/[PAMELA software]/DarthVader/OrbitalInfo/src/OrbitalInfoCore.cpp
ViewVC logotype

Contents of /DarthVader/OrbitalInfo/src/OrbitalInfoCore.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.67 - (show annotations) (download)
Tue Feb 25 15:41:48 2014 UTC (11 years, 9 months ago) by emocchiutti
Branch: MAIN
Changes since 1.66: +5 -1 lines
Verbose comments added

1 // C/C++ headers
2 //
3 #include <fstream>
4 #include <string.h>
5 #include <iostream>
6 #include <cstring>
7 #include <stdio.h>
8 //
9 // ROOT headers
10 //
11 //#include <TCanvas.h>
12 #include <TH2F.h> //for test only. Vitaly.
13 #include <TVector3.h>
14 //#include <TF1.h>
15
16 #include <TTree.h>
17 #include <TClassEdit.h>
18 #include <TObject.h>
19 #include <TList.h>
20 #include <TArrayI.h>
21 #include <TSystem.h>
22 #include <TSystemDirectory.h>
23 #include <TString.h>
24 #include <TFile.h>
25 #include <TClass.h>
26 #include <TSQLServer.h>
27 #include <TSQLRow.h>
28 #include <TSQLResult.h>
29 //
30 // RunInfo header
31 //
32 #include <RunInfo.h>
33 #include <GLTables.h>
34 //
35 // YODA headers
36 //
37 #include <PamelaRun.h>
38 #include <PscuHeader.h>
39 #include <PscuEvent.h>
40 #include <EventHeader.h>
41 #include <mcmd/McmdEvent.h>
42 #include <mcmd/McmdRecord.h>
43 //
44 // This program headers
45 //
46 #include <OrbitalInfo.h>
47 #include <OrbitalInfoVerl2.h>
48 #include <OrbitalInfoCore.h>
49 #include <InclinationInfo.h>
50
51
52 using namespace std;
53
54 //
55 // CORE ROUTINE
56 //
57 //
58 int OrbitalInfoCore(UInt_t run, TFile *file, GL_TABLES *glt, Int_t OrbitalInfoargc, char *OrbitalInfoargv[]){
59 //
60 Int_t i = 0;
61 TString host = glt->CGetHost();
62 TString user = glt->CGetUser();
63 TString psw = glt->CGetPsw();
64 TSQLServer *dbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data());
65 //
66 stringstream myquery;
67 myquery.str("");
68 myquery << "SET time_zone='+0:00'";
69 delete dbc->Query(myquery.str().c_str());
70 //
71 TString processFolder = Form("OrbitalInfoFolder_%u",run);
72 //
73 // Set these to true to have a very verbose output.
74 //
75 Bool_t debug = false;
76 //
77 Bool_t verbose = false;
78 //
79 Bool_t standalone = false;
80 //
81 if ( OrbitalInfoargc > 0 ){
82 i = 0;
83 while ( i < OrbitalInfoargc ){
84 if ( !strcmp(OrbitalInfoargv[i],"-processFolder") ) {
85 if ( OrbitalInfoargc < i+1 ){
86 throw -3;
87 };
88 processFolder = (TString)OrbitalInfoargv[i+1];
89 i++;
90 };
91 if ( (!strcmp(OrbitalInfoargv[i],"--debug")) || (!strcmp(OrbitalInfoargv[i],"-g")) ) {
92 verbose = true;
93 debug = true;
94 };
95 if ( (!strcmp(OrbitalInfoargv[i],"--verbose")) || (!strcmp(OrbitalInfoargv[i],"-v")) ) {
96 verbose = true;
97 };
98 if ( (!strcmp(OrbitalInfoargv[i],"--standalone")) ) {
99 standalone = true;
100 };
101 if ( (!strcmp(OrbitalInfoargv[i],"--calculate-pitch")) ) {
102 standalone = false;
103 };
104 i++;
105 };
106 };
107 //
108 const char* outDir = gSystem->DirName(gSystem->DirName(file->GetPath()));
109 //
110 TTree *OrbitalInfotr = 0;
111 UInt_t nevents = 0;
112 UInt_t neventsm = 0;
113 //
114 // variables needed to reprocess data
115 //
116 Long64_t maxsize = 10000000000LL;
117 TTree::SetMaxTreeSize(maxsize);
118 //
119 TString OrbitalInfoversion;
120 ItoRunInfo *runinfo = 0;
121 TArrayI *runlist = 0;
122 TTree *OrbitalInfotrclone = 0;
123 Bool_t reproc = false;
124 Bool_t reprocall = false;
125 Bool_t igrfloaded = false;
126 UInt_t nobefrun = 0;
127 UInt_t noaftrun = 0;
128 UInt_t numbofrun = 0;
129 stringstream ftmpname;
130 TString fname;
131 UInt_t totfileentries = 0;
132 UInt_t idRun = 0;
133 UInt_t anni5 = 60 * 60 * 24 * 365 * 5 ;//1576800
134 //
135 // My variables. Vitaly.
136 //
137 // UInt_t oi = 0;
138 Int_t tmpSize = 0;
139 //
140 // variables needed to handle error signals
141 //
142 Int_t code = 0;
143 Int_t sgnl;
144 //
145 // OrbitalInfo classes
146 //
147 OrbitalInfo *orbitalinfo = new OrbitalInfo();
148 OrbitalInfo *orbitalinfoclone = new OrbitalInfo();
149
150 //
151 // define variables for opening and reading level0 file
152 //
153 TFile *l0File = 0;
154 TTree *l0tr = 0;
155 // TTree *l0trm = 0;
156 TChain *ch = 0;
157 // EM: open also header branch
158 TBranch *l0head = 0;
159 pamela::EventHeader *eh = 0;
160 pamela::PscuHeader *ph = 0;
161 pamela::McmdEvent *mcmdev = 0;
162 pamela::McmdRecord *mcmdrc = 0;
163 // end EM
164
165 // pamela::RunHeaderEvent *reh = new pamela::RunHeaderEvent;
166 // pamela::EventHeader *eH = new pamela::EventHeader;
167
168 //
169 // Define other basic variables
170 //
171 UInt_t procev = 0;
172 stringstream file2;
173 stringstream file3;
174 stringstream qy;
175 Int_t totevent = 0;
176 UInt_t atime = 0;
177 UInt_t re = 0;
178 UInt_t ik = 0;
179
180 // Position
181 Float_t lon, lat, alt;
182
183 //
184 // IGRF stuff
185 //
186 Double_t dimo = 0.0; // dipole moment (computed from dat files) // EM GCC 4.7
187 Float_t bnorth, beast, bdown, babs;
188 Float_t xl; // L value
189 Float_t icode; // code value for L accuracy (see fortran code)
190 Float_t bab1; // What's the difference with babs?
191 Float_t stps = 0.005; // step size for field line tracing
192 Float_t bdel = 0.01; // required accuracy
193 Float_t bequ; // equatorial b value (also called b_0)
194 Bool_t value = 0; // false if bequ is not the minimum b value
195 Float_t rr0; // equatorial radius normalized to earth radius
196
197 //
198 // Working filename
199 //
200 TString outputfile;
201 stringstream name;
202 name.str("");
203 name << outDir << "/";
204 //
205 // temporary file and folder
206 //
207 TFile *tempfile = 0;
208 TTree *tempOrbitalInfo = 0;
209 stringstream tempname;
210 stringstream OrbitalInfofolder;
211 Bool_t myfold = false;
212 tempname.str("");
213 tempname << outDir;
214 tempname << "/" << processFolder.Data();
215 OrbitalInfofolder.str("");
216 OrbitalInfofolder << tempname.str().c_str();
217 tempname << "/OrbitalInfotree_run";
218 tempname << run << ".root";
219 UInt_t totnorun = 0;
220 //
221 // DB classes
222 //
223 GL_ROOT *glroot = new GL_ROOT();
224 GL_TIMESYNC *dbtime = 0;
225 GL_TLE *gltle = new GL_TLE();
226 //
227 //Quaternions classes
228 //
229 Quaternions *L_QQ_Q_l_lower = 0;
230 InclinationInfo *RYPang_lower = 0;
231 Quaternions *L_QQ_Q_l_upper = 0;
232 InclinationInfo *RYPang_upper = 0;
233
234 cEci eCi;
235
236 // Initialize fortran routines!!!
237 Int_t ltp1 = 0;
238 Int_t ltp2 = 0;
239 Int_t ltp3 = 0;
240 // Int_t uno = 1;
241 // const char *niente = " ";
242 GL_PARAM *glparam = new GL_PARAM();
243 GL_PARAM *glparam2 = new GL_PARAM();
244 GL_PARAM *glparam3 = new GL_PARAM();
245
246 //
247 // Orientation variables. Vitaly
248 //
249 UInt_t evfrom = 0;
250 UInt_t jumped = 0;
251 Int_t itr = -1;
252 // Double_t A1;
253 // Double_t A2;
254 // Double_t A3;
255 Double_t Px = 0;
256 Double_t Py = 0;
257 Double_t Pz = 0;
258 TTree *ttof = 0;
259 ToFLevel2 *tof = new ToFLevel2();
260 OrientationInfo *PO = new OrientationInfo();
261 Int_t nz = 6;
262 Float_t zin[6];
263 Int_t nevtofl2 = 0;
264 if ( verbose ) cout<<"Reading quaternions external file"<<endl;
265 cout.setf(ios::fixed,ios::floatfield);
266 /******Reading recovered quaternions...*********/
267 vector<Double_t> recqtime;
268 vector<Float_t> recq0;
269 vector<Float_t> recq1;
270 vector<Float_t> recq2;
271 vector<Float_t> recq3;
272 Float_t Norm = 1;
273 Int_t parerror=glparam->Query_GL_PARAM(1,303,dbc); // parameters stored in DB in GL_PRAM table
274 ifstream in((glparam->PATH+glparam->NAME).Data(),ios::in);
275 if ( parerror<0 ) {
276 code = parerror;
277 goto closeandexit;
278 }
279 while(!in.eof()){
280 recqtime.resize(recqtime.size()+1);
281 Int_t sizee = recqtime.size();
282 recq0.resize(sizee);
283 recq1.resize(sizee);
284 recq2.resize(sizee);
285 recq3.resize(sizee);
286 in>>recqtime[sizee-1];
287 in>>recq0[sizee-1];
288 in>>recq1[sizee-1];
289 in>>recq2[sizee-1];
290 in>>recq3[sizee-1];
291 in>>Norm;
292 }
293 if ( verbose ) cout<<"We have read recovered data"<<endl;
294
295 // IGRF stuff moved inside run loop!
