/[PAMELA software]/DarthVader/OrbitalInfo/src/OrbitalInfoCore.cpp
ViewVC logotype

Contents of /DarthVader/OrbitalInfo/src/OrbitalInfoCore.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.59 - (show annotations) (download)
Sat May 19 06:25:27 2012 UTC (13 years, 7 months ago) by mocchiut
Branch: MAIN
Changes since 1.58: +2 -1 lines
Memory leak during reprocessing (hopefully) fixed

1 // C/C++ headers
2 //
3 #include <fstream>
4 #include <string.h>
5 #include <iostream>
6 #include <cstring>
7 #include <stdio.h>
8 //
9 // ROOT headers
10 //
11 //#include <TCanvas.h>
12 //#include <TH2F.h> //for test only. Vitaly.
13 //#include <TF1.h>
14
15 #include <TTree.h>
16 #include <TClassEdit.h>
17 #include <TObject.h>
18 #include <TList.h>
19 #include <TArrayI.h>
20 #include <TSystem.h>
21 #include <TSystemDirectory.h>
22 #include <TString.h>
23 #include <TFile.h>
24 #include <TClass.h>
25 #include <TSQLServer.h>
26 #include <TSQLRow.h>
27 #include <TSQLResult.h>
28 //
29 // RunInfo header
30 //
31 #include <RunInfo.h>
32 #include <GLTables.h>
33 //
34 // YODA headers
35 //
36 #include <PamelaRun.h>
37 #include <PscuHeader.h>
38 #include <PscuEvent.h>
39 #include <EventHeader.h>
40 #include <mcmd/McmdEvent.h>
41 #include <mcmd/McmdRecord.h>
42 //
43 // This program headers
44 //
45 #include <OrbitalInfo.h>
46 #include <OrbitalInfoVerl2.h>
47 #include <OrbitalInfoCore.h>
48 #include <InclinationInfo.h>
49
50
51 using namespace std;
52
53 //
54 // CORE ROUTINE
55 //
56 //
57 int OrbitalInfoCore(UInt_t run, TFile *file, GL_TABLES *glt, Int_t OrbitalInfoargc, char *OrbitalInfoargv[]){
58 //
59 Int_t i = 0;
60 TString host = glt->CGetHost();
61 TString user = glt->CGetUser();
62 TString psw = glt->CGetPsw();
63 TSQLServer *dbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data());
64 //
65 stringstream myquery;
66 myquery.str("");
67 myquery << "SET time_zone='+0:00'";
68 delete dbc->Query(myquery.str().c_str());
69 //
70 TString processFolder = Form("OrbitalInfoFolder_%u",run);
71 //
72 // Set these to true to have a very verbose output.
73 //
74 Bool_t debug = false;
75 //
76 Bool_t verbose = false;
77 //
78 Bool_t standalone = false;
79 //
80 if ( OrbitalInfoargc > 0 ){
81 i = 0;
82 while ( i < OrbitalInfoargc ){
83 if ( !strcmp(OrbitalInfoargv[i],"-processFolder") ) {
84 if ( OrbitalInfoargc < i+1 ){
85 throw -3;
86 };
87 processFolder = (TString)OrbitalInfoargv[i+1];
88 i++;
89 };
90 if ( (!strcmp(OrbitalInfoargv[i],"--debug")) || (!strcmp(OrbitalInfoargv[i],"-g")) ) {
91 verbose = true;
92 debug = true;
93 };
94 if ( (!strcmp(OrbitalInfoargv[i],"--verbose")) || (!strcmp(OrbitalInfoargv[i],"-v")) ) {
95 verbose = true;
96 };
97 if ( (!strcmp(OrbitalInfoargv[i],"--standalone")) ) {
98 standalone = true;
99 };
100 if ( (!strcmp(OrbitalInfoargv[i],"--calculate-pitch")) ) {
101 standalone = false;
102 };
103 i++;
104 };
105 };
106 //
107 const char* outDir = gSystem->DirName(gSystem->DirName(file->GetPath()));
108 //
109 TTree *OrbitalInfotr = 0;
110 UInt_t nevents = 0;
111 UInt_t neventsm = 0;
112 //
113 // variables needed to reprocess data
114 //
115 Long64_t maxsize = 10000000000LL;
116 TTree::SetMaxTreeSize(maxsize);
117 //
118 TString OrbitalInfoversion;
119 ItoRunInfo *runinfo = 0;
120 TArrayI *runlist = 0;
121 TTree *OrbitalInfotrclone = 0;
122 Bool_t reproc = false;
123 Bool_t reprocall = false;
124 UInt_t nobefrun = 0;
125 UInt_t noaftrun = 0;
126 UInt_t numbofrun = 0;
127 stringstream ftmpname;
128 TString fname;
129 UInt_t totfileentries = 0;
130 UInt_t idRun = 0;
131 UInt_t anni5 = 60 * 60 * 24 * 365 * 5 ;//1576800
132 //
133 // My variables. Vitaly.
134 //
135 // UInt_t oi = 0;
136 Int_t tmpSize = 0;
137 //
138 // variables needed to handle error signals
139 //
140 Int_t code = 0;
141 Int_t sgnl;
142 //
143 // OrbitalInfo classes
144 //
145 OrbitalInfo *orbitalinfo = new OrbitalInfo();
146 OrbitalInfo *orbitalinfoclone = new OrbitalInfo();
147
148 //
149 // define variables for opening and reading level0 file
150 //
151 TFile *l0File = 0;
152 TTree *l0tr = 0;
153 // TTree *l0trm = 0;
154 TChain *ch = 0;
155 // EM: open also header branch
156 TBranch *l0head = 0;
157 pamela::EventHeader *eh = 0;
158 pamela::PscuHeader *ph = 0;
159 pamela::McmdEvent *mcmdev = 0;
160 pamela::McmdRecord *mcmdrc = 0;
161 // end EM
162
163 // pamela::RunHeaderEvent *reh = new pamela::RunHeaderEvent;
164 // pamela::EventHeader *eH = new pamela::EventHeader;
165
166 //
167 // Define other basic variables
168 //
169 UInt_t procev = 0;
170 stringstream file2;
171 stringstream file3;
172 stringstream qy;
173 Int_t totevent = 0;
174 UInt_t atime = 0;
175 UInt_t re = 0;
176 UInt_t ik = 0;
177
178 // Position
179 Float_t lon, lat, alt;
180
181 //
182 // IGRF stuff
183 //
184 Float_t dimo = 0.0; // dipole moment (computed from dat files)
185 Float_t bnorth, beast, bdown, babs;
186 Float_t xl; // L value
187 Float_t icode; // code value for L accuracy (see fortran code)
188 Float_t bab1; // What's the difference with babs?
189 Float_t stps = 0.005; // step size for field line tracing
190 Float_t bdel = 0.01; // required accuracy
191 Float_t bequ; // equatorial b value (also called b_0)
192 Bool_t value = 0; // false if bequ is not the minimum b value
193 Float_t rr0; // equatorial radius normalized to earth radius
194
195 //
196 // Working filename
197 //
198 TString outputfile;
199 stringstream name;
200 name.str("");
201 name << outDir << "/";
202 //
203 // temporary file and folder
204 //
205 TFile *tempfile = 0;
206 TTree *tempOrbitalInfo = 0;
207 stringstream tempname;
208 stringstream OrbitalInfofolder;
209 Bool_t myfold = false;
210 tempname.str("");
211 tempname << outDir;
212 tempname << "/" << processFolder.Data();
213 OrbitalInfofolder.str("");
214 OrbitalInfofolder << tempname.str().c_str();
215 tempname << "/OrbitalInfotree_run";
216 tempname << run << ".root";
217 UInt_t totnorun = 0;
218 //
219 // DB classes
220 //
221 GL_ROOT *glroot = new GL_ROOT();
222 GL_TIMESYNC *dbtime = 0;
223 GL_TLE *gltle = new GL_TLE();
224 //
225 //Quaternions classes
226 //
227 Quaternions *L_QQ_Q_l_lower = 0;
228 InclinationInfo *RYPang_lower = 0;
229 Quaternions *L_QQ_Q_l_upper = 0;
230 InclinationInfo *RYPang_upper = 0;
231
232 cEci eCi;
233
234 // Initialize fortran routines!!!
