/[PAMELA software]/DarthVader/OrbitalInfo/src/OrientationInfo.cpp
ViewVC logotype

Annotation of /DarthVader/OrbitalInfo/src/OrientationInfo.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.4 - (hide annotations) (download)
Fri Mar 28 20:47:15 2014 UTC (10 years, 8 months ago) by pam-mep
Branch: MAIN
Changes since 1.3: +176 -1 lines
new OrbitalInfo code

1 mocchiut 1.1 #include <iostream>
2     #include <stdio.h>
3     #include <TObject.h>
4     #include <TString.h>
5     #include <TMatrixD.h>
6 pam-mep 1.4 #include <TVector3.h>
7 mocchiut 1.1
8     #include <OrientationInfo.h>
9    
10     ClassImp(OrientationInfo)
11    
12    
13     using namespace std;
14    
15     OrientationInfo::OrientationInfo() : TObject(){
16     a = 360/(2*TMath::Pi());
17     Re = 6000000;
18     }
19    
20     OrientationInfo::~OrientationInfo(){
21     }
22    
23     TMatrixD OrientationInfo::QuatoECI(Float_t q0, Float_t q1, Float_t q2, Float_t q3){
24     TMatrixD Pij(3,3);
25     Pij(0,0) = pow(q0,2)+pow(q1,2)-pow(q2,2)-pow(q3,2);
26     Pij(0,1) = /*2*(q1*q2+q0*q3);/*/ 2*(q1*q2-q0*q3);
27     Pij(0,2) = /*2*(q1*q3-q0*q2);/*/ 2*(q1*q3+q0*q2);
28     Pij(1,0) = /*2*(q1*q2-q0*q3);/*/ 2*(q1*q2+q0*q3);
29     Pij(1,1) = pow(q0,2)-pow(q1,2)+pow(q2,2)-pow(q3,2);
30     Pij(1,2) = /*2*(q2*q3+q0*q1);/*/ 2*(q2*q3-q0*q1);
31     Pij(2,0) = /*2*(q1*q3+q0*q2);/*/ 2*(q1*q3-q0*q2);
32     Pij(2,1) = /*2*(q2*q3-q0*q1);/*/ 2*(q2*q3+q0*q1);
33     Pij(2,2) = pow(q0,2)-pow(q1,2)-pow(q2,2)+pow(q3,2);
34     return Pij;
35     }
36    
37     TMatrixD OrientationInfo::ECItoGreenwich(TMatrixD Aij, UInt_t t){
38     TMatrixD Gij(3,3);
39 pam-mep 1.2 Double_t omg = (7.292115e-5)*a; // Earth rotation velosity (Around polar axis);
40 mocchiut 1.1 Double_t d = (t-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t;
41     d = d/86400;
42     Double_t T = d/36525; //Number of Julian centuries;
43    
44     Double_t Se = 6*3600+41*60+236.555367908*d+0.093104*pow(T,2)-(6.2e-6)*pow(T,3);
45 pam-mep 1.2
46 mocchiut 1.1 Int_t tr = (t-10957*86400)%86400;
47 pam-mep 1.2
48 mocchiut 1.1 Double_t Somg = (Se+49.077+omg*86400*tr/360)*360/86400;
49 pam-mep 1.2
50     //Somg = 25; //for test transition
51    
52 mocchiut 1.1 Gij(0,0) = cos(Somg/a);
53     Gij(0,1) = -sin(Somg/a);
54     Gij(0,2) = 0;
55     Gij(1,0) = sin(Somg/a);
56     Gij(1,1) = cos(Somg/a);
57     Gij(1,2) = 0;
58     Gij(2,0) = 0;
59     Gij(2,1) = 0;
60     Gij(2,2) = 1;
61     Gij.Invert();
62     return Gij*Aij;
63     }
64    