296
297 for (Int_t ip=0;ip<nz;ip++){
298 zin[ip] = tof->GetZTOF(tof->GetToFPlaneID(ip));
299 };
300 //
301 if ( !standalone ){
302 //
303 // Does it contain the Tracker tree?
304 //
305 ttof = (TTree*)file->Get("ToF");
306 if ( !ttof ) {
307 if ( verbose ) printf(" OrbitalInfo - ERROR: no tof tree\n");
308 code = -900;
309 goto closeandexit;
310 };
311 ttof->SetBranchAddress("ToFLevel2",&tof);
312 nevtofl2 = ttof->GetEntries();
313 };
314 //
315 // Let's start!
316 //
317 // As a first thing we must check what we have to do: if run = 0 we must process all events in the file has been passed
318 // if run != 0 we must process only that run but first we have to check if the tree MyDetector2 already exist in the file
319 // if it exists we are reprocessing data and we must delete that entries, if not we must create it.
320 //
321 if ( run == 0 ) reproc = true;
322 //
323 //
324 // Output file is "outputfile"
325 //
326 if ( !file->IsOpen() ){
327 //printf(" OrbitalInfo - ERROR: cannot open file for writing\n");
328 throw -901;
329 };
330 //
331 // Retrieve GL_RUN variables from the level2 file
332 //
333 OrbitalInfoversion = OrbitalInfoInfo(false); // we should decide how to handle versioning system
334 //
335 // create an interface to RunInfo called "runinfo"
336 //
337 runinfo = new ItoRunInfo(file);
338 //
339 // open "Run" tree in level2 file, if not existing return an error (sngl != 0)
340 //
341 sgnl = 0;
342 sgnl = runinfo->Update(run, "ORB", OrbitalInfoversion);
343 //sgnl = runinfo->Read(run);
344
345 if ( sgnl ){
346 //printf("OrbitalInfo - ERROR: RunInfo exited with non-zero status\n");
347 code = sgnl;
348 goto closeandexit;
349 } else {
350 sgnl = 0;
351 };
352 //
353 // number of events in the file BEFORE the first event of our run
354 //
355 nobefrun = runinfo->GetFirstEntry();
356 //
357 // total number of events in the file
358 //
359 totfileentries = runinfo->GetFileEntries();
360 //
361 // first file entry AFTER the last event of our run
362 //
363 noaftrun = runinfo->GetLastEntry() + 1;
364 //
365 // number of run to be processed
366 //
367 numbofrun = runinfo->GetNoRun();
368 totnorun = runinfo->GetRunEntries();
369 //
370 // Try to access the OrbitalInfo tree in the file, if it exists we are reprocessing data if not we are processing a new run
371 //
372 OrbitalInfotrclone = (TTree*)file->Get("OrbitalInfo");
373 //
374 if ( !OrbitalInfotrclone ){
375 //
376 // tree does not exist, we are not reprocessing
377 //
378 reproc = false;
379 if ( run == 0 ){
380 if (verbose) printf(" OrbitalInfo - WARNING: you are reprocessing data but OrbitalInfo tree does not exist!\n");
381 }
382 if ( runinfo->IsReprocessing() && run != 0 ) {
383 if (verbose) printf(" OrbitalInfo - WARNING: it seems you are not reprocessing data but OrbitalInfo\n versioning information already exists in RunInfo.\n");
384 }
385 } else {
386 //
387 // tree exists, we are reprocessing data. Are we reprocessing a single run or all the file?
388 //
389 OrbitalInfotrclone->SetAutoSave(900000000000000LL);
390 reproc = true;
391 //
392 //
393 if (verbose) printf("\n Preparing the pre-processing...\n");
394 //
395 if ( run == 0 || totnorun == 1 ){
396 //
397 // we are reprocessing all the file
398 // if we are reprocessing everything we don't need to copy any old event and we can just work with the new tree and delete the old one immediately
399 //
400 reprocall = true;
401 //
402 if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing all runs\n Deleting old tree...\n");
403 //
404 } else {
405 //
406 // we are reprocessing a single run, we must copy to the new tree the events in the file which preceed the first event of the run
407 //
408 reprocall = false;
409 //
410 if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing run number %u \n",run);
411 //
412 // copying old tree to a new file
413 //
414 gSystem->MakeDirectory(OrbitalInfofolder.str().c_str());
415 myfold = true;
416 tempfile = new TFile(tempname.str().c_str(),"RECREATE");
417 tempOrbitalInfo = OrbitalInfotrclone->CloneTree(-1,"fast");
418 tempOrbitalInfo->SetName("OrbitalInfo-old");
419 tempfile->Write();
420 tempOrbitalInfo->Delete();
421 tempfile->Close();
422 }
423 //
424 // Delete the old tree from old file and memory
425 //
426 OrbitalInfotrclone->Clear();
427 OrbitalInfotrclone->Delete("all");
428 //
429 if (verbose) printf(" ...done!\n");
430 //
431 };
432 //
433 // create mydetector tree mydect
434 //
435 file->cd();
436 OrbitalInfotr = new TTree("OrbitalInfo-new","PAMELA OrbitalInfo data");
437 OrbitalInfotr->SetAutoSave(900000000000000LL);
438 orbitalinfo->Set();//ELENA **TEMPORANEO?**
439 OrbitalInfotr->Branch("OrbitalInfo","OrbitalInfo",&orbitalinfo);
440 //
441 if ( reproc && !reprocall ){
442 //
443 // open new file and retrieve also tree informations
444 //
445 tempfile = new TFile(tempname.str().c_str(),"READ");
446 OrbitalInfotrclone = (TTree*)tempfile->Get("OrbitalInfo-old");
447 OrbitalInfotrclone->SetAutoSave(900000000000000LL);
448 OrbitalInfotrclone->SetBranchAddress("OrbitalInfo",&orbitalinfoclone);
449 //
450 if ( nobefrun > 0 ){
451 if (verbose){
452 printf("\n Pre-processing: copying events from the old tree before the processed run\n");
453 printf(" Copying %u events in the file which are before the beginning of the run %u \n",nobefrun,run);
454 printf(" Start copying at event number 0, end copying at event number %u \n",nobefrun);
455 }
456 for (UInt_t j = 0; j < nobefrun; j++){
457 //
458 if ( OrbitalInfotrclone->GetEntry(j) <= 0 ) throw -36;
459 //
460 // copy orbitalinfoclone to mydec
461 //
462 orbitalinfo->Clear();
463 //
464 memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone));
465 //
466 // Fill entry in the new tree
467 //
468 OrbitalInfotr->Fill();
469 //
470 };
471 if (verbose) printf(" Finished successful copying!\n");
472 };
473 };
474 //
475 //
476 // Get the list of run to be processed, if only one run has to be processed the list will contain one entry only.
477 //
478 runlist = runinfo->GetRunList();
479 //
480 // Loop over the run to be processed
481 //
482 for (UInt_t irun=0; irun < numbofrun; irun++){
483
484 L_QQ_Q_l_lower = new Quaternions();
485 RYPang_lower = new InclinationInfo();
486 L_QQ_Q_l_upper = new Quaternions();
487 RYPang_upper = new InclinationInfo();
488
489 //
490 // retrieve the first run ID to be processed using the RunInfo list
491 //
492
493 idRun = runlist->At(irun);
494 if (verbose){
495 printf("\n\n\n ####################################################################### \n");
496 printf(" PROCESSING RUN NUMBER %i \n",(int)idRun);
497 printf(" ####################################################################### \n\n\n");
498 }
499 //
500 runinfo->ID_ROOT_L0 = 0;
501 //
502 // store in the runinfo class the GL_RUN variables for our run
503 //
504 sgnl = 0;
505 sgnl = runinfo->GetRunInfo(idRun);
506 if ( sgnl ){
507 if ( debug ) printf("\n OrbitalInfo - ERROR: RunInfo exited with non-zero status\n");
508 code = sgnl;
509 goto closeandexit;
510 } else {
511 sgnl = 0;
512 };
513 //
514 // now you can access that variables using the RunInfo class this way runinfo->ID_REG_RUN
515 //
516 if ( runinfo->ID_ROOT_L0 == 0 ){
517 if ( debug ) printf("\n OrbitalInfo - ERROR: no run with ID_RUN = %u \n\n Exiting... \n\n",idRun);
518 code = -5;
519 goto closeandexit;
520 };
521 //
522 // prepare the timesync for the db
523 //
524 dbtime = new GL_TIMESYNC(runinfo->ID_ROOT_L0,"ID",dbc);
525
526 //
527 // Search in the DB the path and name of the LEVEL0 file to be processed.