235 Int_t ltp1 = 0;
236 Int_t ltp2 = 0;
237 Int_t ltp3 = 0;
238 // Int_t uno = 1;
239 // const char *niente = " ";
240 GL_PARAM *glparam = new GL_PARAM();
241 GL_PARAM *glparam2 = new GL_PARAM();
242 GL_PARAM *glparam3 = new GL_PARAM();
243
244 //
245 // Orientation variables. Vitaly
246 //
247 UInt_t evfrom = 0;
248 UInt_t jumped = 0;
249 Int_t itr = -1;
250 Double_t A1;
251 Double_t A2;
252 Double_t A3;
253 Double_t Px = 0;
254 Double_t Py = 0;
255 Double_t Pz = 0;
256 TTree *ttof = 0;
257 ToFLevel2 *tof = new ToFLevel2();
258 OrientationInfo *PO = new OrientationInfo();
259 Int_t nz = 6;
260 Float_t zin[6];
261 Int_t nevtofl2 = 0;
262 if ( verbose ) cout<<"Reading quaternions external file"<<endl;
263 cout.setf(ios::fixed,ios::floatfield);
264 /******Reading recovered quaternions...*********/
265 vector<Double_t> recqtime;
266 vector<Float_t> recq0;
267 vector<Float_t> recq1;
268 vector<Float_t> recq2;
269 vector<Float_t> recq3;
270 Float_t Norm = 1;
271 Int_t parerror=glparam->Query_GL_PARAM(1,303,dbc); // parameters stored in DB in GL_PRAM table
272 ifstream in((glparam->PATH+glparam->NAME).Data(),ios::in);
273 if ( parerror<0 ) {
274 code = parerror;
275 goto closeandexit;
276 }
277 while(!in.eof()){
278 recqtime.resize(recqtime.size()+1);
279 Int_t sizee = recqtime.size();
280 recq0.resize(sizee);
281 recq1.resize(sizee);
282 recq2.resize(sizee);
283 recq3.resize(sizee);
284 in>>recqtime[sizee-1];
285 in>>recq0[sizee-1];
286 in>>recq1[sizee-1];
287 in>>recq2[sizee-1];
288 in>>recq3[sizee-1];
289 in>>Norm;
290 }
291 if ( verbose ) cout<<"We have read recovered data"<<endl;
292
293
294 // IGRF stuff moved inside run loop!
295
296 for (Int_t ip=0;ip<nz;ip++){
297 zin[ip] = tof->GetZTOF(tof->GetToFPlaneID(ip));
298 };
299 //
300 if ( !standalone ){
301 //
302 // Does it contain the Tracker tree?
303 //
304 ttof = (TTree*)file->Get("ToF");
305 if ( !ttof ) {
306 if ( verbose ) printf(" OrbitalInfo - ERROR: no tof tree\n");
307 code = -900;
308 goto closeandexit;
309 };
310 ttof->SetBranchAddress("ToFLevel2",&tof);
311 nevtofl2 = ttof->GetEntries();
312 };
313 //
314 // Let's start!
315 //
316 // As a first thing we must check what we have to do: if run = 0 we must process all events in the file has been passed
317 // if run != 0 we must process only that run but first we have to check if the tree MyDetector2 already exist in the file
318 // if it exists we are reprocessing data and we must delete that entries, if not we must create it.
319 //
320 if ( run == 0 ) reproc = true;
321 //
322 //
323 // Output file is "outputfile"
324 //
325 if ( !file->IsOpen() ){
326 //printf(" OrbitalInfo - ERROR: cannot open file for writing\n");
327 throw -901;
328 };
329 //
330 // Retrieve GL_RUN variables from the level2 file
331 //
332 OrbitalInfoversion = OrbitalInfoInfo(false); // we should decide how to handle versioning system
333 //
334 // create an interface to RunInfo called "runinfo"
335 //
336 runinfo = new ItoRunInfo(file);
337 //
338 // open "Run" tree in level2 file, if not existing return an error (sngl != 0)
339 //
340 sgnl = 0;
341 sgnl = runinfo->Update(run, "ORB", OrbitalInfoversion);
342 //sgnl = runinfo->Read(run);
343
344 if ( sgnl ){
345 //printf("OrbitalInfo - ERROR: RunInfo exited with non-zero status\n");
346 code = sgnl;
347 goto closeandexit;
348 } else {
349 sgnl = 0;
350 };
351 //
352 // number of events in the file BEFORE the first event of our run
353 //
354 nobefrun = runinfo->GetFirstEntry();
355 //
356 // total number of events in the file
357 //
358 totfileentries = runinfo->GetFileEntries();
359 //
360 // first file entry AFTER the last event of our run
361 //
362 noaftrun = runinfo->GetLastEntry() + 1;
363 //
364 // number of run to be processed
365 //
366 numbofrun = runinfo->GetNoRun();
367 totnorun = runinfo->GetRunEntries();
368 //
369 // Try to access the OrbitalInfo tree in the file, if it exists we are reprocessing data if not we are processing a new run
370 //
371 OrbitalInfotrclone = (TTree*)file->Get("OrbitalInfo");
372 //
373 if ( !OrbitalInfotrclone ){
374 //
375 // tree does not exist, we are not reprocessing
376 //
377 reproc = false;
378 if ( run == 0 ){
379 if (verbose) printf(" OrbitalInfo - WARNING: you are reprocessing data but OrbitalInfo tree does not exist!\n");
380 }
381 if ( runinfo->IsReprocessing() && run != 0 ) {
382 if (verbose) printf(" OrbitalInfo - WARNING: it seems you are not reprocessing data but OrbitalInfo\n versioning information already exists in RunInfo.\n");
383 }
384 } else {
385 //
386 // tree exists, we are reprocessing data. Are we reprocessing a single run or all the file?
387 //
388 OrbitalInfotrclone->SetAutoSave(900000000000000LL);
389 reproc = true;
390 //
391 //
392 if (verbose) printf("\n Preparing the pre-processing...\n");
393 //
394 if ( run == 0 || totnorun == 1 ){
395 //
396 // we are reprocessing all the file
397 // if we are reprocessing everything we don't need to copy any old event and we can just work with the new tree and delete the old one immediately
398 //
399 reprocall = true;
400 //
401 if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing all runs\n Deleting old tree...\n");
402 //
403 } else {
404 //
405 // we are reprocessing a single run, we must copy to the new tree the events in the file which preceed the first event of the run
406 //
407 reprocall = false;
408 //
409 if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing run number %u \n",run);
410 //
411 // copying old tree to a new file
412 //
413 gSystem->MakeDirectory(OrbitalInfofolder.str().c_str());
414 myfold = true;
415 tempfile = new TFile(tempname.str().c_str(),"RECREATE");
416 tempOrbitalInfo = OrbitalInfotrclone->CloneTree(-1,"fast");
417 tempOrbitalInfo->SetName("OrbitalInfo-old");
418 tempfile->Write();
419 tempOrbitalInfo->Delete();
420 tempfile->Close();
421 }
422 //
423 // Delete the old tree from old file and memory
424 //
425 OrbitalInfotrclone->Clear();
426 OrbitalInfotrclone->Delete("all");
427 //
428 if (verbose) printf(" ...done!\n");
429 //
430 };
431 //
432 // create mydetector tree mydect
433 //
434 file->cd();
435 OrbitalInfotr = new TTree("OrbitalInfo-new","PAMELA OrbitalInfo data");
436 OrbitalInfotr->SetAutoSave(900000000000000LL);
437 orbitalinfo->Set();//ELENA **TEMPORANEO?**
438 OrbitalInfotr->Branch("OrbitalInfo","OrbitalInfo",&orbitalinfo);
439 //
440 if ( reproc && !reprocall ){
441 //
442 // open new file and retrieve also tree informations
443 //
444 tempfile = new TFile(tempname.str().c_str(),"READ");
445 OrbitalInfotrclone = (TTree*)tempfile->Get("OrbitalInfo-old");
446 OrbitalInfotrclone->SetAutoSave(900000000000000LL);
447 OrbitalInfotrclone->SetBranchAddress("OrbitalInfo",&orbitalinfoclone);
448 //
449 if ( nobefrun > 0 ){
450 if (verbose){
451 printf("\n Pre-processing: copying events from the old tree before the processed run\n");
452 printf(" Copying %u events in the file which are before the beginning of the run %u \n",nobefrun,run);
453 printf(" Start copying at event number 0, end copying at event number %u \n",nobefrun);
454 }
455 for (UInt_t j = 0; j < nobefrun; j++){
456 //
457 if ( OrbitalInfotrclone->GetEntry(j) <= 0 ) throw -36;
458 //
459 // copy orbitalinfoclone to mydec
460 //
461 orbitalinfo->Clear();
462 //
463 memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone));
464 //
465 // Fill entry in the new tree
466 //
467 OrbitalInfotr->Fill();
468 //
469 };
470 if (verbose) printf(" Finished successful copying!\n");
471 };
472 };
473 //
474 //
475 // Get the list of run to be processed, if only one run has to be processed the list will contain one entry only.
