290* sin(3.*Mo)); |
| 321 |
|
|
Co=Co* TMath::DegToRad(); |
| 322 |
|
|
|
| 323 |
|
|
Float_t Lo = (280.46645 + 36000.76983*Tm +0.0003032*Tm*Tm); |
| 324 |
|
|
Lo=Lo*TMath::DegToRad(); |
| 325 |
|
|
|
| 326 |
|
|
Float_t theta = (Lo + Co); // * TMath::DegToRad(); |
| 327 |
|
|
|
| 328 |
|
|
Float_t eps = (23.+26./60.+21.448/3600. - 46.8150/3600.*Tm - 0.00059/3600.*Tm*Tm + 0.001813*Tm*Tm*Tm)*TMath::DegToRad(); |
| 329 |
|
|
|
| 330 |
|
|
//SAV |
| 331 |
|
|
// cout << "Co = " << Co*TMath::RadToDeg() << "\tLo = " << Lo*TMath::RadToDeg() << "\ttheta = " << theta << "\teps = " << eps << endl; |
| 332 |
|
|
//SAV |
| 333 |
|
|
|
| 334 |
|
|
Float_t YY=cos(eps)*sin(theta); |
| 335 |
|
|
Float_t XX=cos(theta); |
| 336 |
|
|
//SAV |
| 337 |
|
|
// cout << "XX = " << XX << "\tYY" << YY << endl; |
| 338 |
|
|
//SAV |
| 339 |
|
|
Float_t RASun=atan(YY/XX); |
| 340 |
|
|
if(XX<0. ) RASun=RASun+TMath::Pi(); |
| 341 |
|
|
if(XX >0. && YY <0.) RASun=RASun+2*TMath::Pi(); |
| 342 |
|
|
Float_t DESun = asin(sin(eps)*sin(theta)); |
| 343 |
|
|
//SAV |
| 344 |
|
|
// cout << "DE = " << DESun << "\t" << RASun << endl; |
| 345 |
|
|
//SAV |
| 346 |
|
|
sunout.SetMagThetaPhi(1.0,TMath::Pi()/2.-DESun,RASun); |
| 347 |
|
|
return sunout; |
| 348 |
|
|
} |
| 349 |
|
|
|
| 350 |
pam-mep |
1.2 |
Float_t OrientationInfo::Larmor(Float_t Ek,Float_t Bm,Int_t iZ,Float_t xA){ //Ek in MeV, Bm in nT, Pitch-angle, rad |
| 351 |
mocchiut |
1.3 |
Float_t mp = 938.272029;// Float_t amu = 931.494043e0; |
| 352 |
pam-mep |
1.2 |
Float_t cc = 299792458.; |
| 353 |
|
|
Float_t ee = 1.60217653e-19; |
| 354 |
|
|
Float_t kg = 1.7826619e-30; |
| 355 |
|
|
Float_t gam = (Ek+mp)/mp; |
| 356 |
|
|
Float_t mm = mp*kg; |
| 357 |
|
|
Float_t omega = iZ*ee*Bm*1e-9/(gam*mm); |
| 358 |
|
|
Float_t larmor = 1e-3*sqrt(1e0-1e0/pow(gam,2))*cc/omega; |
| 359 |
pam-mep |
1.4 |
larmor = 1e-3*Ek*cc/omega; //Ek here is p or for onecharged particle R; larmor in m |
| 360 |
pam-mep |
1.2 |
return larmor; |
| 361 |
|
|
} |
| 362 |
|
|
|
| 363 |
|
|
TMatrixD OrientationInfo::GetDirectiontoGirocenter(Float_t R, Float_t Px, Float_t Py){ |
| 364 |
|
|
TMatrixD GirDir(3,1); |
| 365 |
|
|
if(R>0){ |
| 366 |
|
|
GirDir(0,0) = Py; |
| 367 |
|
|
GirDir(1,0) = -Px; |
| 368 |
|
|
}else{ |
| 369 |
|
|
GirDir(0,0) = -Py; |
| 370 |
|
|
GirDir(1,0) = Px; |
| 371 |
|
|
} |
| 372 |
|
|
GirDir(2,0) = 0.; |
| 373 |
|
|
return GirDir; |
| 374 |
|
|
} |
| 375 |
|
|
|
| 376 |
mocchiut |
1.1 |
Double_t OrientationInfo::GetPitchAngle(Double_t x1, Double_t y1, Double_t z1, Double_t x2, Double_t y2, Double_t z2){ |
| 377 |
|
|
return TMath::ACos((x1*x2 + y1*y2 + z1*z2)/(sqrt(pow(x1,2)+pow(y1,2)+pow(z1,2))*sqrt(pow(x2,2)+pow(y2,2)+pow(z2,2)))) * TMath::RadToDeg(); |
| 378 |
|
|
} |