528 //
529 glroot->Query_GL_ROOT(runinfo->ID_ROOT_L0,dbc);
530 //
531 ftmpname.str("");
532 ftmpname << glroot->PATH.Data() << "/";
533 ftmpname << glroot->NAME.Data();
534 fname = ftmpname.str().c_str();
535 ftmpname.str("");
536 //
537 // print nout informations
538 //
539 totevent = runinfo->NEVENTS;
540 evfrom = runinfo->EV_FROM;
541 //cout<<"totevents = "<<totevent<<"\n";
542 if (verbose){
543 printf("\n LEVEL0 data file: %s \n",fname.Data());
544 printf(" RUN HEADER absolute time is: %u \n",runinfo->RUNHEADER_TIME);
545 printf(" RUN TRAILER absolute time is: %u \n",runinfo->RUNTRAILER_TIME);
546 printf(" %i events to be processed for run %u: from %i to %i \n\n",totevent,idRun,runinfo->EV_FROM+1,runinfo->EV_FROM+totevent);
547 }//
548 //
549 // if ( !totevent ) goto closeandexit;
550 // Open Level0 file
551 if ( l0File ) l0File->Close();
552 l0File = new TFile(fname.Data());
553 if ( !l0File ) {
554 if ( debug ) printf(" OrbitalInfo - ERROR: problems opening Level0 file\n");
555 code = -6;
556 goto closeandexit;
557 };
558 l0tr = (TTree*)l0File->Get("Physics");
559 if ( !l0tr ) {
560 if ( debug ) printf(" OrbitalInfo - ERROR: no Physics tree in Level0 file\n");
561 l0File->Close();
562 code = -7;
563 goto closeandexit;
564 };
565 // EM: open header branch as well
566 l0head = l0tr->GetBranch("Header");
567 if ( !l0head ) {
568 if ( debug ) printf(" OrbitalInfo - ERROR: no Header branch in Level0 tree\n");
569 l0File->Close();
570 code = -8;
571 goto closeandexit;
572 };
573 l0tr->SetBranchAddress("Header", &eh);
574 // end EM
575 nevents = l0head->GetEntries();
576 //
577 if ( nevents < 1 && totevent ) {
578 if ( debug ) printf(" OrbitalInfo - ERROR: Level0 file is empty\n\n");
579 l0File->Close();
580 code = -11;
581 goto closeandexit;
582 };
583 //
584 if ( runinfo->EV_TO > nevents-1 && totevent ) {
585 if ( debug ) printf(" OrbitalInfo - ERROR: too few entries in the registry tree\n");
586 l0File->Close();
587 code = -12;
588 goto closeandexit;
589 };
590
591 //
592 // open IGRF files and do it only once if we are processing a full level2 file
593 //
594 if ( reprocall && !igrfloaded ){
595
596 if ( l0head->GetEntry(runinfo->EV_FROM) > 0 ){
597 igrfloaded = true;
598 //
599 // absolute time of first event of the run (it should not matter a lot)
600 //
601 ph = eh->GetPscuHeader();
602 atime = dbtime->DBabsTime(ph->GetOrbitalTime());
603
604 parerror=glparam->Query_GL_PARAM(atime-anni5,301,dbc); // parameters stored in DB in GL_PRAM table
605 if ( parerror<0 ) {
606 code = parerror;
607 goto closeandexit;
608 }
609 ltp1 = (Int_t)(glparam->PATH+glparam->NAME).Length();
610 if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam->PATH+glparam->NAME).Data());
611 //
612 parerror=glparam2->Query_GL_PARAM(atime,301,dbc); // parameters stored in DB in GL_PRAM table
613 if ( parerror<0 ) {
614 code = parerror;
615 goto closeandexit;
616 }
617 ltp2 = (Int_t)(glparam2->PATH+glparam2->NAME).Length();
618 if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam2->PATH+glparam2->NAME).Data());
619 //
620 parerror=glparam3->Query_GL_PARAM(atime,302,dbc); // parameters stored in DB in GL_PRAM table
621 if ( parerror<0 ) {
622 code = parerror;
623 goto closeandexit;
624 }
625 ltp3 = (Int_t)(glparam3->PATH+glparam3->NAME).Length();
626 if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam3->PATH+glparam3->NAME).Data());
627 //
628 initize_((char *)(glparam->PATH+glparam->NAME).Data(),&ltp1,(char *)(glparam2->PATH+glparam2->NAME).Data(),&ltp2,(char *)(glparam3->PATH+glparam3->NAME).Data(),&ltp3);
629 //
630 }
631 }
632 //
633 // End IGRF stuff//
634 //
635
636 //
637 // TTree *tp = (TTree*)l0File->Get("RunHeader");
638 // tp->SetBranchAddress("Header", &eH);
639 // tp->SetBranchAddress("RunHeader", &reh);
640 // tp->GetEntry(0);
641 // ph = eH->GetPscuHeader();
642 // ULong_t TimeSync = reh->LAST_TIME_SYNC_INFO;
643 // ULong_t ObtSync = reh->OBT_TIME_SYNC;
644 // if ( debug ) printf(" 1 TimeSync %lu ObtSync %lu DeltaOBT %lu\n",TimeSync,ObtSync,TimeSync-ObtSync);
645 //
646 ULong_t TimeSync = (ULong_t)dbtime->GetTimesync();
647 ULong_t ObtSync = (ULong_t)(dbtime->GetObt0()/1000);
648 ULong_t DeltaOBT = TimeSync - ObtSync;
649
650 if ( debug ) printf(" 2 TimeSync %lu ObtSync %lu DeltaOBT %lu\n",(ULong_t)(dbtime->GetTimesync()/1000),(ULong_t)dbtime->GetObt0(),TimeSync-ObtSync);
651 //
652 // Read MCMDs from up to 11 files, 5 before and 5 after the present one in order to have some kind of inclination information
653 //
654 ch = new TChain("Mcmd","Mcmd");
655 //
656 // look in the DB to find the closest files to this run
657 //
658 TSQLResult *pResult = 0;
659 TSQLRow *Row = 0;
660 stringstream myquery;
661 UInt_t l0fid[10];
662 Int_t i = 0;
663 memset(l0fid,0,10*sizeof(Int_t));
664 //
665 myquery.str("");
666 myquery << "select ID_ROOT_L0 from GL_RUN where RUNHEADER_TIME<=" << runinfo->RUNHEADER_TIME << " group by ID_ROOT_L0 order by RUNHEADER_TIME desc limit 5;";
667 //
668 pResult = dbc->Query(myquery.str().c_str());
669 //
670 i = 9;
671 if( pResult ){
672 //
673 Row = pResult->Next();
674 //
675 while ( Row ){
676 //
677 // store infos and exit
678 //
679 l0fid[i] = (UInt_t)atoll(Row->GetField(0));
680 i--;
681 Row = pResult->Next();
682 //
683 };
684 pResult->Delete();
685 };
686 //
687 myquery.str("");
688 myquery << "select ID_ROOT_L0 from GL_RUN where RUNHEADER_TIME>" << runinfo->RUNHEADER_TIME << " group by ID_ROOT_L0 order by RUNHEADER_TIME asc limit 5;";
689 //
690 pResult = dbc->Query(myquery.str().c_str());
691 //
692 i = 0;
693 if( pResult ){
694 //
695 Row = pResult->Next();
696 //
697 while ( Row ){
698 //
699 // store infos and exit
700 //
701 l0fid[i] = (UInt_t)atoll(Row->GetField(0));
702 i++;
703 Row = pResult->Next();
704 //
705 };
706 pResult->Delete();
707 };
708 //
709 i = 0;
710 UInt_t previd = 0;
711 while ( i < 10 ){
712 if ( l0fid[i] && previd != l0fid[i] ){
713 previd = l0fid[i];
714 myquery.str("");
715 myquery << "select PATH,NAME from GL_ROOT where ID=" << l0fid[i] << " ;";
716 //
717 pResult = dbc->Query(myquery.str().c_str());
718 //
719 if( pResult ){
720 //
721 Row = pResult->Next();
722 //
723 if ( debug ) printf(" Using inclination informations from file: %s \n",(((TString)gSystem->ExpandPathName(Row->GetField(0)))+"/"+(TString)Row->GetField(1)).Data());
724 ch->Add(((TString)gSystem->ExpandPathName(Row->GetField(0)))+"/"+(TString)Row->GetField(1));
725 //
726 pResult->Delete();
727 };
728 };
729 i++;
730 };
731 //
732 // l0trm = (TTree*)l0File->Get("Mcmd");
733 // ch->ls();
734 ch->SetBranchAddress("Mcmd",&mcmdev);
735 // printf(" entries %llu \n", ch->GetEntries());
736 // l0trm = ch->GetTree();
737 // neventsm = l0trm->GetEntries();
738 neventsm = ch->GetEntries();
739 if ( debug ) printf(" entries %u \n", neventsm);
740 // neventsm = 0;
741 //
742 if (neventsm == 0){
743 if ( debug ) printf("InclinationInfo - WARNING: No quaternions in this File");
744 // l0File->Close();
745 code = 900;
746 // goto closeandexit;
747 }
748 //
749
750 // l0trm->SetBranchAddress("Mcmd", &mcmdev);
751 // l0trm->SetBranchAddress("Header", &eh);
752 //
753 //
754 //
755
756 // UInt_t mctren = 0;
757 // UInt_t mcreen = 0;
758 // UInt_t numrec = 0;
759 //
760 // Double_t upperqtime = 0;
761 Double_t lowerqtime = 0;
762
763 // Double_t incli = 0;
764 // oi = 0;
765 // UInt_t ooi = 0;
766 //
767 // init quaternions information from mcmd-packets
768 //
769 Bool_t isf = true;
770 // Int_t fgh = 0;
771
772 vector<Float_t> q0;
773 vector<Float_t> q1;
774 vector<Float_t> q2;
775 vector<Float_t> q3;
776 vector<Double_t> qtime;
777 vector<Float_t> qPitch;
778 vector<Float_t> qRoll;
779 vector<Float_t> qYaw;
780 vector<Int_t> qmode;
781
782 Int_t nt = 0;
783
784 //init sine-function interpolation
785
786 //cout<<"Sine coeficient initialisation..."<<endl;
787 vector<Sine> q0sine;
788 vector<Sine> q1sine;
789 vector<Sine> q2sine;
790 vector<Sine> q3sine;
791 vector<Sine> Yawsine;
792
793 /*TH2F* q0testing = new TH2F();
794 TH2F* q1testing = new TH2F();
795 TH2F* q2testing = new TH2F();
796 TH2F* q3testing = new TH2F();
797 TH2F* Pitchtesting = new TH2F();
798 */
799 UInt_t must = 0;
800
801 //
802 // run over all the events of the run
803 //