65     TMatrixD OrientationInfo::GreenwichtoGEO(Double_t lat, Double_t lon, TMatrixD Aij){
66 pam-mep 1.2
67 mocchiut 1.1 TMatrixD Gij(3,3);
68     TMatrixD Fij(3,3);
69    
70 pam-mep 1.2 lon=(-lon)/a; lat=(-lat)/a; // here has the same result as Gij.Invert() in ECItoGreenwich function
71    
72     Gij(0,0) = cos(lon); // rotation around z-axis:
73 mocchiut 1.1 Gij(0,1) = -sin(lon);
74 pam-mep 1.2 Gij(0,2) = 0; // | cos(lon) -sin(lon) 0|
75     Gij(1,0) = sin(lon); // | sin(lon) cos(lon) 0|
76     Gij(1,1) = cos(lon); // | 0 0 1|
77 mocchiut 1.1 Gij(1,2) = 0;
78     Gij(2,0) = 0;
79     Gij(2,1) = 0;
80     Gij(2,2) = 1;
81    
82 pam-mep 1.2 Fij(0,0) = cos(lat); // rotation around y-axis at angle -lat, cause rotation around y from x to z axis is negative
83     Fij(0,1) = 0; //
84     Fij(0,2) = -sin(lat); // |cos(-lat) 0 sin(-lat)| |cos(lat) 0 -sin(lat)|
85     Fij(1,0) = 0; // | 0 1 0 | ==> | 0 1 0 |
86     Fij(1,1) = 1; // |-sin(-lat) 0 cos(-lat)| |sin(lat) 0 cos(lat) |
87 mocchiut 1.1 Fij(1,2) = 0;
88     Fij(2,0) = sin(lat);
89     Fij(2,1) = 0;
90     Fij(2,2) = cos(lat);
91 pam-mep 1.2
92 mocchiut 1.1 return Fij*(Gij*Aij);
93     }
94    
95 pam-mep 1.4 TMatrixD OrientationInfo::EulertoEci(Double_t x0, Double_t y0, Double_t z0, Double_t Vx0, Double_t Vy0, Double_t Vz0, Double_t Bank, Double_t Yaw, Double_t SPitch){
96     //cerr.precision(12);
97     //cerr<<"Position:\t"<<x0<<"\t"<<y0<<"\t"<<z0<<"\tVelocity:\t"<<Vx0<<"\t"<<Vy0<<"\t"<<Vz0<<endl;
98     //Sangur to Resurs transition
99     TMatrixD Zij(3,3);
100     Zij(0,0) = 0.0; Zij(0,1) = 0.0; Zij(0,2) = -1.0;
101     Zij(1,0) = -1.0; Zij(1,1) = 0.0; Zij(1,2) = 0.0;
102     Zij(2,0) = 0.0; Zij(2,1) = 1.0; Zij(2,2) = 0.0;
103    
104     //Spacecraft velosity referenca frame in Eci
105     TMatrixD Aij(3,3);
106     Double_t C1 = y0*Vz0 - z0*Vy0;
107     Double_t C2 = z0*Vx0 - x0*Vz0;
108     Double_t C3 = x0*Vy0 - y0*Vx0;
109     Double_t C = sqrt(C1*C1 + C2*C2 + C3*C3);
110     Double_t V0 = sqrt(Vx0*Vx0+Vy0*Vy0 + Vz0*Vz0);
111     Aij(0,0) = Vx0/V0; Aij(0,1) = C1/C; Aij(0,2) = (Vy0*C3-Vz0*C2)/(V0*C);
112     Aij(1,0) = Vy0/V0; Aij(1,1) = C2/C; Aij(1,2) = (Vz0*C1-Vx0*C3)/(V0*C);
113     Aij(2,0) = Vz0/V0; Aij(2,1) = C3/C; Aij(2,2) = (Vx0*C2-Vy0*C1)/(V0*C);
114    
115     //Elements of matrix elements described orientation of spacecraft on velocity reference frame
116     Double_t u10 = tan(Bank*TMath::DegToRad())/sqrt(tan(Bank*TMath::DegToRad())*tan(Bank*TMath::DegToRad())+1);