476 //
477 runlist = runinfo->GetRunList();
478 //
479 // Loop over the run to be processed
480 //
481 for (UInt_t irun=0; irun < numbofrun; irun++){
482
483 L_QQ_Q_l_lower = new Quaternions();
484 RYPang_lower = new InclinationInfo();
485 L_QQ_Q_l_upper = new Quaternions();
486 RYPang_upper = new InclinationInfo();
487
488 //
489 // retrieve the first run ID to be processed using the RunInfo list
490 //
491
492 idRun = runlist->At(irun);
493 if (verbose){
494 printf("\n\n\n ####################################################################### \n");
495 printf(" PROCESSING RUN NUMBER %i \n",(int)idRun);
496 printf(" ####################################################################### \n\n\n");
497 }
498 //
499 runinfo->ID_ROOT_L0 = 0;
500 //
501 // store in the runinfo class the GL_RUN variables for our run
502 //
503 sgnl = 0;
504 sgnl = runinfo->GetRunInfo(idRun);
505 if ( sgnl ){
506 if ( debug ) printf("\n OrbitalInfo - ERROR: RunInfo exited with non-zero status\n");
507 code = sgnl;
508 goto closeandexit;
509 } else {
510 sgnl = 0;
511 };
512 //
513 // now you can access that variables using the RunInfo class this way runinfo->ID_REG_RUN
514 //
515 if ( runinfo->ID_ROOT_L0 == 0 ){
516 if ( debug ) printf("\n OrbitalInfo - ERROR: no run with ID_RUN = %u \n\n Exiting... \n\n",idRun);
517 code = -5;
518 goto closeandexit;
519 };
520 //
521 // prepare the timesync for the db
522 //
523 dbtime = new GL_TIMESYNC(runinfo->ID_ROOT_L0,"ID",dbc);
524
525 //
526 // Search in the DB the path and name of the LEVEL0 file to be processed.
527 //
528 glroot->Query_GL_ROOT(runinfo->ID_ROOT_L0,dbc);
529 //
530 ftmpname.str("");
531 ftmpname << glroot->PATH.Data() << "/";
532 ftmpname << glroot->NAME.Data();
533 fname = ftmpname.str().c_str();
534 ftmpname.str("");
535 //
536 // print nout informations
537 //
538 totevent = runinfo->NEVENTS;
539 evfrom = runinfo->EV_FROM;
540 //cout<<"totevents = "<<totevent<<"\n";
541 if (verbose){
542 printf("\n LEVEL0 data file: %s \n",fname.Data());
543 printf(" RUN HEADER absolute time is: %u \n",runinfo->RUNHEADER_TIME);
544 printf(" RUN TRAILER absolute time is: %u \n",runinfo->RUNTRAILER_TIME);
545 printf(" %i events to be processed for run %u: from %i to %i \n\n",totevent,idRun,runinfo->EV_FROM+1,runinfo->EV_FROM+totevent);
546 }//
547 //
548 // if ( !totevent ) goto closeandexit;
549 // Open Level0 file
550 if ( l0File ) l0File->Close();
551 l0File = new TFile(fname.Data());
552 if ( !l0File ) {
553 if ( debug ) printf(" OrbitalInfo - ERROR: problems opening Level0 file\n");
554 code = -6;
555 goto closeandexit;
556 };
557 l0tr = (TTree*)l0File->Get("Physics");
558 if ( !l0tr ) {
559 if ( debug ) printf(" OrbitalInfo - ERROR: no Physics tree in Level0 file\n");
560 l0File->Close();
561 code = -7;
562 goto closeandexit;
563 };
564 // EM: open header branch as well
565 l0head = l0tr->GetBranch("Header");
566 if ( !l0head ) {
567 if ( debug ) printf(" OrbitalInfo - ERROR: no Header branch in Level0 tree\n");
568 l0File->Close();
569 code = -8;
570 goto closeandexit;
571 };
572 l0tr->SetBranchAddress("Header", &eh);
573 // end EM
574 nevents = l0head->GetEntries();
575 //
576 if ( nevents < 1 && totevent ) {
577 if ( debug ) printf(" OrbitalInfo - ERROR: Level0 file is empty\n\n");
578 l0File->Close();
579 code = -11;
580 goto closeandexit;
581 };
582 //
583 if ( runinfo->EV_TO > nevents-1 && totevent ) {
584 if ( debug ) printf(" OrbitalInfo - ERROR: too few entries in the registry tree\n");
585 l0File->Close();
586 code = -12;
587 goto closeandexit;
588 };
589
590 //
591 // open IGRF files and do it only once if we are processing a full level2 file
592 //
593 if ( irun == 0 ){
594 if ( l0head->GetEntry(runinfo->EV_FROM) <= 0 ) throw -36;
595 //
596 // absolute time of first event of the run (it should not matter a lot)
597 //
598 ph = eh->GetPscuHeader();
599 atime = dbtime->DBabsTime(ph->GetOrbitalTime());
600
601 parerror=glparam->Query_GL_PARAM(atime-anni5,301,dbc); // parameters stored in DB in GL_PRAM table
602 if ( parerror<0 ) {
603 code = parerror;
604 goto closeandexit;
605 };
606 ltp1 = (Int_t)(glparam->PATH+glparam->NAME).Length();
607 if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam->PATH+glparam->NAME).Data());
608 //
609 parerror=glparam2->Query_GL_PARAM(atime,301,dbc); // parameters stored in DB in GL_PRAM table
610 if ( parerror<0 ) {
611 code = parerror;
612 goto closeandexit;
613 };
614 ltp2 = (Int_t)(glparam2->PATH+glparam->NAME).Length();
615 if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam2->PATH+glparam2->NAME).Data());
616 //
617 parerror=glparam3->Query_GL_PARAM(atime,302,dbc); // parameters stored in DB in GL_PRAM table
618 if ( parerror<0 ) {
619 code = parerror;
620 goto closeandexit;
621 };
622 ltp3 = (Int_t)(glparam3->PATH+glparam2->NAME).Length();
623 if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam3->PATH+glparam3->NAME).Data());
624 //
625 initize_((char *)(glparam->PATH+glparam->NAME).Data(),&ltp1,(char *)(glparam2->PATH+glparam2->NAME).Data(),&ltp2,(char *)(glparam3->PATH+glparam3->NAME).Data(),&ltp3);
626 //
627 }
628 //
629 // End IGRF stuff//
630 //
631
632 //
633 // TTree *tp = (TTree*)l0File->Get("RunHeader");
634 // tp->SetBranchAddress("Header", &eH);
635 // tp->SetBranchAddress("RunHeader", &reh);
636 // tp->GetEntry(0);
637 // ph = eH->GetPscuHeader();
638 // ULong_t TimeSync = reh->LAST_TIME_SYNC_INFO;
639 // ULong_t ObtSync = reh->OBT_TIME_SYNC;
640 // if ( debug ) printf(" 1 TimeSync %lu ObtSync %lu DeltaOBT %lu\n",TimeSync,ObtSync,TimeSync-ObtSync);
641 //
642 ULong_t TimeSync = (ULong_t)dbtime->GetTimesync();
643 ULong_t ObtSync = (ULong_t)(dbtime->GetObt0()/1000);
644 ULong_t DeltaOBT = TimeSync - ObtSync;
645
646 if ( debug ) printf(" 2 TimeSync %lu ObtSync %lu DeltaOBT %lu\n",(ULong_t)(dbtime->GetTimesync()/1000),(ULong_t)dbtime->GetObt0(),TimeSync-ObtSync);
647 //
648 // Read MCMDs from up to 11 files, 5 before and 5 after the present one in order to have some kind of inclination information
649 //
650 ch = new TChain("Mcmd","Mcmd");
651 //
652 // look in the DB to find the closest files to this run
653 //
654 TSQLResult *pResult = 0;
655 TSQLRow *Row = 0;
656 stringstream myquery;