804 if (verbose) printf("\n Ready to start! \n\n Processed events: \n\n");
805 //
806 //
807 for ( re = runinfo->EV_FROM; re < (runinfo->EV_FROM+runinfo->NEVENTS); re++){
808 //
809 if ( procev%1000 == 0 && procev > 0 && verbose ) printf(" %iK \n",procev/1000);
810 if ( debug ) printf(" %i \n",procev);
811 //
812 if ( l0head->GetEntry(re) <= 0 ) throw -36;
813 //
814 // absolute time of this event
815 //
816 ph = eh->GetPscuHeader();
817 atime = dbtime->DBabsTime(ph->GetOrbitalTime());
818 if ( debug ) printf(" %i absolute time \n",procev);
819 //
820 // paranoid check
821 //
822 if ( (atime > (runinfo->RUNTRAILER_TIME+1)) || (atime < (runinfo->RUNHEADER_TIME-1)) ) {
823 if (verbose) printf(" OrbitalInfo - WARNING: event at time outside the run time window, skipping it\n");
824 jumped++;
825 // debug = true;
826 continue;
827 }
828
829 //
830 // retrieve tof informations
831 //
832 if ( !reprocall ){
833 itr = nobefrun + (re - evfrom - jumped);
834 //itr = re-(46438+200241);
835 } else {
836 itr = runinfo->GetFirstEntry() + (re - evfrom - jumped);
837 };
838 //
839 if ( !standalone ){
840 if ( itr > nevtofl2 ){
841 if ( verbose ) printf(" OrbitalInfo - ERROR: no tof events with entry = %i in Level2 file\n",itr);
842 if ( debug ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall);
843 l0File->Close();
844 code = -901;
845 goto closeandexit;
846 };
847 //
848 tof->Clear();
849 //
850 if ( ttof->GetEntry(itr) <= 0 ){
851 if ( verbose ) printf(" problems with tof tree entries... entry = %i in Level2 file\n",itr);
852 if ( verbose ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall);
853 throw -36;
854 }
855 //
856 };
857 //
858 procev++;
859 //
860 // start processing
861 //
862 if ( debug ) printf(" %i start processing \n",procev);
863 orbitalinfo->Clear();
864 //
865 OrbitalInfoTrkVar *t_orb = new OrbitalInfoTrkVar();
866 if( !(orbitalinfo->OrbitalInfoTrk) ) orbitalinfo->OrbitalInfoTrk = new TClonesArray("OrbitalInfoTrkVar",2);
867 TClonesArray &tor = *orbitalinfo->OrbitalInfoTrk;
868 //
869 // Fill OBT, pkt_num and absTime
870 //
871 orbitalinfo->pkt_num = ph->GetCounter();
872 orbitalinfo->OBT = ph->GetOrbitalTime();
873 orbitalinfo->absTime = atime;
874 if ( debug ) printf(" %i pktnum obt abstime \n",procev);
875 //
876 // Propagate the orbit from the tle time to atime, using SGP(D)4.
877 //
878 if ( debug ) printf(" %i sgp4 \n",procev);
879 cCoordGeo coo;
880 Float_t jyear=0.;
881 //
882 if(atime >= gltle->GetToTime()) {
883 if ( !gltle->Query(atime, dbc) ){
884 //
885 // Compute the magnetic dipole moment.
886 //
887 if ( debug ) printf(" %i compute magnetic dipole moment \n",procev);
888 UInt_t year, month, day, hour, min, sec;
889 //
890 TTimeStamp t = TTimeStamp(atime, kTRUE);
891 t.GetDate(kTRUE, 0, &year, &month, &day);
892 t.GetTime(kTRUE, 0, &hour, &min, &sec);
893 jyear = (float) year
894 + (month*31.+ (float) day)/365.
895 + (hour*3600.+min*60.+(float)sec)/(24.*3600.*365.);
896 //
897 if ( debug ) printf(" %i compute magnetic dipole moment get dipole moment for year\n",procev);
898 if ( debug ) printf(" %i jyear %f dimo %f \n",procev,jyear,dimo);
899 feldcof_(&jyear, &dimo); // get dipole moment for year
900 if ( debug ) printf(" %i compute magnetic dipole moment end\n",procev);
901 } else {
902 code = -56;
903 goto closeandexit;
904 };
905 }
906 coo = getCoo(atime, gltle->GetFromTime(), gltle->GetTle());
907 //
908 cOrbit orbits(*gltle->GetTle());
909 //
910 if ( debug ) printf(" I am Here \n");
911 //
912 // synchronize with quaternions data
913 //
914 if ( isf && neventsm>0 ){
915 //
916 // First event
917 //
918 isf = false;
919 // upperqtime = atime;
920 lowerqtime = runinfo->RUNHEADER_TIME;
921 for ( ik = 0; ik < neventsm; ik++){ //number of macrocommad packets
922 if ( ch->GetEntry(ik) <= 0 ) throw -36;
923 tmpSize = mcmdev->Records->GetEntries();
924 // numrec = tmpSize;
925 for (Int_t j3 = 0;j3<tmpSize;j3++){ //number of subpackets
926 if ( debug ) printf(" ik %i j3 %i eh eh eh \n",ik,j3);
927 mcmdrc = (pamela::McmdRecord*)mcmdev->Records->At(j3);
928 if ( mcmdrc ){ // missing inclination bug [8RED 090116]
929 if ( debug ) printf(" pluto \n");
930 if ((int)mcmdrc->ID1 == 226 && mcmdrc->Mcmd_Block_crc_ok == 1){ //Check that it is Inclination Packet
931 L_QQ_Q_l_upper->fill(mcmdrc->McmdData);
932 for (UInt_t ui = 0; ui < 6; ui++){
933 if (ui>0){
934 if (L_QQ_Q_l_upper->time[ui]>L_QQ_Q_l_upper->time[0]){
935 if ( debug ) printf(" here1 %i \n",ui);
936 Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[ui]*1000-DeltaOBT*1000));
937 Int_t recSize = recqtime.size();
938 if(lowerqtime > recqtime[recSize-1]){
939 Int_t sizeqmcmd = qtime.size();
940 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
941 qtime[sizeqmcmd]=u_time;
942 q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][0];
943 q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][1];
944 q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][2];
945 q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][3];
946 qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui);
947 lowerqtime = u_time;
948 orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi);
949 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[ui][0],L_QQ_Q_l_upper->quat[ui][1],L_QQ_Q_l_upper->quat[ui][2],L_QQ_Q_l_upper->quat[ui][3]);
950 qRoll[sizeqmcmd]=RYPang_upper->Kren;
951 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
952 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
953 }
954 for(Int_t mu = nt;mu<recSize;mu++){
955 if(recqtime[mu]>lowerqtime && recqtime[mu]<u_time){
956 nt=mu;
957 Int_t sizeqmcmd = qtime.size();
958 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
959 qtime[sizeqmcmd]=recqtime[mu];
960 q0[sizeqmcmd]=recq0[mu];
961 q1[sizeqmcmd]=recq1[mu];
962 q2[sizeqmcmd]=recq2[mu];
963 q3[sizeqmcmd]=recq3[mu];
964 qmode[sizeqmcmd]=-10;
965 orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi);
966 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]);
967 qRoll[sizeqmcmd]=RYPang_upper->Kren;
968 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
969 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
970 }
971 if(recqtime[mu]>=u_time){
972 Int_t sizeqmcmd = qtime.size();
973 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
974 qtime[sizeqmcmd]=u_time;
975 q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][0];
976 q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][1];
977 q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][2];
978 q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][3];
979 qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui);
980 lowerqtime = u_time;
981 orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi);
982 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[ui][0],L_QQ_Q_l_upper->quat[ui][1],L_QQ_Q_l_upper->quat[ui][2],L_QQ_Q_l_upper->quat[ui][3]);
983 qRoll[sizeqmcmd]=RYPang_upper->Kren;
984 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
985 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
986 break;
987 }
988 }
989 }
990 }else{
991 if ( debug ) printf(" here2 %i \n",ui);
992 Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000));
993 if(lowerqtime>u_time)nt=0;
994 Int_t recSize = recqtime.size();
995 if(lowerqtime > recqtime[recSize-1]){
996 Int_t sizeqmcmd = qtime.size();
997 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
998 qtime[sizeqmcmd]=u_time;
999 q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][0];
1000 q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][1];
1001 q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][2];
1002 q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][3];
1003 qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui);
1004 lowerqtime = u_time;
1005 orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi);
1006 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]);
1007 qRoll[sizeqmcmd]=RYPang_upper->Kren;
1008 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
1009 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
1010 }
1011 for(Int_t mu = nt;mu<recSize;mu++){
1012 if(recqtime[mu]>lowerqtime && recqtime[mu]<u_time){
1013 nt=mu;
1014 Int_t sizeqmcmd = qtime.size();