117     Double_t u11 = -sqrt((1-u10*u10))/(1+tan(Yaw*TMath::DegToRad())*tan(Yaw*TMath::DegToRad()));
118     Double_t u12 = u11*tan(Yaw*TMath::DegToRad());
119     Double_t u20 = -sqrt((1-u10*u10)/(1+tan(SPitch*TMath::DegToRad())*tan(SPitch*TMath::DegToRad())));
120     Double_t u00 = -u20*tan(SPitch*TMath::DegToRad());
121    
122     Double_t ab = 1+(u20*u20/(u00*u00));
123     Double_t by = 2*u10*u11*u20/(u00*u00);
124     Double_t cy = (1+u10*u10/(u00*u00))*u11*u11-1;
125     Double_t bz = 2*u10*u12*u20/(u00*u00);
126     Double_t cz = (1+u10*u10/(u00*u00))*u12*u12-1;
127    
128     Int_t uj = TMath::Sign(1.,Yaw)*TMath::Sign(1.,SPitch);
129     //long double by_l = by;
130     Double_t Ds = by*by-4*ab*cy;
131     if(Ds<0) Ds = 0.;
132     Double_t u21 = (-by+uj*sqrt(Ds))/(2*ab);
133     Double_t u21s = -TMath::Sign(1.,Bank)*TMath::Abs(u21);
134     Double_t u01 = TMath::Sign(1.,Yaw)*TMath::Abs((u10*u11+u20*u21)/u00);
135     // cerr<<"by = " << by<<"\tuj"<<uj<<"\tab: "<<ab<<"\t"<<by*by-4*ab*cy<<endl;
136     // cerr<<"u21: "<<u21<<"\tu01: "<<u01<<"\t"<<TMath::Abs((u10*u11+u20*u21)/u00)<<"\t"<<TMath::Sign(1.,Yaw)<<"\t"<<(u10*u11+u20*u21)<<endl;
137     Int_t fj=1;
138     if(TMath::Sign(1.,SPitch)>0 && TMath::Sign(1.,Yaw)>0) fj=-1;
139     // cout<<"bla-bla-bla"<<endl;
140    
141     Double_t u22 = (-bz+fj*sqrt(bz*bz-4*ab*cz))/(2*ab);
142     Double_t u22s = -TMath::Sign(1.,SPitch)*TMath::Abs(u22);
143     Double_t u02 = -TMath::Abs((u10*u12+u20*u22)/u00);
144    
145     // cout<<fj<<"\t"<<ab<<"\t"<<by<<"\t"<<cy<<"\t"<<bz<<"\t"<<cz<<endl;
146     // cout<<"INSIDE EULERTOECI"<<endl;
147     // cout<<u00<<"\t"<<u01<<"\t"<<u02<<endl;
148     // cout<<u10<<"\t"<<u11<<"\t"<<u12<<endl;
149     // cout<<u20<<"\t"<<u21s<<"\t"<<u22s<<endl;
150    
151     TMatrixD Dij(3,3);
152     Dij(0,0) = u00; Dij(0,1) = u01; Dij(0,2) = u02;
153     Dij(1,0) = u10; Dij(1,1) = u11; Dij(1,2) = u12;
154     Dij(2,0) = u20; Dij(2,1) = u21s; Dij(2,2) = u22s;
155    
156     TMatrixD Shij(3,3);
157     TMatrixD Usij(3,3);
158     Usij = (Aij*Dij);
159     Usij.Invert();
160     Shij = Zij*Usij;
161     Shij.Invert();
162    
163     return Shij;
164     }
165    
166     TMatrixD OrientationInfo::ECItoGEO(TMatrixD Aij, UInt_t t, Double_t lat, Double_t lon){
167     TMatrixD Gij(3,3);
168     Double_t omg = (7.292115e-5)*a; // Earth rotation velosity (Around polar axis);
169     Double_t d = (t-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t;
170     d = d/86400;