657 UInt_t l0fid[10];
658 Int_t i = 0;
659 memset(l0fid,0,10*sizeof(Int_t));
660 //
661 myquery.str("");
662 myquery << "select ID_ROOT_L0 from GL_RUN where RUNHEADER_TIME<=" << runinfo->RUNHEADER_TIME << " group by ID_ROOT_L0 order by RUNHEADER_TIME desc limit 5;";
663 //
664 pResult = dbc->Query(myquery.str().c_str());
665 //
666 i = 9;
667 if( pResult ){
668 //
669 Row = pResult->Next();
670 //
671 while ( Row ){
672 //
673 // store infos and exit
674 //
675 l0fid[i] = (UInt_t)atoll(Row->GetField(0));
676 i--;
677 Row = pResult->Next();
678 //
679 };
680 pResult->Delete();
681 };
682 //
683 myquery.str("");
684 myquery << "select ID_ROOT_L0 from GL_RUN where RUNHEADER_TIME>" << runinfo->RUNHEADER_TIME << " group by ID_ROOT_L0 order by RUNHEADER_TIME asc limit 5;";
685 //
686 pResult = dbc->Query(myquery.str().c_str());
687 //
688 i = 0;
689 if( pResult ){
690 //
691 Row = pResult->Next();
692 //
693 while ( Row ){
694 //
695 // store infos and exit
696 //
697 l0fid[i] = (UInt_t)atoll(Row->GetField(0));
698 i++;
699 Row = pResult->Next();
700 //
701 };
702 pResult->Delete();
703 };
704 //
705 i = 0;
706 UInt_t previd = 0;
707 while ( i < 10 ){
708 if ( l0fid[i] && previd != l0fid[i] ){
709 previd = l0fid[i];
710 myquery.str("");
711 myquery << "select PATH,NAME from GL_ROOT where ID=" << l0fid[i] << " ;";
712 //
713 pResult = dbc->Query(myquery.str().c_str());
714 //
715 if( pResult ){
716 //
717 Row = pResult->Next();
718 //
719 if ( debug ) printf(" Using inclination informations from file: %s \n",(((TString)gSystem->ExpandPathName(Row->GetField(0)))+"/"+(TString)Row->GetField(1)).Data());
720 ch->Add(((TString)gSystem->ExpandPathName(Row->GetField(0)))+"/"+(TString)Row->GetField(1));
721 //
722 pResult->Delete();
723 };
724 };
725 i++;
726 };
727 //
728 // l0trm = (TTree*)l0File->Get("Mcmd");
729 // ch->ls();
730 ch->SetBranchAddress("Mcmd",&mcmdev);
731 // printf(" entries %llu \n", ch->GetEntries());
732 // l0trm = ch->GetTree();
733 // neventsm = l0trm->GetEntries();
734 neventsm = ch->GetEntries();
735 if ( debug ) printf(" entries %u \n", neventsm);
736 // neventsm = 0;
737 //
738 if (neventsm == 0){
739 if ( debug ) printf("InclinationInfo - WARNING: No quaternions in this File");
740 // l0File->Close();
741 code = 900;
742 // goto closeandexit;
743 }
744 //
745
746 // l0trm->SetBranchAddress("Mcmd", &mcmdev);
747 // l0trm->SetBranchAddress("Header", &eh);
748 //
749 //
750 //
751
752 // UInt_t mctren = 0;
753 // UInt_t mcreen = 0;
754 UInt_t numrec = 0;
755 //
756 Double_t upperqtime = 0;
757 Double_t lowerqtime = 0;
758
759 // Double_t incli = 0;
760 // oi = 0;
761 // UInt_t ooi = 0;
762 //
763 // init quaternions information from mcmd-packets
764 //
765 Bool_t isf = true;
766 // Int_t fgh = 0;
767
768 vector<Float_t> q0;
769 vector<Float_t> q1;
770 vector<Float_t> q2;
771 vector<Float_t> q3;
772 vector<Double_t> qtime;
773 vector<Float_t> qPitch;
774 vector<Float_t> qRoll;
775 vector<Float_t> qYaw;
776 vector<Int_t> qmode;
777
778 Int_t nt = 0;
779
780 //init sine-function interpolation
781
782 //cout<<"Sine coeficient initialisation..."<<endl;
783 vector<Sine> q0sine;
784 vector<Sine> q1sine;
785 vector<Sine> q2sine;
786 vector<Sine> q3sine;
787 vector<Sine> Yawsine;
788
789 /*TH2F* q0testing = new TH2F();
790 TH2F* q1testing = new TH2F();
791 TH2F* q2testing = new TH2F();
792 TH2F* q3testing = new TH2F();
793 TH2F* Pitchtesting = new TH2F();
794 */
795 UInt_t must = 0;
796
797 //
798 // run over all the events of the run
799 //
800 if (verbose) printf("\n Ready to start! \n\n Processed events: \n\n");
801 //
802 //
803 for ( re = runinfo->EV_FROM; re < (runinfo->EV_FROM+runinfo->NEVENTS); re++){
804 //
805 if ( procev%1000 == 0 && procev > 0 && verbose ) printf(" %iK \n",procev/1000);
806 if ( debug ) printf(" %i \n",procev);
807 //
808 if ( l0head->GetEntry(re) <= 0 ) throw -36;
809 //
810 // absolute time of this event
811 //
812 ph = eh->GetPscuHeader();
813 atime = dbtime->DBabsTime(ph->GetOrbitalTime());
814 if ( debug ) printf(" %i absolute time \n",procev);
815 //
816 // paranoid check
817 //
818 if ( (atime > (runinfo->RUNTRAILER_TIME+1)) || (atime < (runinfo->RUNHEADER_TIME-1)) ) {
819 if (verbose) printf(" OrbitalInfo - WARNING: event at time outside the run time window, skipping it\n");
820 jumped++;
821 // debug = true;
822 continue;
823 }
824
825 //
826 // retrieve tof informations
827 //
828 if ( !reprocall ){
829 itr = nobefrun + (re - evfrom - jumped);
830 //itr = re-(46438+200241);
831 } else {
832 itr = runinfo->GetFirstEntry() + (re - evfrom - jumped);
833 };
834 //
835 if ( !standalone ){
836 if ( itr > nevtofl2 ){
837 if ( verbose ) printf(" OrbitalInfo - ERROR: no tof events with entry = %i in Level2 file\n",itr);
838 if ( debug ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall);
839 l0File->Close();
840 code = -901;
841 goto closeandexit;
842 };
843 //
844 tof->Clear();
845 //
846 if ( ttof->GetEntry(itr) <= 0 ) throw -36;
847 //
848 };
849 //
850 procev++;
851 //
852 // start processing
853 //
854 if ( debug ) printf(" %i start processing \n",procev);
855 orbitalinfo->Clear();
856 //
857 OrbitalInfoTrkVar *t_orb = new OrbitalInfoTrkVar();
858 if( !(orbitalinfo->OrbitalInfoTrk) ) orbitalinfo->OrbitalInfoTrk = new TClonesArray("OrbitalInfoTrkVar",2);
859 TClonesArray &tor = *orbitalinfo->OrbitalInfoTrk;
860 //
861 // Fill OBT, pkt_num and absTime
862 //
863 orbitalinfo->pkt_num = ph->GetCounter();
864 orbitalinfo->OBT = ph->GetOrbitalTime();
865 orbitalinfo->absTime = atime;
866 if ( debug ) printf(" %i pktnum obt abstime \n",procev);
867 //
868 // Propagate the orbit from the tle time to atime, using SGP(D)4.
869 //
870 if ( debug ) printf(" %i sgp4 \n",procev);
871 cCoordGeo coo;
872 Float_t jyear=0.;
873 //
874 if(atime >= gltle->GetToTime()) {
875 if ( !gltle->Query(atime, dbc) ){
876 //
877 // Compute the magnetic dipole moment.
878 //
879 if ( debug ) printf(" %i compute magnetic dipole moment \n",procev);
880 UInt_t year, month, day, hour, min, sec;
881 //
882 TTimeStamp t = TTimeStamp(atime, kTRUE);
883 t.GetDate(kTRUE, 0, &year, &month, &day);
884 t.GetTime(kTRUE, 0, &hour, &min, &sec);
885 jyear = (float) year
886 + (month*31.+ (float) day)/365.