1015 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
1016 qtime[sizeqmcmd]=recqtime[mu];
1017 q0[sizeqmcmd]=recq0[mu];
1018 q1[sizeqmcmd]=recq1[mu];
1019 q2[sizeqmcmd]=recq2[mu];
1020 q3[sizeqmcmd]=recq3[mu];
1021 qmode[sizeqmcmd]=-10;
1022 orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi);
1023 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]);
1024 qRoll[sizeqmcmd]=RYPang_upper->Kren;
1025 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
1026 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
1027 }
1028 if(recqtime[mu]>=u_time){
1029 Int_t sizeqmcmd = qtime.size();
1030 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
1031 qtime[sizeqmcmd]=u_time;
1032 q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][0];
1033 q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][1];
1034 q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][2];
1035 q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][3];
1036 qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui);
1037 lowerqtime = u_time;
1038 orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi);
1039 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]);
1040 qRoll[sizeqmcmd]=RYPang_upper->Kren;
1041 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
1042 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
1043 CopyQ(L_QQ_Q_l_lower,L_QQ_Q_l_upper);
1044 break;
1045 }
1046 }
1047 }
1048 }
1049 }
1050 }
1051 if ( debug ) printf(" ciccio \n");
1052 }
1053 }
1054
1055 if(qtime.size()==0){
1056 for(UInt_t my=0;my<recqtime.size();my++){
1057 Int_t sizeqmcmd = qtime.size();
1058 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
1059 qtime[sizeqmcmd]=recqtime[my];
1060 q0[sizeqmcmd]=recq0[my];
1061 q1[sizeqmcmd]=recq1[my];
1062 q2[sizeqmcmd]=recq2[my];
1063 q3[sizeqmcmd]=recq3[my];
1064 qmode[sizeqmcmd]=-10;
1065 orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi);
1066 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[my],recq1[my],recq2[my],recq3[my]);
1067 qRoll[sizeqmcmd]=RYPang_upper->Kren;
1068 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
1069 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
1070 }
1071 }
1072
1073 if ( debug ) printf(" fuffi \n");
1074
1075 if ( debug ) printf(" puffi \n");
1076 Double_t tmin = 9999999999.;
1077 Double_t tmax = 0.;
1078 for(UInt_t tre = 0;tre<qtime.size();tre++){
1079 if(qtime[tre]>tmax)tmax = qtime[tre];
1080 if(qtime[tre]<tmin)tmin = qtime[tre];
1081 }
1082 if ( debug ) printf(" gnfuffi \n");
1083
1084 } // if we processed first event
1085
1086
1087 //Filling Inclination information
1088 Double_t incli = 0;
1089 if ( qtime.size() > 1 ){
1090 for(UInt_t mu = must;mu<qtime.size()-1;mu++){
1091 if ( debug ) printf(" ??grfuffi %i sixe %i must %i \n",mu,qtime.size()-1,must);
1092 if(qtime[mu+1]>qtime[mu]){
1093 if ( debug ) printf(" grfuffi2 %i \n",mu);
1094 if(atime<=qtime[mu+1] && atime>=qtime[mu]){
1095 must = mu;
1096 if ( debug ) printf(" grfuffi3 %i \n",mu);
1097 incli = (qPitch[mu+1]-qPitch[mu])/(qtime[mu+1]-qtime[mu]);
1098 orbitalinfo->theta = incli*atime+qPitch[mu+1]-incli*qtime[mu+1];
1099 incli = (qRoll[mu+1]-qRoll[mu])/(qtime[mu+1]-qtime[mu]);
1100 orbitalinfo->etha = incli*atime+qRoll[mu+1]-incli*qtime[mu+1];
1101 incli = (qYaw[mu+1]-qYaw[mu])/(qtime[mu+1]-qtime[mu]);
1102 orbitalinfo->phi = incli*atime+qYaw[mu+1]-incli*qtime[mu+1];
1103
1104 incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]);
1105 orbitalinfo->q0 = incli*atime+q0[mu+1]-incli*qtime[mu+1];
1106 incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]);
1107 orbitalinfo->q1 = incli*atime+q1[mu+1]-incli*qtime[mu+1];
1108 incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]);
1109 orbitalinfo->q2 = incli*atime+q2[mu+1]-incli*qtime[mu+1];
1110 incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]);
1111 orbitalinfo->q3 = incli*atime+q3[mu+1]-incli*qtime[mu+1];
1112
1113 orbitalinfo->TimeGap = qtime[mu+1]-qtime[mu];
1114 orbitalinfo->mode = qmode[mu+1];
1115 //if(qmode[mu+1]==-10) orbitalinfo->R10r = true;else orbitalinfo->R10r = false;
1116 //reserved for next versions Vitaly.
1117 /*if(qmode[mu+1]==-10 || qmode[mu+1]==0 || qmode[mu+1]==1 || qmode[mu+1]==3 || qmode[mu+1]==4 || qmode[mu+1]==6){
1118 //linear interpolation
1119 incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]);
1120 orbitalinfo->q0 = incli*atime+q0[mu+1]-incli*qtime[mu+1];
1121 incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]);
1122 orbitalinfo->q1 = incli*atime+q1[mu+1]-incli*qtime[mu+1];
1123 incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]);
1124 orbitalinfo->q2 = incli*atime+q2[mu+1]-incli*qtime[mu+1];
1125 incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]);
1126 orbitalinfo->q3 = incli*atime+q3[mu+1]-incli*qtime[mu+1];
1127 }else{
1128 //sine interpolation
1129 for(UInt_t mt=0;mt<q0sine.size();mt++){
1130 if(atime<=q0sine[mt].finishPoint && atime>=q0sine[mt].startPoint){
1131 if(!q0sine[mt].NeedFit)orbitalinfo->q0=q0sine[mt].A*sin(q0sine[mt].b*atime+q0sine[mt].c);else{
1132 incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]);
1133 orbitalinfo->q0 = incli*atime+q0[mu+1]-incli*qtime[mu+1];
1134 }
1135 }
1136 if(atime<=q1sine[mt].finishPoint && atime>=q1sine[mt].startPoint){
1137 if(!q1sine[mt].NeedFit)orbitalinfo->q1=q1sine[mt].A*sin(q1sine[mt].b*atime+q1sine[mt].c);else{
1138 incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]);
1139 orbitalinfo->q1 = incli*atime+q1[mu+1]-incli*qtime[mu+1];
1140 }
1141 }
1142 if(atime<=q2sine[mt].finishPoint && atime>=q2sine[mt].startPoint){
1143 if(!q2sine[mt].NeedFit)orbitalinfo->q2=q0sine[mt].A*sin(q2sine[mt].b*atime+q2sine[mt].c);else{
1144 incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]);
1145 orbitalinfo->q2 = incli*atime+q2[mu+1]-incli*qtime[mu+1];
1146 }
1147 }
1148 if(atime<=q3sine[mt].finishPoint && atime>=q3sine[mt].startPoint){
1149 if(!q3sine[mt].NeedFit)orbitalinfo->q3=q0sine[mt].A*sin(q3sine[mt].b*atime+q3sine[mt].c);else{
1150 incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]);
1151 orbitalinfo->q3 = incli*atime+q3[mu+1]-incli*qtime[mu+1];
1152 }
1153 }
1154 if(atime<=Yawsine[mt].finishPoint && atime>=Yawsine[mt].startPoint){
1155 if(!Yawsine[mt].NeedFit)orbitalinfo->phi=Yawsine[mt].A*sin(Yawsine[mt].b*atime+Yawsine[mt].c);else{
1156 incli = (qYaw[mu+1]-qYaw[mu])/(qtime[mu+1]-qtime[mu]);
1157 orbitalinfo->phi = incli*atime+qYaw[mu+1]-incli*qtime[mu+1];
1158 }
1159 }
1160 }
1161 }*/
1162 //q0testing->Fill(atime,orbitalinfo->q0,100);
1163 //q1testing->Fill(atime,orbitalinfo->q1,100);
1164 //Pitchtesting->Fill(atime,orbitalinfo->etha);
1165 //q2testing->Fill(atime,orbitalinfo->q2);
1166 //q3testing->Fill(atime,orbitalinfo->q3);
1167 if ( debug ) printf(" grfuffi4 %i \n",mu);
1168 break;
1169 }
1170 }
1171 }
1172 }
1173 if ( debug ) printf(" grfuffi5 \n");
1174 //
1175 // ops no inclination information
1176 //
1177
1178 if ( orbitalinfo->q0< -999 || orbitalinfo->q1 < -999 || orbitalinfo->q2 < -999 || orbitalinfo->q3 < -999 || orbitalinfo->q0 != orbitalinfo->q0 || orbitalinfo->q1 != orbitalinfo->q1 || orbitalinfo->q2 != orbitalinfo->q2 || orbitalinfo->q3 != orbitalinfo->q3 ){
1179 orbitalinfo->mode = 10;
1180 orbitalinfo->q0 = -1000.;
1181 orbitalinfo->q1 = -1000.;
1182 orbitalinfo->q2 = -1000.;
1183 orbitalinfo->q3 = -1000.;
1184 orbitalinfo->etha = -1000.;
1185 orbitalinfo->phi = -1000.;
1186 orbitalinfo->theta = -1000.;
1187 if ( debug ) printf(" grfuffi6 \n");
1188 }
1189 //
1190 if ( debug ) printf(" filling \n");
1191 // #########################################################################################################################
1192 //
1193 // fill orbital positions
1194 //
1195 // Build coordinates in the right range. We want to convert,
1196 // longitude from (0, 2*pi) to (-180deg, 180deg). Altitude is
1197 // in meters.
1198 lon = (coo.m_Lon > M_PI) ? rad2deg(coo.m_Lon - 2*M_PI) : rad2deg(coo.m_Lon);
1199 lat = rad2deg(coo.m_Lat);
1200 alt = coo.m_Alt;
1201 if ( debug ) printf(" coord done \n");
1202 //
1203 if( lon<180 && lon>-180 && lat<90 && lat>-90 && alt>0 ){
1204 //
1205 orbitalinfo->lon = lon;
1206 orbitalinfo->lat = lat;
1207 orbitalinfo->alt = alt ;
1208 //
1209 // compute mag field components and L shell.