171     Double_t T = d/36525; //Number of Julian centuries;
172    
173     Double_t Se = 6*3600+41*60+236.555367908*d+0.093104*pow(T,2)-(6.2e-6)*pow(T,3);
174    
175     Int_t tr = (t-10957*86400)%86400;
176    
177     Double_t Somg = (Se+49.077+omg*86400*tr/360)*360/86400;
178    
179     lon=(-lon)/a; lat=(-lat)/a;
180    
181     Gij(0,0)=cos(lat)*cos(lon)*cos(Somg/a)+cos(lat)*sin(lon)*sin(Somg/a);
182     Gij(0,1)=cos(lat)*cos(lon)*sin(Somg/a)-cos(lat)*sin(lon)*cos(Somg/a);
183     Gij(0,2)=-sin(lat);
184     Gij(1,0)=sin(lon)*cos(Somg/a)-cos(lon)*sin(Somg/a);
185     Gij(1,1)=sin(lon)*sin(Somg/a)+cos(lon)*cos(Somg/a);
186     Gij(1,2)=0;
187     Gij(2,0)=sin(lat)*cos(lon)*cos(Somg/a)+sin(lat)*sin(lon)*sin(Somg/a);
188     Gij(2,1)=sin(lat)*cos(lon)*sin(Somg/a)-sin(lat)*sin(lon)*cos(Somg/a);
189     Gij(2,2)=cos(lat);
190    
191     TMatrixD Tij=Gij*Aij;
192    
193     return Tij;
194     }
195    
196     TMatrixD OrientationInfo::GEOtoECI(TMatrixD Aij, UInt_t t, Double_t lat, Double_t lon){
197     TMatrixD Gij(3,3);
198     Double_t omg = (7.292115e-5)*a; // Earth rotation velosity (Around polar axis);
199     Double_t d = (t-10957*86400-43200); //Number of day, passing from 01/01/2000 12:00:00 to t;
200     d = d/86400;
201     Double_t T = d/36525; //Number of Julian centuries;
202    
203     Double_t Se = 6*3600+41*60+236.555367908*d+0.093104*pow(T,2)-(6.2e-6)*pow(T,3);
204    
205     Int_t tr = (t-10957*86400)%86400;
206    
207     Double_t Somg = (Se+49.077+omg*86400*tr/360)*360/86400;
208    
209     lon=(-lon)/a; lat=(-lat)/a;
210    
211     Gij(0,0)=cos(lat)*cos(lon)*cos(Somg/a)+cos(lat)*sin(lon)*sin(Somg/a);
212     Gij(1,0)=cos(lat)*cos(lon)*sin(Somg/a)-cos(lat)*sin(lon)*cos(Somg/a);
213     Gij(2,0)=-sin(lat);
214     Gij(0,1)=sin(lon)*cos(Somg/a)-cos(lon)*sin(Somg/a);
215     Gij(1,1)=sin(lon)*sin(Somg/a)+cos(lon)*cos(Somg/a);
216     Gij(2,1)=0;
217     Gij(0,2)=sin(lat)*cos(lon)*cos(Somg/a)+sin(lat)*sin(lon)*sin(Somg/a);
218     Gij(1,2)=sin(lat)*cos(lon)*sin(Somg/a)-sin(lat)*sin(lon)*cos(Somg/a);
219     Gij(2,2)=cos(lat);
220    
221     return Gij*Aij;
222     }
223    
224    
225 pam-mep 1.2 TMatrixD OrientationInfo::GEOtoGeomag(TMatrixD Aij,Double_t Bnorth, Double_t Beast, Double_t Bup){ //Geomagnetic geodetic reference frame
226     Double_t alpha = 0;
227     if(Beast==0. && Bnorth>0) alpha = 0; else
228     if(Beast==0. && Bnorth<0) alpha = 180.; else{
229     if(Beast > 0) alpha = TMath::ATan(Bnorth/Beast)*TMath::RadToDeg() - 90.;