887 + (hour*3600.+min*60.+(float)sec)/(24.*3600.*365.);
888 //
889 if ( debug ) printf(" %i compute magnetic dipole moment get dipole moment for year\n",procev);
890 if ( debug ) printf(" %i jyear %f dimo %f \n",procev,jyear,dimo);
891 feldcof_(&jyear, &dimo); // get dipole moment for year
892 if ( debug ) printf(" %i compute magnetic dipole moment end\n",procev);
893 } else {
894 code = -56;
895 goto closeandexit;
896 };
897 }
898 coo = getCoo(atime, gltle->GetFromTime(), gltle->GetTle());
899 //
900 cOrbit orbits(*gltle->GetTle());
901 //
902 if ( debug ) printf(" I am Here \n");
903 //
904 // synchronize with quaternions data
905 //
906 if ( isf && neventsm>0 ){
907 //
908 // First event
909 //
910 isf = false;
911 upperqtime = atime;
912 lowerqtime = runinfo->RUNHEADER_TIME;
913 for ( ik = 0; ik < neventsm; ik++){ //number of macrocommad packets
914 if ( ch->GetEntry(ik) <= 0 ) throw -36;
915 tmpSize = mcmdev->Records->GetEntries();
916 numrec = tmpSize;
917 for (Int_t j3 = 0;j3<tmpSize;j3++){ //number of subpackets
918 if ( debug ) printf(" ik %i j3 %i eh eh eh \n",ik,j3);
919 mcmdrc = (pamela::McmdRecord*)mcmdev->Records->At(j3);
920 if ( mcmdrc ){ // missing inclination bug [8RED 090116]
921 if ( debug ) printf(" pluto \n");
922 if ((int)mcmdrc->ID1 == 226 && mcmdrc->Mcmd_Block_crc_ok == 1){ //Check that it is Inclination Packet
923 L_QQ_Q_l_upper->fill(mcmdrc->McmdData);
924 for (UInt_t ui = 0; ui < 6; ui++){
925 if (ui>0){
926 if (L_QQ_Q_l_upper->time[ui]>L_QQ_Q_l_upper->time[0]){
927 if ( debug ) printf(" here1 %i \n",ui);
928 Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[ui]*1000-DeltaOBT*1000));
929 Int_t recSize = recqtime.size();
930 if(lowerqtime > recqtime[recSize-1]){
931 Int_t sizeqmcmd = qtime.size();
932 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
933 qtime[sizeqmcmd]=u_time;
934 q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][0];
935 q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][1];
936 q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][2];
937 q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][3];
938 qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui);
939 lowerqtime = u_time;
940 orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi);
941 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[ui][0],L_QQ_Q_l_upper->quat[ui][1],L_QQ_Q_l_upper->quat[ui][2],L_QQ_Q_l_upper->quat[ui][3]);
942 qRoll[sizeqmcmd]=RYPang_upper->Kren;
943 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
944 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
945 }
946 for(Int_t mu = nt;mu<recSize;mu++){
947 if(recqtime[mu]>lowerqtime && recqtime[mu]<u_time){
948 nt=mu;
949 Int_t sizeqmcmd = qtime.size();
950 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
951 qtime[sizeqmcmd]=recqtime[mu];
952 q0[sizeqmcmd]=recq0[mu];
953 q1[sizeqmcmd]=recq1[mu];
954 q2[sizeqmcmd]=recq2[mu];
955 q3[sizeqmcmd]=recq3[mu];
956 qmode[sizeqmcmd]=-10;
957 orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi);
958 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]);
959 qRoll[sizeqmcmd]=RYPang_upper->Kren;
960 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
961 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
962 }
963 if(recqtime[mu]>=u_time){
964 Int_t sizeqmcmd = qtime.size();
965 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
966 qtime[sizeqmcmd]=u_time;
967 q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][0];
968 q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][1];
969 q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][2];
970 q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][3];
971 qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui);
972 lowerqtime = u_time;
973 orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi);
974 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[ui][0],L_QQ_Q_l_upper->quat[ui][1],L_QQ_Q_l_upper->quat[ui][2],L_QQ_Q_l_upper->quat[ui][3]);
975 qRoll[sizeqmcmd]=RYPang_upper->Kren;
976 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
977 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
978 break;
979 }
980 }
981 }
982 }else{
983 if ( debug ) printf(" here2 %i \n",ui);
984 Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000));
985 if(lowerqtime>u_time)nt=0;
986 Int_t recSize = recqtime.size();
987 if(lowerqtime > recqtime[recSize-1]){
988 Int_t sizeqmcmd = qtime.size();
989 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
990 qtime[sizeqmcmd]=u_time;
991 q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][0];
992 q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][1];
993 q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][2];
994 q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][3];
995 qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui);
996 lowerqtime = u_time;
997 orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi);
998 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]);
999 qRoll[sizeqmcmd]=RYPang_upper->Kren;
1000 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
1001 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
1002 }
1003 for(Int_t mu = nt;mu<recSize;mu++){
1004 if(recqtime[mu]>lowerqtime && recqtime[mu]<u_time){
1005 nt=mu;
1006 Int_t sizeqmcmd = qtime.size();
1007 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
1008 qtime[sizeqmcmd]=recqtime[mu];
1009 q0[sizeqmcmd]=recq0[mu];
1010 q1[sizeqmcmd]=recq1[mu];
1011 q2[sizeqmcmd]=recq2[mu];
1012 q3[sizeqmcmd]=recq3[mu];
1013 qmode[sizeqmcmd]=-10;
1014 orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi);
1015 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]);
1016 qRoll[sizeqmcmd]=RYPang_upper->Kren;
1017 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
1018 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
1019 }
1020 if(recqtime[mu]>=u_time){
1021 Int_t sizeqmcmd = qtime.size();
1022 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
1023 qtime[sizeqmcmd]=u_time;
1024 q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][0];
1025 q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][1];
1026 q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][2];
1027 q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][3];
1028 qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui);
1029 lowerqtime = u_time;
1030 orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi);
1031 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]);
1032 qRoll[sizeqmcmd]=RYPang_upper->Kren;
1033 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
1034 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
1035 CopyQ(L_QQ_Q_l_lower,L_QQ_Q_l_upper);
1036 break;
1037 }
1038 }
1039 }
1040 }
1041 }
1042 }
1043 if ( debug ) printf(" ciccio \n");
1044 }
1045 }
1046
1047 if(qtime.size()==0){
1048 for(UInt_t my=0;my<recqtime.size();my++){
1049 Int_t sizeqmcmd = qtime.size();
1050 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
1051 qtime[sizeqmcmd]=recqtime[my];
1052 q0[sizeqmcmd]=recq0[my];
1053 q1[sizeqmcmd]=recq1[my];
1054 q2[sizeqmcmd]=recq2[my];
1055 q3[sizeqmcmd]=recq3[my];
1056 qmode[sizeqmcmd]=-10;
1057 orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi);
1058 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[my],recq1[my],recq2[my],recq3[my]);
1059 qRoll[sizeqmcmd]=RYPang_upper->Kren;
1060 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
1061 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
1062 }
1063 }
1064
1065 if ( debug ) printf(" fuffi \n");
1066
1067 //sineparam(q0sine,qtime,q0,qRoll,qPitch,0.60);
1068 //sineparam(q1sine,qtime,q1,qRoll,qPitch,0.82);
1069 //sineparam(q2sine,qtime,q2,qRoll,qPitch,0.82);
1070 //sineparam(q3sine,qtime,q3,qRoll,qPitch,0.60);
1071 //sineparam(Yawsine,qtime,qYaw,qRoll,qPitch,4);
1072
1073 if ( debug ) printf(" puffi \n");
1074 Double_t tmin = 9999999999.;
1075 Double_t tmax = 0.;
1076 for(UInt_t tre = 0;tre<qtime.size();tre++){
1077 if(qtime[tre]>tmax)tmax = qtime[tre];
1078 if(qtime[tre]<tmin)tmin = qtime[tre];
1079 }
1080 if ( debug ) printf(" gnfuffi \n");
1081
1082 //q0testing->SetName("q0testing");
1083 //q1testing->SetName("q1testing");
1084 //q2testing->SetName("q2testing");
1085 //q3testing->SetName("q3testing");
1086
1087 // Int_t ss=10.*(tmax-tmin);
1088 //q0testing->SetBins(ss,tmin,tmax,1000,-1.,1.);
1089 //Pitchtesting->SetBins(ss,tmin,tmax,1000,-40.,40.);
1090
1091 // for(Int_t tre = 0;tre<qtime.size();tre++){
1092 //cout<<"q0["<<tre<<" = "<<q0[tre]<<endl;
1093 //q0testing->Fill(qtime[tre],q0[tre]);
1094 //q1testing->Fill(qtime[tre],q1[tre]);
1095 //Pitchtesting->Fill(qtime[tre],qPitch[tre],100);
1096 //if(qmode[tre] == -10)Pitchtesting->Fill(qtime[tre],10,100);
1097 //q2testing->Fill(qtime[tre],q2[tre],100);
1098 //q3testing->Fill(qtime[tre],q3[tre],100);
1099 // }
1100
1101 //for(Int_t tre=0;tre<q0sine.size();tre++)cout<<q1sine[tre].A<<"*sin("<<q1sine[tre].b<<"x+"<<q1sine[tre].c<<")\t time start: "<<q1sine[tre].startPoint<<"\ttime end: "<<q1sine[tre].finishPoint<<endl;
1102 //for(Int_t tre=0;tre<q0sine.size();tre++)cout<<q1sine[tre].A<<"*sin("<<q1sine[tre].b<<"x+"<<q1sine[tre].c<<")\t time start: "<<q0sine[tre].startPoint<<"\ttime end: "<<q0sine[tre].finishPoint<<endl;
1103 } // if we processed first event
1104
1105 //Filling Inclination information
1106 Double_t incli = 0;
1107 if ( qtime.size() > 1 ){
1108 for(UInt_t mu = must;mu<qtime.size()-1;mu++){
1109 if ( debug ) printf(" ??grfuffi %i sixe %i must %i \n",mu,qtime.size()-1,must);
1110 if(qtime[mu+1]>qtime[mu]){
1111 if ( debug ) printf(" grfuffi2 %i \n",mu);
1112 if(atime<=qtime[mu+1] && atime>=qtime[mu]){
1113 must = mu;
1114 incli = (qPitch[mu+1]-qPitch[mu])/(qtime[mu+1]-qtime[mu]);
1115 orbitalinfo->theta = incli*atime+qPitch[mu+1]-incli*qtime[mu+1];
1116 incli = (qRoll[mu+1]-qRoll[mu])/(qtime[mu+1]-qtime[mu]);
1117 orbitalinfo->etha = incli*atime+qRoll[mu+1]-incli*qtime[mu+1];
1118 incli = (qYaw[mu+1]-qYaw[mu])/(qtime[mu+1]-qtime[mu]);
1119 orbitalinfo->phi = incli*atime+qYaw[mu+1]-incli*qtime[mu+1];
1120
1121 incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]);
1122 orbitalinfo->q0 = incli*atime+q0[mu+1]-incli*qtime[mu+1];
1123 incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]);
1124 orbitalinfo->q1 = incli*atime+q1[mu+1]-incli*qtime[mu+1];
1125 incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]);
1126 orbitalinfo->q2 = incli*atime+q2[mu+1]-incli*qtime[mu+1];
1127 incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]);
1128 orbitalinfo->q3 = incli*atime+q3[mu+1]-incli*qtime[mu+1];
1129
1130 orbitalinfo->TimeGap = qtime[mu+1]-qtime[mu];
1131 orbitalinfo->mode = qmode[mu+1];
1132 //if(qmode[mu+1]==-10) orbitalinfo->R10r = true;else orbitalinfo->R10r = false;
1133 //reserved for next versions Vitaly.