1210 //
1211 if ( debug ) printf(" call igrf feldg \n");
1212 feldg_(&lat, &lon, &alt, &bnorth, &beast, &bdown, &babs);
1213 if ( debug ) printf(" call igrf shellg \n");
1214 shellg_(&lat, &lon, &alt, &dimo, &xl, &icode, &bab1);
1215 if ( debug ) printf(" call igrf findb \n");
1216 findb0_(&stps, &bdel, &value, &bequ, &rr0);
1217 //
1218 if ( debug ) printf(" done igrf \n");
1219 orbitalinfo->Bnorth = bnorth;
1220 orbitalinfo->Beast = beast;
1221 orbitalinfo->Bdown = bdown;
1222 orbitalinfo->Babs = babs;
1223 orbitalinfo->M = dimo;
1224 orbitalinfo->BB0 = babs/bequ;
1225 orbitalinfo->L = xl;
1226 // Set Stormer vertical cutoff using L shell.
1227 orbitalinfo->cutoffsvl = 14.295 / (xl*xl); //
1228 /*
1229 ---------- Forwarded message ----------
1230 Date: Wed, 09 May 2012 12:16:47 +0200
1231 From: Alessandro Bruno <alessandro.bruno@ba.infn.it>
1232 To: Mirko Boezio <mirko.boezio@ts.infn.it>
1233 Cc: Francesco S. Cafagna <Francesco.Cafagna@ba.infn.it>
1234 Subject: Störmer vertical cutoff
1235
1236 Ciao Mirko,
1237 volevo segnalarti che il valore dello Störmer vertical cutoff nel Level2 è
1238 sovrastimato di circa il 4%.
1239 Dopo un'approfondita analisi con l'IGRF-05 abbiamo ricavano un valore pari
1240 a: 14.295 / L^2 anzichè 14.9 / L^2, valore obsoleto in quanto riferito agli
1241 anni '50.
1242 */
1243 //14.9/(xl*xl);
1244 orbitalinfo->igrf_icode = icode;
1245 //
1246 }
1247 //
1248 if ( debug ) printf(" pitch angle \n");
1249 //
1250 // pitch angles
1251 //
1252 //if ( orbitalinfo->mode != 10 && orbitalinfo->mode != 5 && orbitalinfo->mode !=7 && orbitalinfo->mode != 9 ){
1253 if( orbitalinfo->TimeGap>0 && orbitalinfo->TimeGap<2000000){
1254 //
1255 if ( debug ) printf(" timegap %f \n",orbitalinfo->TimeGap);
1256 Float_t Bx = -orbitalinfo->Bdown;
1257 Float_t By = orbitalinfo->Beast;
1258 Float_t Bz = orbitalinfo->Bnorth;
1259 //
1260 TMatrixD Fij = PO->ECItoGreenwich(PO->QuatoECI(orbitalinfo->q0,orbitalinfo->q1,orbitalinfo->q2,orbitalinfo->q3),orbitalinfo->absTime);
1261 TMatrixD Gij = PO->ColPermutation(Fij);
1262 TMatrixD Dij = PO->GreenwichtoGEO(orbitalinfo->lat,orbitalinfo->lon,Fij);
1263 TMatrixD Iij = PO->ColPermutation(Dij);
1264 //
1265 orbitalinfo->Iij.ResizeTo(Iij);
1266 orbitalinfo->Iij = Iij;
1267 //
1268 // A1 = Iij(0,2);
1269 // A2 = Iij(1,2);
1270 // A3 = Iij(2,2);
1271 //
1272 // orbitalinfo->pamzenitangle = (Float_t)PO->GetPitchAngle(1,0,0,A1,A2,A3); // Angle between zenit and Pamela's main axiz
1273 // orbitalinfo->pamBangle = (Float_t)PO->GetPitchAngle(A1,A2,A3,Bx,By,Bz); // Angle between Pamela's main axiz and B
1274 //
1275 if ( debug ) printf(" matrixes done \n");
1276 if ( !standalone && tof->ntrk() > 0 ){
1277 if ( debug ) printf(" !standalone \n");
1278 //
1279 Int_t nn = 0;
1280 for(Int_t nt=0; nt < tof->ntrk(); nt++){
1281 //
1282 ToFTrkVar *ptt = tof->GetToFTrkVar(nt);
1283 Double_t E11x = ptt->xtr_tof[0]; // tr->x[0];
1284 Double_t E11y = ptt->ytr_tof[0]; //tr->y[0];
1285 Double_t E11z = zin[0];
1286 Double_t E22x = ptt->xtr_tof[3];//tr->x[3];
1287 Double_t E22y = ptt->ytr_tof[3];//tr->y[3];
1288 Double_t E22z = zin[3];
1289 if ( (E11x < 100. && E11y < 100. && E22x < 100. && E22y < 100.) || ptt->trkseqno != -1 ){
1290 Double_t norm = sqrt(pow(E22x-E11x,2)+pow(E22y-E11y,2)+pow(E22z-E11z,2));
1291 // Double_t MyAzim = TMath::RadToDeg()*atan(TMath::Abs(E22y-E11y)/TMath::Abs(E22x-E11x));
1292 // if(E22x-E11x>=0 && E22y-E11y <0) MyAzim = 360. - MyAzim;
1293 // if(E22x-E11x>=0 && E22y-E11y >=0) MyAzim = MyAzim;
1294 // if(E22x-E11x<0 && E22y-E11y >0) MyAzim = 180. - MyAzim;
1295 // if(E22x-E11x<0 && E22y-E11y <0) MyAzim = 180. + MyAzim;
1296 Px = (E22x-E11x)/norm;
1297 Py = (E22y-E11y)/norm;
1298 Pz = (E22z-E11z)/norm;
1299 //
1300 t_orb->trkseqno = ptt->trkseqno;
1301 //
1302 TMatrixD Eij = PO->PamelatoGEO(Iij,Px,Py,Pz);
1303 t_orb->Eij.ResizeTo(Eij);
1304 t_orb->Eij = Eij;
1305 //
1306 TMatrixD Sij = PO->PamelatoGEO(Gij,Px,Py,Pz);
1307 t_orb->Sij.ResizeTo(Sij);
1308 t_orb->Sij = Sij;
1309 //
1310 t_orb->pitch = (Float_t)PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),Bx,By,Bz);
1311 //
1312 //
1313 Double_t omega = PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),cos(orbitalinfo->lon+TMath::Pi()/2)-sin(orbitalinfo->lon+TMath::Pi()/2),cos(orbitalinfo->lon+TMath::Pi()/2)+sin(orbitalinfo->lon+TMath::Pi()/2),1);
1314 //
1315 t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow((1+sqrt(1-pow(orbitalinfo->L,-3/2)*cos(omega))),2));
1316 //
1317 if ( t_orb->pitch != t_orb->pitch ) t_orb->pitch = -1000.;
1318 if ( t_orb->cutoff != t_orb->cutoff ) t_orb->cutoff = -1000.;
1319 //
1320 if ( debug ) printf(" orbitalinfo->cutoffsvl %f vitaly %f \n",orbitalinfo->cutoffsvl,t_orb->cutoff);
1321 //
1322 new(tor[nn]) OrbitalInfoTrkVar(*t_orb);
1323 nn++;
1324 //
1325 t_orb->Clear();
1326 //
1327 };
1328 //
1329 };
1330 } else {
1331 if ( debug ) printf(" mmm... mode %u standalone \n",orbitalinfo->mode);
1332 }
1333 //
1334 } else {
1335 if ( !standalone && tof->ntrk() > 0 ){
1336 //
1337 Int_t nn = 0;
1338 for(Int_t nt=0; nt < tof->ntrk(); nt++){
1339 //
1340 ToFTrkVar *ptt = tof->GetToFTrkVar(nt);
1341 if ( ptt->trkseqno != -1 ){
1342 //
1343 t_orb->trkseqno = ptt->trkseqno;
1344 //
1345 t_orb->Eij = 0;
1346 //
1347 t_orb->Sij = 0;
1348 //
1349 t_orb->pitch = -1000.;
1350 //
1351 t_orb->cutoff = -1000.;
1352 //
1353 new(tor[nn]) OrbitalInfoTrkVar(*t_orb);
1354 nn++;
1355 //
1356 t_orb->Clear();
1357 //
1358 };
1359 //
1360 };
1361 };
1362 };
1363 //
1364 // Fill the class
1365 //
1366 OrbitalInfotr->Fill();
1367 //
1368 delete t_orb;
1369 //
1370 }; // loop over the events in the run
1371 //
1372 // Here you may want to clear some variables before processing another run
1373 //
1374
1375 //gStyle->SetOptStat(000000);
1376 //gStyle->SetPalette(1);
1377
1378 /*TCanvas* c1 = new TCanvas("c1","",1200,800);
1379 //c1->Divide(1,4);
1380 c1->cd(1);
1381 //q0testing->Draw("colz");
1382 //c1->cd(2);
1383 //q1testing->Draw("colz");
1384 //c1->cd(3);
1385 Pitchtesting->Draw("colz");
1386 //c1->cd(4);
1387 //q3testing->Draw("colz");
1388 c1->SaveAs("9.Rollhyst.png");
1389 delete c1;*/
1390
1391 if ( verbose ) printf(" Clear before new run \n");
1392 delete dbtime;
1393
1394 if ( mcmdrc ) mcmdrc->Clear();
1395 mcmdrc = 0;
1396
1397 if ( verbose ) printf(" Clear before new run1 \n");
1398 if ( L_QQ_Q_l_lower ) delete L_QQ_Q_l_lower;
1399 if ( verbose ) printf(" Clear before new run2 \n");
1400 if ( L_QQ_Q_l_upper ) delete L_QQ_Q_l_upper;
1401 if ( verbose ) printf(" Clear before new run3 \n");
1402 if ( RYPang_upper ) delete RYPang_upper;
1403 if ( verbose ) printf(" Clear before new run4 \n");
1404 if ( RYPang_lower ) delete RYPang_lower;
1405
1406 if ( l0tr ) l0tr->Delete();
1407
1408 if ( verbose ) printf(" End run \n");
1409
1410 }; // process all the runs
1411
1412 if (verbose) printf("\n Finished processing data \n");
1413 //
1414 closeandexit:
1415 //
1416 // we have finished processing the run(s). If we processed a single run now we must copy all the events after our run from the old tree to the new one and delete the old tree.