230     if(Beast < 0) alpha = TMath::ATan(Bnorth/Beast)*TMath::RadToDeg() + 90.;
231     }
232     alpha = alpha*TMath::DegToRad();
233     Double_t beta = TMath::ATan(Bup/sqrt(pow(Bnorth,2)+pow(Beast,2)));
234     //if(Bup<0.0) beta = TMath::ATan(TMath::Abs(Bup/sqrt(pow(Bnorth,2)+pow(Beast,2))));
235     //if(Bup>0.0) beta = TMath::ATan(TMath::Abs(sqrt(pow(Bnorth,2)+pow(Beast,2))/Bup));
236     //cout<<"GEOtomag:alpha = "<<alpha*TMath::RadToDeg()<<"\tbeta = "<<beta*TMath::RadToDeg()<<endl;
237     TMatrixD Gij(3,3);
238     TMatrixD Fij(3,3);
239     Gij(0,0) = 1; //rotation around x-axis at angle alpha
240     Gij(0,1) = 0;
241     Gij(0,2) = 0; // |1 0 0 |
242     Gij(1,0) = 0; // |0 cos(alpha) -sin(alpha) |
243     Gij(1,1) = cos(alpha); // |0 sin(alpha) cos(alpha) |
244     Gij(1,2) = -sin(alpha);
245     Gij(2,0) = 0;
246     Gij(2,1) = sin(alpha);
247     Gij(2,2) = cos(alpha);
248     Gij.Invert();
249     Fij(0,0) = cos(beta); //rotation around y-axis at angle beta
250     Fij(0,1) = 0;
251     Fij(0,2) = sin(beta); // |cos(beta) 0 sin(beta)|
252     Fij(1,0) = 0; // | 0 1 0 |
253     Fij(1,1) = 1; // |-sin(beta) 0 cos(beta)|
254     Fij(1,2) = 0;
255     Fij(2,0) = -sin(beta);
256     Fij(2,1) = 0;
257     Fij(2,2) = cos(beta);
258     Fij.Invert();
259     //Int_t tri;
260     //cin >> tri;
261     return Fij*(Gij*Aij);
262     }
263    
264 mocchiut 1.1 TMatrixD OrientationInfo::PamelatoGEO(TMatrixD Aij, Double_t B1, Double_t B2, Double_t B3){
265     //TMatrixD Gij(3,3);
266     TMatrixD Hij(3,1);
267     TMatrixD Bij(3,1);
268     Bij(0,0) = B1;
269     Bij(1,0) = B2;
270     Bij(2,0) = B3;
271     Hij=Aij*Bij;
272     return Hij;
273     }
274    
275     TMatrixD OrientationInfo::ColPermutation(TMatrixD Aij){
276     TMatrixD Gij(3,3);
277     Gij(0,0) = 1; Gij(0,1) = 0; Gij(0,2) = 0;
278     Gij(1,0) = 0; Gij(1,1) = 0; Gij(1,2) = 1;
279     Gij(2,0) = 0; Gij(2,1) = -1; Gij(2,2) = 0;
280     return Aij*Gij;
281     }
282    
283 pam-mep 1.4 TVector3 OrientationInfo::GetSunPosition(UInt_t atime){
284     TVector3 sunout;
285     Float_t JD=atime/86400.+2440587.5;
286     //SAV
287     // cout << "JD = " << JD <<endl;
288     //SAV
289     //test June 1997 JD=2451545.0-877.047;
290     Float_t Tm = (JD - 2451545.0)/36525.;
291     Float_t Mo = (357.52910+35999.05030*Tm-0.0001559*Tm*Tm-0.00000048*Tm*Tm*Tm);
292     //SAV
293     // cout<<"Tm = " << Tm << "Mo = " << Mo <<endl;
294     //SAV
295     Mo=Mo*TMath::DegToRad();
296    