1134 /*if(qmode[mu+1]==-10 || qmode[mu+1]==0 || qmode[mu+1]==1 || qmode[mu+1]==3 || qmode[mu+1]==4 || qmode[mu+1]==6){
1135 //linear interpolation
1136 incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]);
1137 orbitalinfo->q0 = incli*atime+q0[mu+1]-incli*qtime[mu+1];
1138 incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]);
1139 orbitalinfo->q1 = incli*atime+q1[mu+1]-incli*qtime[mu+1];
1140 incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]);
1141 orbitalinfo->q2 = incli*atime+q2[mu+1]-incli*qtime[mu+1];
1142 incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]);
1143 orbitalinfo->q3 = incli*atime+q3[mu+1]-incli*qtime[mu+1];
1144 }else{
1145 //sine interpolation
1146 for(UInt_t mt=0;mt<q0sine.size();mt++){
1147 if(atime<=q0sine[mt].finishPoint && atime>=q0sine[mt].startPoint){
1148 if(!q0sine[mt].NeedFit)orbitalinfo->q0=q0sine[mt].A*sin(q0sine[mt].b*atime+q0sine[mt].c);else{
1149 incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]);
1150 orbitalinfo->q0 = incli*atime+q0[mu+1]-incli*qtime[mu+1];
1151 }
1152 }
1153 if(atime<=q1sine[mt].finishPoint && atime>=q1sine[mt].startPoint){
1154 if(!q1sine[mt].NeedFit)orbitalinfo->q1=q1sine[mt].A*sin(q1sine[mt].b*atime+q1sine[mt].c);else{
1155 incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]);
1156 orbitalinfo->q1 = incli*atime+q1[mu+1]-incli*qtime[mu+1];
1157 }
1158 }
1159 if(atime<=q2sine[mt].finishPoint && atime>=q2sine[mt].startPoint){
1160 if(!q2sine[mt].NeedFit)orbitalinfo->q2=q0sine[mt].A*sin(q2sine[mt].b*atime+q2sine[mt].c);else{
1161 incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]);
1162 orbitalinfo->q2 = incli*atime+q2[mu+1]-incli*qtime[mu+1];
1163 }
1164 }
1165 if(atime<=q3sine[mt].finishPoint && atime>=q3sine[mt].startPoint){
1166 if(!q3sine[mt].NeedFit)orbitalinfo->q3=q0sine[mt].A*sin(q3sine[mt].b*atime+q3sine[mt].c);else{
1167 incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]);
1168 orbitalinfo->q3 = incli*atime+q3[mu+1]-incli*qtime[mu+1];
1169 }
1170 }
1171 if(atime<=Yawsine[mt].finishPoint && atime>=Yawsine[mt].startPoint){
1172 if(!Yawsine[mt].NeedFit)orbitalinfo->phi=Yawsine[mt].A*sin(Yawsine[mt].b*atime+Yawsine[mt].c);else{
1173 incli = (qYaw[mu+1]-qYaw[mu])/(qtime[mu+1]-qtime[mu]);
1174 orbitalinfo->phi = incli*atime+qYaw[mu+1]-incli*qtime[mu+1];
1175 }
1176 }
1177 }
1178 }*/
1179 //q0testing->Fill(atime,orbitalinfo->q0,100);
1180 //q1testing->Fill(atime,orbitalinfo->q1,100);
1181 //Pitchtesting->Fill(atime,orbitalinfo->etha);
1182 //q2testing->Fill(atime,orbitalinfo->q2);
1183 //q3testing->Fill(atime,orbitalinfo->q3);
1184 break;
1185 }
1186 }
1187 }
1188 }
1189 //
1190 // ops no inclination information
1191 //
1192
1193 if ( orbitalinfo->q0< -999 || orbitalinfo->q1 < -999 || orbitalinfo->q2 < -999 || orbitalinfo->q3 < -999 || orbitalinfo->q0 != orbitalinfo->q0 || orbitalinfo->q1 != orbitalinfo->q1 || orbitalinfo->q2 != orbitalinfo->q2 || orbitalinfo->q3 != orbitalinfo->q3 ){
1194 orbitalinfo->mode = 10;
1195 orbitalinfo->q0 = -1000.;
1196 orbitalinfo->q1 = -1000.;
1197 orbitalinfo->q2 = -1000.;
1198 orbitalinfo->q3 = -1000.;
1199 orbitalinfo->etha = -1000.;
1200 orbitalinfo->phi = -1000.;
1201 orbitalinfo->theta = -1000.;
1202 };
1203 //
1204 // #########################################################################################################################
1205 //
1206 // fill orbital positions
1207 //
1208 // Build coordinates in the right range. We want to convert,
1209 // longitude from (0, 2*pi) to (-180deg, 180deg). Altitude is
1210 // in meters.
1211 lon = (coo.m_Lon > M_PI) ? rad2deg(coo.m_Lon - 2*M_PI) : rad2deg(coo.m_Lon);
1212 lat = rad2deg(coo.m_Lat);
1213 alt = coo.m_Alt;
1214 //
1215 if( lon<180 && lon>-180 && lat<90 && lat>-90 && alt>0 ){
1216 //
1217 orbitalinfo->lon = lon;
1218 orbitalinfo->lat = lat;
1219 orbitalinfo->alt = alt ;
1220 //
1221 // compute mag field components and L shell.
1222 //
1223 feldg_(&lat, &lon, &alt, &bnorth, &beast, &bdown, &babs);
1224 shellg_(&lat, &lon, &alt, &dimo, &xl, &icode, &bab1);
1225 findb0_(&stps, &bdel, &value, &bequ, &rr0);
1226 //
1227 orbitalinfo->Bnorth = bnorth;
1228 orbitalinfo->Beast = beast;
1229 orbitalinfo->Bdown = bdown;
1230 orbitalinfo->Babs = babs;
1231 orbitalinfo->BB0 = babs/bequ;
1232 orbitalinfo->L = xl;
1233 // Set Stormer vertical cutoff using L shell.
1234 orbitalinfo->cutoffsvl = 14.295 / (xl*xl); //
1235 /*
1236 ---------- Forwarded message ----------
1237 Date: Wed, 09 May 2012 12:16:47 +0200
1238 From: Alessandro Bruno <alessandro.bruno@ba.infn.it>
1239 To: Mirko Boezio <mirko.boezio@ts.infn.it>
1240 Cc: Francesco S. Cafagna <Francesco.Cafagna@ba.infn.it>
1241 Subject: Störmer vertical cutoff
1242
1243 Ciao Mirko,
1244 volevo segnalarti che il valore dello Störmer vertical cutoff nel Level2 è
1245 sovrastimato di circa il 4%.