1417 //
1418 if ( !reprocall && reproc && code >= 0 ){
1419 if ( totfileentries > noaftrun ){
1420 if (verbose){
1421 printf("\n Post-processing: copying events from the old tree after the processed run\n");
1422 printf(" Copying %i events in the file which are after the end of the run %i \n",(int)(totfileentries-noaftrun),(int)run);
1423 printf(" Start copying at event number %i end copying at event number %i \n",(int)noaftrun,(int)totfileentries);
1424 }
1425 for (UInt_t j = noaftrun; j < totfileentries; j++ ){
1426 //
1427 // Get entry from old tree
1428 //
1429 if ( OrbitalInfotrclone->GetEntry(j) <= 0 ) throw -36;
1430 //
1431 // copy orbitalinfoclone to OrbitalInfo
1432 //
1433 orbitalinfo->Clear();
1434 //
1435 memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone));
1436 //
1437 // Fill entry in the new tree
1438 //
1439 OrbitalInfotr->Fill();
1440 };
1441 if (verbose) printf(" Finished successful copying!\n");
1442 };
1443 //if ( OrbitalInfotrclone ) OrbitalInfotrclone->Clear();
1444 //if ( OrbitalInfotrclone ) OrbitalInfotrclone->Delete();
1445 };
1446 //
1447 // Close files, delete old tree(s), write and close level2 file
1448 //
1449 if ( l0File ) l0File->Close();
1450 if ( myfold ) gSystem->Unlink(tempname.str().c_str());
1451 //
1452 if ( OrbitalInfotr ) OrbitalInfotr->SetName("OrbitalInfo");
1453 //
1454 if ( file ){
1455 file->cd();
1456 if ( OrbitalInfotr ) OrbitalInfotr->Write("OrbitalInfo", TObject::kOverwrite); // 10 RED bug fixed
1457 };
1458 //
1459 if (verbose) printf("\n Exiting...\n");
1460
1461 if ( myfold ) gSystem->Unlink(OrbitalInfofolder.str().c_str());
1462 //
1463 // the end
1464 //
1465 if ( dbc ){
1466 dbc->Close();
1467 delete dbc;
1468 };
1469 //
1470 if (verbose) printf("\n Exiting...\n");
1471 if ( tempfile ) tempfile->Close();
1472
1473 if ( PO ) delete PO;
1474 if ( gltle ) delete gltle;
1475 if ( glparam ) delete glparam;
1476 if ( glparam2 ) delete glparam2;
1477 if ( glparam3 ) delete glparam3;
1478 if (verbose) printf("\n Exiting3...\n");
1479 if ( glroot ) delete glroot;
1480 if (verbose) printf("\n Exiting4...\n");
1481 if ( runinfo ) runinfo->Close();
1482 if ( runinfo ) delete runinfo;
1483
1484 if ( debug ){
1485 cout << "1 0x" << OrbitalInfotr << endl;
1486 cout << "2 0x" << OrbitalInfotrclone << endl;
1487 cout << "3 0x" << l0tr << endl;
1488 cout << "4 0x" << tempOrbitalInfo << endl;
1489 cout << "5 0x" << ttof << endl;
1490 }
1491 //
1492 if ( debug ) file->ls();
1493 //
1494 if(code < 0) throw code;
1495 return(code);
1496 }
1497
1498
1499 //
1500 // Returns the cCoordGeo structure holding the geographical
1501 // coordinates for the event (see sgp4.h).
1502 //
1503 // atime is the abstime of the event in UTC unix time.
1504 // tletime is the time of the tle in UTC unix time.
1505 // tle is the previous and nearest tle (compared to atime).
1506 cCoordGeo getCoo(UInt_t atime, UInt_t tletime, cTle *tle)
1507 {
1508 cEci eci;
1509 cOrbit orbit(*tle);
1510 orbit.getPosition((double) (atime - tletime)/60., &eci);
1511
1512 return eci.toGeo();
1513 }
1514
1515 // function of copyng of quatrnions classes
1516
1517 void CopyQ(Quaternions *Q1, Quaternions *Q2){
1518 for(UInt_t i = 0; i < 6; i++){
1519 Q1->time[i]=Q2->time[i];
1520 for (UInt_t j = 0; j < 4; j++)Q1->quat[i][j]=Q2->quat[i][j];
1521 }
1522 return;
1523 }
1524
1525 // functions of copyng InclinationInfo classes
1526
1527 void CopyAng(InclinationInfo *A1, InclinationInfo *A2){
1528 A1->Tangazh = A2->Tangazh;
1529 A1->Ryskanie = A2->Ryskanie;
1530 A1->Kren = A2->Kren;
1531 return;
1532 }
1533
1534 UInt_t holeq(Double_t lower,Double_t upper,Quaternions *Qlower, Quaternions *Qupper, UInt_t f){
1535
1536 UInt_t hole = 10;
1537 Bool_t R10l = false; // Sign of R10 mode in lower quaternions array
1538 Bool_t R10u = false; // Sign of R10 mode in upper quaternions array
1539 Bool_t insm = false; // Sign that we inside quaternions array
1540 // Bool_t mxtml = false; // Sign of mixt mode in lower quaternions array
1541 // Bool_t mxtmu = false; // Sign of mixt mode in upper quaternions array
1542 Bool_t npasm = false; // Sign of normall pass between R10 and non R10 or between non R10 and R10
1543 UInt_t NCQl = 6; // Number of correct quaternions in lower array
1544 // UInt_t NCQu = 6; // Number of correct quaternions in upper array
1545 if (f>0){
1546 insm = true;
1547 if(Qupper->time[f]-Qupper->time[f-1]==30) R10u = false;
1548 if(Qupper->time[f]-Qupper->time[f-1]<1) R10u = true;
1549 }else{
1550 insm = false;
1551 if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]<2)) R10l = true;
1552 if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]<2)) R10u = true;
1553 if((Qlower->time[5]-Qlower->time[0]==150)&&(Qlower->time[1]-Qlower->time[0]==30)) R10l = false;
1554 if((Qupper->time[5]-Qupper->time[0]==150)&&(Qupper->time[1]-Qupper->time[0]==30)) R10u = false;
1555 if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]==30)){
1556 // mxtml = true;
1557 for(UInt_t i = 1; i < 6; i++){
1558 if(Qlower->time[i]-Qlower->time[0]==30*i) NCQl=i;
1559 }
1560 }
1561 // if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]==30)){
1562 // mxtmu = true;
1563 // for(UInt_t i = 1; i < 6; i++){
1564 // if(Qupper->time[i]-Qupper->time[0]==30*i) NCQu=i;
1565 // }
1566 // }
1567 }
1568
1569 if(((upper-lower==1.5)||(upper-lower==3.)||(upper-lower==30.)||(upper-lower==31.5)||(upper-lower==33.)||(upper-lower==181.5)||(upper-lower==210.)||(upper-lower==211.5))&&!insm) npasm = true;
1570
1571
1572 if (R10u&&insm) hole=0; // best event R10
1573 if ((upper-lower<=5)&&(!insm)&&R10l&&R10u) hole = 1; // when first of 6 quaternions in array is correct
1574 if (((!R10u)&&insm)||((!insm)&&(!R10u)&&(!R10l)&&((upper-lower==210+(6-NCQl)*30)||(upper-lower==30)))) hole = 2; //non R10
1575 if (npasm&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 3; //normall pass from R10 to non R10 or from non R10 to R10
1576 if ((!npasm)&&(upper-lower<=300)&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 4; // eliminable hole between R10 and non R10 or between non R10 and R10
1577 if ((upper-lower>=300)&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 5; //uneliminable hole between R10 and non R10 or between non R10 and R10
1578 if ((upper-lower>5)&&(upper-lower<=300)&&R10u&&R10l) hole = 6; // eliminable hole inside R10
1579 if ((upper-lower>300)&&R10u&&R10l) hole = 7; //uneliminable hole inside R10
1580 if ((upper-lower>210)&&(upper-lower<=1200)&&(!R10u)&&(!R10l)) hole = 8; //eliminable hole inside non R10
1581 if ((upper-lower>1200)&&!R10u&&!R10l) hole = 9; // uneliminable hole inside non R10
1582 return hole;
1583 }
1584
1585 void inclresize(vector<Double_t>& t,vector<Float_t>& q0,vector<Float_t>& q1,vector<Float_t>& q2,vector<Float_t>& q3,vector<Int_t>& mode,vector<Float_t>& Roll,vector<Float_t>& Pitch,vector<Float_t>& Yaw){
1586 Int_t sizee = t.size()+1;
1587 t.resize(sizee);
1588 q0.resize(sizee);
1589 q1.resize(sizee);
1590 q2.resize(sizee);
1591 q3.resize(sizee);
1592 mode.resize(sizee);
1593 Roll.resize(sizee);
1594 Pitch.resize(sizee);