297     Float_t Co = ((1.914600 - 0.004817*Tm - 0.00014*Tm*Tm)*sin(Mo) + (0.019993 - 0.000101*Tm)* sin(2.*Mo) + 0.000290* sin(3.*Mo));
298     Co=Co* TMath::DegToRad();
299    
300     Float_t Lo = (280.46645 + 36000.76983*Tm +0.0003032*Tm*Tm);
301     Lo=Lo*TMath::DegToRad();
302    
303     Float_t theta = (Lo + Co); // * TMath::DegToRad();
304    
305     Float_t eps = (23.+26./60.+21.448/3600. - 46.8150/3600.*Tm - 0.00059/3600.*Tm*Tm + 0.001813*Tm*Tm*Tm)*TMath::DegToRad();
306    
307     //SAV
308     // cout << "Co = " << Co*TMath::RadToDeg() << "\tLo = " << Lo*TMath::RadToDeg() << "\ttheta = " << theta << "\teps = " << eps << endl;
309     //SAV
310    
311     Float_t YY=cos(eps)*sin(theta);
312     Float_t XX=cos(theta);
313     //SAV
314     // cout << "XX = " << XX << "\tYY" << YY << endl;
315     //SAV
316     Float_t RASun=atan(YY/XX);
317     if(XX<0. ) RASun=RASun+TMath::Pi();
318     if(XX >0. && YY <0.) RASun=RASun+2*TMath::Pi();
319     Float_t DESun = asin(sin(eps)*sin(theta));
320     //SAV
321     // cout << "DE = " << DESun << "\t" << RASun << endl;
322     //SAV
323     sunout.SetMagThetaPhi(1.0,TMath::Pi()/2.-DESun,RASun);
324     return sunout;
325     }
326    
327 pam-mep 1.2 Float_t OrientationInfo::Larmor(Float_t Ek,Float_t Bm,Int_t iZ,Float_t xA){ //Ek in MeV, Bm in nT, Pitch-angle, rad
328 mocchiut 1.3 Float_t mp = 938.272029;// Float_t amu = 931.494043e0;
329 pam-mep 1.2 Float_t cc = 299792458.;
330     Float_t ee = 1.60217653e-19;
331     Float_t kg = 1.7826619e-30;
332     Float_t gam = (Ek+mp)/mp;
333     Float_t mm = mp*kg;
334     Float_t omega = iZ*ee*Bm*1e-9/(gam*mm);
335     Float_t larmor = 1e-3*sqrt(1e0-1e0/pow(gam,2))*cc/omega;
336 pam-mep 1.4 larmor = 1e-3*Ek*cc/omega; //Ek here is p or for onecharged particle R; larmor in m
337 pam-mep 1.2 return larmor;
338     }
339    
340     TMatrixD OrientationInfo::GetDirectiontoGirocenter(Float_t R, Float_t Px, Float_t Py){
341     TMatrixD GirDir(3,1);
342     if(R>0){
343     GirDir(0,0) = Py;
344     GirDir(1,0) = -Px;
345     }else{
346     GirDir(0,0) = -Py;
347     GirDir(1,0) = Px;
348     }
349     GirDir(2,0) = 0.;
350     return GirDir;
351     }
352    
353 mocchiut 1.1 Double_t OrientationInfo::GetPitchAngle(Double_t x1, Double_t y1, Double_t z1, Double_t x2, Double_t y2, Double_t z2){
354     return TMath::ACos((x1*x2 + y1*y2 + z1*z2)/(sqrt(pow(x1,2)+pow(y1,2)+pow(z1,2))*sqrt(pow(x2,2)+pow(y2,2)+pow(z2,2)))) * TMath::RadToDeg();
355     }

  ViewVC Help
Powered by ViewVC 1.1.23