1246 Dopo un'approfondita analisi con l'IGRF-05 abbiamo ricavano un valore pari
1247 a: 14.295 / L^2 anzichè 14.9 / L^2, valore obsoleto in quanto riferito agli
1248 anni '50.
1249 */
1250 //14.9/(xl*xl);
1251 orbitalinfo->igrf_icode = icode;
1252 //
1253 };
1254 //
1255 if ( debug ) printf(" pitch angle \n");
1256 //
1257 // pitch angles
1258 //
1259 //if ( orbitalinfo->mode != 10 && orbitalinfo->mode != 5 && orbitalinfo->mode !=7 && orbitalinfo->mode != 9 ){
1260 if( orbitalinfo->TimeGap>0 && orbitalinfo->TimeGap<2000000){
1261 //
1262 Float_t Bx = -orbitalinfo->Bdown;
1263 Float_t By = orbitalinfo->Beast;
1264 Float_t Bz = orbitalinfo->Bnorth;
1265 //
1266 TMatrixD Fij = PO->ECItoGreenwich(PO->QuatoECI(orbitalinfo->q0,orbitalinfo->q1,orbitalinfo->q2,orbitalinfo->q3),orbitalinfo->absTime);
1267 TMatrixD Gij = PO->ColPermutation(Fij);
1268 TMatrixD Dij = PO->GreenwichtoGEO(orbitalinfo->lat,orbitalinfo->lon,Fij);
1269 TMatrixD Iij = PO->ColPermutation(Dij);
1270 //
1271 orbitalinfo->Iij.ResizeTo(Iij);
1272 orbitalinfo->Iij = Iij;
1273 //
1274 A1 = Iij(0,2);
1275 A2 = Iij(1,2);
1276 A3 = Iij(2,2);
1277 //
1278 // orbitalinfo->pamzenitangle = (Float_t)PO->GetPitchAngle(1,0,0,A1,A2,A3); // Angle between zenit and Pamela's main axiz
1279 // orbitalinfo->pamBangle = (Float_t)PO->GetPitchAngle(A1,A2,A3,Bx,By,Bz); // Angle between Pamela's main axiz and B
1280 //
1281 if ( !standalone && tof->ntrk() > 0 ){
1282 //
1283 Int_t nn = 0;
1284 for(Int_t nt=0; nt < tof->ntrk(); nt++){
1285 //
1286 ToFTrkVar *ptt = tof->GetToFTrkVar(nt);
1287 Double_t E11x = ptt->xtr_tof[0]; // tr->x[0];
1288 Double_t E11y = ptt->ytr_tof[0]; //tr->y[0];
1289 Double_t E11z = zin[0];
1290 Double_t E22x = ptt->xtr_tof[3];//tr->x[3];
1291 Double_t E22y = ptt->ytr_tof[3];//tr->y[3];
1292 Double_t E22z = zin[3];
1293 if ( (E11x < 100. && E11y < 100. && E22x < 100. && E22y < 100.) || ptt->trkseqno != -1 ){
1294 Double_t norm = sqrt(pow(E22x-E11x,2)+pow(E22y-E11y,2)+pow(E22z-E11z,2));
1295 // Double_t MyAzim = TMath::RadToDeg()*atan(TMath::Abs(E22y-E11y)/TMath::Abs(E22x-E11x));
1296 // if(E22x-E11x>=0 && E22y-E11y <0) MyAzim = 360. - MyAzim;
1297 // if(E22x-E11x>=0 && E22y-E11y >=0) MyAzim = MyAzim;
1298 // if(E22x-E11x<0 && E22y-E11y >0) MyAzim = 180. - MyAzim;
1299 // if(E22x-E11x<0 && E22y-E11y <0) MyAzim = 180. + MyAzim;
1300 Px = (E22x-E11x)/norm;
1301 Py = (E22y-E11y)/norm;
1302 Pz = (E22z-E11z)/norm;
1303 //
1304 t_orb->trkseqno = ptt->trkseqno;
1305 //
1306 TMatrixD Eij = PO->PamelatoGEO(Iij,Px,Py,Pz);
1307 t_orb->Eij.ResizeTo(Eij);
1308 t_orb->Eij = Eij;
1309 //
1310 TMatrixD Sij = PO->PamelatoGEO(Gij,Px,Py,Pz);
1311 t_orb->Sij.ResizeTo(Sij);
1312 t_orb->Sij = Sij;
1313 //
1314 t_orb->pitch = (Float_t)PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),Bx,By,Bz);
1315 //
1316 //
1317 Double_t omega = PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),cos(orbitalinfo->lon+TMath::Pi()/2)-sin(orbitalinfo->lon+TMath::Pi()/2),cos(orbitalinfo->lon+TMath::Pi()/2)+sin(orbitalinfo->lon+TMath::Pi()/2),1);
1318 //
1319 t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow((1+sqrt(1-pow(orbitalinfo->L,-3/2)*cos(omega))),2));
1320 //
1321 if ( t_orb->pitch != t_orb->pitch ) t_orb->pitch = -1000.;
1322 if ( t_orb->cutoff != t_orb->cutoff ) t_orb->cutoff = -1000.;
1323 //
1324 if ( debug ) printf(" orbitalinfo->cutoffsvl %f vitaly %f \n",orbitalinfo->cutoffsvl,t_orb->cutoff);
1325 //
1326 new(tor[nn]) OrbitalInfoTrkVar(*t_orb);
1327 nn++;
1328 //
1329 t_orb->Clear();
1330 //
1331 };
1332 //
1333 };
1334 } else {
1335 if ( debug ) printf(" mmm... mode %u standalone %i ntrk %i \n",orbitalinfo->mode,standalone,tof->ntrk());
1336 };
1337 //
1338 } else {
1339 if ( !standalone && tof->ntrk() > 0 ){
1340 //
1341 Int_t nn = 0;
1342 for(Int_t nt=0; nt < tof->ntrk(); nt++){
1343 //
1344 ToFTrkVar *ptt = tof->GetToFTrkVar(nt);
1345 if ( ptt->trkseqno != -1 ){
1346 //
1347 t_orb->trkseqno = ptt->trkseqno;
1348 //
1349 t_orb->Eij = 0;
1350 //
1351 t_orb->Sij = 0;
1352 //
1353 t_orb->pitch = -1000.;
1354 //
1355 t_orb->cutoff = -1000.;
1356 //
1357 new(tor[nn]) OrbitalInfoTrkVar(*t_orb);
1358 nn++;
1359 //
1360 t_orb->Clear();
1361 //
1362 };
1363 //
1364 };
1365 };
1366 };
1367 //
1368 // Fill the class
1369 //
1370 OrbitalInfotr->Fill();
1371 //
1372 delete t_orb;
1373 //
1374 }; // loop over the events in the run
1375 //
1376 // Here you may want to clear some variables before processing another run
1377 //
1378
1379 //gStyle->SetOptStat(000000);
1380 //gStyle->SetPalette(1);
1381
1382 /*TCanvas* c1 = new TCanvas("c1","",1200,800);
1383 //c1->Divide(1,4);
1384 c1->cd(1);
1385 //q0testing->Draw("colz");
1386 //c1->cd(2);
1387 //q1testing->Draw("colz");
1388 //c1->cd(3);
1389 Pitchtesting->Draw("colz");
1390 //c1->cd(4);
1391 //q3testing->Draw("colz");
1392 c1->SaveAs("9.Rollhyst.png");
1393 delete c1;*/
1394
1395 if ( verbose ) printf(" Clear before new run \n");
1396 delete dbtime;
1397
1398 mcmdrc->Clear();
1399 mcmdrc = 0;
1400
1401 if ( verbose ) printf(" Clear before new run1 \n");
1402 if ( L_QQ_Q_l_lower ) delete L_QQ_Q_l_lower;
1403 if ( verbose ) printf(" Clear before new run2 \n");
1404 if ( L_QQ_Q_l_upper ) delete L_QQ_Q_l_upper;
1405 if ( verbose ) printf(" Clear before new run3 \n");
1406 if ( RYPang_upper ) delete RYPang_upper;
1407 if ( verbose ) printf(" Clear before new run4 \n");
1408 if ( RYPang_lower ) delete RYPang_lower;
1409
1410 if ( l0tr ) l0tr->Delete();
1411
1412 if ( verbose ) printf(" End run \n");
1413
1414 }; // process all the runs
1415
1416 if (verbose) printf("\n Finished processing data \n");
1417 //
1418 closeandexit:
1419 //
1420 // we have finished processing the run(s). If we processed a single run now we must copy all the events after our run from the old tree to the new one and delete the old tree.