1595 Yaw.resize(sizee);
1596 }
1597
1598 //Find fitting sine functions for q0,q1,q2,q3 and Yaw-angle;
1599 void sineparam(vector<Sine>& qsine, vector<Double_t>& qtime, vector<Float_t>& q, vector<Float_t>& Roll, vector<Float_t>& Pitch, Float_t limsin){
1600 UInt_t mulast = 0;
1601 UInt_t munow = 0;
1602 UInt_t munext = 0;
1603 Bool_t increase = false;
1604 Bool_t decrease = false;
1605 Bool_t Max_is_defined = false;
1606 Bool_t Start_point_is_defined = false;
1607 Bool_t Period_is_defined = false;
1608 Bool_t Large_gap = false;
1609 Bool_t normal_way = true;
1610 Bool_t small_gap_on_ridge = false;
1611 Double_t t1 = 0;
1612 Double_t t1A = 0;
1613 Int_t sinesize = 0;
1614 Int_t nfi = 0;
1615 for(UInt_t mu = 0;mu<qtime.size();mu++){
1616 //cout<<"Roll["<<mu<<"] = "<<Roll[mu]<<endl;
1617 if(TMath::Abs(Roll[mu])<1. && TMath::Abs(Pitch[mu])<1. && TMath::Abs(q[mu])<limsin){
1618 //cout<<"q["<<mu<<endl<<"] = "<<q[mu]<<endl;
1619 if(mulast!=0 && munow!=0 && munext!=0){mulast=munow;munow=munext;munext=mu;}
1620 if(munext==0 && munow!=0)munext=mu;
1621 if(munow==0 && mulast!=0)munow=mu;
1622 if(mulast==0)mulast=mu;
1623
1624 //cout<<"mulast = "<<mulast<<"\tmunow = "<<munow<<"\tmunext = "<<munext<<endl;
1625 //Int_t ref;
1626 //cin>>ref;
1627 if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && q[mulast]*q[munext]>0 && qtime[munext]-qtime[mulast]>400)small_gap_on_ridge = true;
1628 if(munext>mulast && (qtime[munext]-qtime[mulast]>=2000 || qtime[munext]-qtime[mulast]<0)){if(Large_gap){normal_way = false;Large_gap = false;}else{Large_gap = true;normal_way = false;}}else normal_way = true;
1629 //if(normal_way)cout<<"Normal_Way"<<endl;
1630 if(Large_gap || small_gap_on_ridge){
1631 //cout<<"Large gap..."<<endl;
1632 //if(small_gap_on_ridge)cout<<"small gap..."<<endl;
1633 //cout<<"q["<<mulast<<"] = "<<q[mulast]<<"\tq["<<munow<<"] = "<<q[munow]<<"\tq["<<munext<<"] = "<<q[munext]<<endl;
1634 //cout<<"qtime["<<mulast<<"] = "<<qtime[mulast]<<"\tqtime["<<munow<<"] = "<<qtime[munow]<<"\tqtime["<<munext<<"] = "<<qtime[munext]<<endl;
1635 increase = false;
1636 decrease = false;
1637 if(nfi>0){
1638 qsine.resize(qsine.size()-1);
1639 sinesize = qsine.size();
1640 //cout<<"nfi was larger then zero"<<endl;
1641 }else{
1642 //cout<<"nfi was not larger then zero :( nfi = "<<nfi<<endl;
1643 //cout<<"qsine.size = "<<qsine.size()<<endl;
1644 if(!Period_is_defined){
1645 //cout<<"Period was defined"<<endl;
1646 if(qsine.size()>1){
1647 qsine[sinesize-1].b = qsine[sinesize-2].b;
1648 qsine[sinesize-1].c = qsine[sinesize-2].c;
1649 }else{
1650 qsine[sinesize-1].b = TMath::Pi()/1591.54;
1651 qsine[sinesize-1].c = qsine[sinesize-1].startPoint;
1652 }
1653 }
1654 if(!Max_is_defined){
1655 //cout<<"Max was already defined"<<endl;
1656 if(qsine.size()>1)qsine[sinesize-1].A = qsine[sinesize-2].A;else qsine[sinesize-1].A = limsin;
1657 }
1658 qsine[sinesize-1].NeedFit = true;
1659 }
1660 qsine[sinesize-1].finishPoint = qtime[munow];
1661 //cout<<"finish point before large gap = "<<qtime[munow]<<endl;
1662 nfi = 0;
1663 Max_is_defined = false;
1664 Start_point_is_defined = false;
1665 Period_is_defined = false;
1666 small_gap_on_ridge = false;
1667 }
1668 //cout<<"Slope "<<increase<<"\t"<<decrease<<endl;
1669 //cout<<"mulast = "<<mulast<<"\tmunow = "<<munow<<"\tmunext = "<<munext<<endl;
1670 if((munext>munow) && (munow>mulast) && normal_way){
1671 if(!increase && !decrease){
1672 //cout<<"Normal way have started"<<endl;
1673 qsine.resize(qsine.size()+1);
1674 sinesize = qsine.size();
1675 qsine[sinesize-1].startPoint=qtime[mulast];
1676 if(q[munext]>q[munow] && q[munow]>q[mulast]) increase = true;
1677 if(q[munext]<q[munow] && q[munow]<q[mulast]) decrease = true;
1678 }
1679 //if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && TMath::Abs(q[munow])>limsin && qtime[munow]-qtime[mulast]>=400 || qtime[munext]-qtime[munow]>=400){small_gap_on_ridge = true;mu--;continue;}
1680 if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && TMath::Abs(q[munow])>0.9*limsin && qtime[munow]-qtime[mulast]<400 && qtime[munext]-qtime[munow]<400){
1681 //cout<<"Max point is qtime = "<<qtime[munow]<<"\tq = "<<q[munow]<<endl;
1682 if(q[munow]>q[mulast]){
1683 increase = false;
1684 decrease = true;
1685 }
1686 if(q[munow]<q[mulast]){
1687 increase = true;
1688 decrease = false;
1689 }
1690 if(Max_is_defined && !Start_point_is_defined){
1691 Double_t qPer = qtime[munow]-t1A;
1692 if(qPer>1000){
1693 //cout<<"qsine["<<sinesize-1<<"] = "<<qPer<<" = "<<qtime[munow]<<" - "<<t1A<<"\tlim = "<<limsin<<endl;
1694 qsine[sinesize-1].b=TMath::Pi()/qPer;
1695 if(decrease)qsine[sinesize-1].c=-qsine[sinesize-1].b*t1A;
1696 if(increase)qsine[sinesize-1].c=-qsine[sinesize-1].b*(t1A-qPer);
1697 Period_is_defined = true;
1698 }
1699 }
1700 Max_is_defined = true;
1701 qsine[sinesize-1].A = TMath::Abs(q[munow]);
1702 if(Start_point_is_defined && Period_is_defined){
1703 qsine[sinesize-1].finishPoint = qtime[munow];
1704 nfi++;
1705 qsine[sinesize-1].NeedFit = false;
1706 Max_is_defined = false;
1707 Start_point_is_defined = false;
1708 Period_is_defined = false;
1709 qsine.resize(qsine.size()+1);
1710 sinesize = qsine.size();
1711 qsine[sinesize-1].startPoint = qtime[munow];
1712 }
1713 if(!Start_point_is_defined) t1A=qtime[munow];
1714 }
1715 //if((q[munow]>=0 && q[mulast]<=0) || (q[munow]<=0 && q[mulast]>=0))cout<<"cross zero point diference = "<<qtime[munext] - qtime[mulast]<<"\tqlast = "<<qtime[mulast]<<"\tqnow = "<<qtime[munow]<<"\tqnext = "<<qtime[munext]<<endl;
1716 if(((q[munow]>=0 && q[mulast]<=0) || (q[munow]<=0 && q[mulast]>=0)) && qtime[munow]-qtime[mulast]<2000 && qtime[munext]-qtime[munow]<2000){
1717 Double_t tcrosszero = 0;
1718 //cout<<"cross zero point...qtime = "<<qtime[munow]<<endl;
1719 if(q[munow]==0.) tcrosszero = qtime[munow];else
1720 if(q[mulast]==0.)tcrosszero = qtime[mulast];else{
1721 Double_t k_ = (q[munow]-q[mulast])/(qtime[munow]-qtime[mulast]);
1722 Double_t b_ = q[munow]-k_*qtime[munow];
1723 tcrosszero = -b_/k_;
1724 }
1725 if(Start_point_is_defined){
1726 //cout<<"Start Point allready defined"<<endl;
1727 Double_t qPer = tcrosszero - t1;
1728 qsine[sinesize-1].b = TMath::Pi()/qPer;
1729 //cout<<"qsine["<<sinesize-1<<"].b = "<<TMath::Pi()/qPer<<endl;
1730 Period_is_defined = true;
1731 Float_t x0 = 0;
1732 if(decrease)x0 = t1;
1733 if(increase)x0 = tcrosszero;
1734 qsine[sinesize-1].c = -qsine[sinesize-1].b*x0;
1735 if(Max_is_defined){
1736 //cout<<"Max was previous defined"<<endl;
1737 qsine[sinesize-1].finishPoint = qtime[munow];
1738 nfi++;
1739 qsine[sinesize-1].NeedFit = false;
1740 Max_is_defined = false;
1741 t1 = tcrosszero;
1742 Start_point_is_defined = true;
1743 Period_is_defined = false;
1744 qsine.resize(qsine.size()+1);
1745 sinesize = qsine.size();
1746 qsine[sinesize-1].startPoint = qtime[munow];
1747 }
1748 }else{
1749 t1 = tcrosszero;
1750 Start_point_is_defined = true;
1751 }
1752 }
1753 }
1754 }
1755 }
1756
1757 //cout<<"FINISH SINE INTERPOLATION FUNCTION..."<<endl<<endl;
1758 }

  ViewVC Help
Powered by ViewVC 1.1.23