1421 //
1422 if ( !reprocall && reproc && code >= 0 ){
1423 if ( totfileentries > noaftrun ){
1424 if (verbose){
1425 printf("\n Post-processing: copying events from the old tree after the processed run\n");
1426 printf(" Copying %i events in the file which are after the end of the run %i \n",(int)(totfileentries-noaftrun),(int)run);
1427 printf(" Start copying at event number %i end copying at event number %i \n",(int)noaftrun,(int)totfileentries);
1428 }
1429 for (UInt_t j = noaftrun; j < totfileentries; j++ ){
1430 //
1431 // Get entry from old tree
1432 //
1433 if ( OrbitalInfotrclone->GetEntry(j) <= 0 ) throw -36;
1434 //
1435 // copy orbitalinfoclone to OrbitalInfo
1436 //
1437 orbitalinfo->Clear();
1438 //
1439 memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone));
1440 //
1441 // Fill entry in the new tree
1442 //
1443 OrbitalInfotr->Fill();
1444 };
1445 if (verbose) printf(" Finished successful copying!\n");
1446 };
1447 //if ( OrbitalInfotrclone ) OrbitalInfotrclone->Clear();
1448 //if ( OrbitalInfotrclone ) OrbitalInfotrclone->Delete();
1449 };
1450 //
1451 // Close files, delete old tree(s), write and close level2 file
1452 //
1453 if ( l0File ) l0File->Close();
1454 if ( myfold ) gSystem->Unlink(tempname.str().c_str());
1455 //
1456 if ( OrbitalInfotr ) OrbitalInfotr->SetName("OrbitalInfo");
1457 //
1458 if ( file ){
1459 file->cd();
1460 OrbitalInfotr->Write("OrbitalInfo", TObject::kOverwrite);
1461 };
1462 //
1463 if (verbose) printf("\n Exiting...\n");
1464
1465 if ( myfold ) gSystem->Unlink(OrbitalInfofolder.str().c_str());
1466 //
1467 // the end
1468 //
1469 if ( dbc ){
1470 dbc->Close();
1471 delete dbc;
1472 };
1473 //
1474 if (verbose) printf("\n Exiting...\n");
1475 if ( tempfile ) tempfile->Close();
1476
1477 if ( PO ) delete PO;
1478 if ( gltle ) delete gltle;
1479 if ( glparam ) delete glparam;
1480 if ( glparam2 ) delete glparam2;
1481 if ( glparam3 ) delete glparam3;
1482 if (verbose) printf("\n Exiting3...\n");
1483 if ( glroot ) delete glroot;
1484 if (verbose) printf("\n Exiting4...\n");
1485 if ( runinfo ) runinfo->Close();
1486 if ( runinfo ) delete runinfo;
1487
1488 if ( debug ){
1489 cout << "1 0x" << OrbitalInfotr << endl;
1490 cout << "2 0x" << OrbitalInfotrclone << endl;
1491 cout << "3 0x" << l0tr << endl;
1492 cout << "4 0x" << tempOrbitalInfo << endl;
1493 cout << "5 0x" << ttof << endl;
1494 }
1495 //
1496 if ( debug ) file->ls();
1497 //
1498 if(code < 0) throw code;
1499 return(code);
1500 }
1501
1502
1503 //
1504 // Returns the cCoordGeo structure holding the geographical
1505 // coordinates for the event (see sgp4.h).
1506 //
1507 // atime is the abstime of the event in UTC unix time.
1508 // tletime is the time of the tle in UTC unix time.
1509 // tle is the previous and nearest tle (compared to atime).
1510 cCoordGeo getCoo(UInt_t atime, UInt_t tletime, cTle *tle)
1511 {
1512 cEci eci;
1513 cOrbit orbit(*tle);
1514 orbit.getPosition((double) (atime - tletime)/60., &eci);
1515
1516 return eci.toGeo();
1517 }
1518
1519 // function of copyng of quatrnions classes
1520
1521 void CopyQ(Quaternions *Q1, Quaternions *Q2){
1522 for(UInt_t i = 0; i < 6; i++){
1523 Q1->time[i]=Q2->time[i];
1524 for (UInt_t j = 0; j < 4; j++)Q1->quat[i][j]=Q2->quat[i][j];
1525 }
1526 return;
1527 }
1528
1529 // functions of copyng InclinationInfo classes
1530
1531 void CopyAng(InclinationInfo *A1, InclinationInfo *A2){
1532 A1->Tangazh = A2->Tangazh;
1533 A1->Ryskanie = A2->Ryskanie;
1534 A1->Kren = A2->Kren;
1535 return;
1536 }
1537
1538 UInt_t holeq(Double_t lower,Double_t upper,Quaternions *Qlower, Quaternions *Qupper, UInt_t f){
1539
1540 UInt_t hole = 10;
1541 Bool_t R10l = false; // Sign of R10 mode in lower quaternions array
1542 Bool_t R10u = false; // Sign of R10 mode in upper quaternions array
1543 Bool_t insm = false; // Sign that we inside quaternions array
1544 Bool_t mxtml = false; // Sign of mixt mode in lower quaternions array
1545 Bool_t mxtmu = false; // Sign of mixt mode in upper quaternions array
1546 Bool_t npasm = false; // Sign of normall pass between R10 and non R10 or between non R10 and R10
1547 UInt_t NCQl = 6; // Number of correct quaternions in lower array
1548 UInt_t NCQu = 6; // Number of correct quaternions in upper array
1549 if (f>0){
1550 insm = true;
1551 if(Qupper->time[f]-Qupper->time[f-1]==30) R10u = false;
1552 if(Qupper->time[f]-Qupper->time[f-1]<1) R10u = true;
1553 }else{
1554 insm = false;
1555 if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]<2)) R10l = true;
1556 if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]<2)) R10u = true;
1557 if((Qlower->time[5]-Qlower->time[0]==150)&&(Qlower->time[1]-Qlower->time[0]==30)) R10l = false;
1558 if((Qupper->time[5]-Qupper->time[0]==150)&&(Qupper->time[1]-Qupper->time[0]==30)) R10u = false;
1559 if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]==30)){
1560 mxtml = true;
1561 for(UInt_t i = 1; i < 6; i++){
1562 if(Qlower->time[i]-Qlower->time[0]==30*i) NCQl=i;
1563 }
1564 }
1565 if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]==30)){
1566 mxtmu = true;
1567 for(UInt_t i = 1; i < 6; i++){
1568 if(Qupper->time[i]-Qupper->time[0]==30*i) NCQu=i;
1569 }
1570 }
1571 }
1572
1573 if(((upper-lower==1.5)||(upper-lower==3.)||(upper-lower==30.)||(upper-lower==31.5)||(upper-lower==33.)||(upper-lower==181.5)||(upper-lower==210.)||(upper-lower==211.5))&&!insm) npasm = true;
1574
1575
1576 if (R10u&&insm) hole=0; // best event R10
1577 if ((upper-lower<=5)&&(!insm)&&R10l&&R10u) hole = 1; // when first of 6 quaternions in array is correct
1578 if (((!R10u)&&insm)||((!insm)&&(!R10u)&&(!R10l)&&((upper-lower==210+(6-NCQl)*30)||(upper-lower==30)))) hole = 2; //non R10
1579 if (npasm&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 3; //normall pass from R10 to non R10 or from non R10 to R10
1580 if ((!npasm)&&(upper-lower<=300)&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 4; // eliminable hole between R10 and non R10 or between non R10 and R10
1581 if ((upper-lower>=300)&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 5; //uneliminable hole between R10 and non R10 or between non R10 and R10
1582 if ((upper-lower>5)&&(upper-lower<=300)&&R10u&&R10l) hole = 6; // eliminable hole inside R10
1583 if ((upper-lower>300)&&R10u&&R10l) hole = 7; //uneliminable hole inside R10
1584 if ((upper-lower>210)&&(upper-lower<=1200)&&(!R10u)&&(!R10l)) hole = 8; //eliminable hole inside non R10
1585 if ((upper-lower>1200)&&!R10u&&!R10l) hole = 9; // uneliminable hole inside non R10
1586 return hole;
1587 }
1588
1589 void inclresize(vector<Double_t>& t,vector<Float_t>& q0,vector<Float_t>& q1,vector<Float_t>& q2,vector<Float_t>& q3,vector<Int_t>& mode,vector<Float_t>& Roll,vector<Float_t>& Pitch,vector<Float_t>& Yaw){
1590 Int_t sizee = t.size()+1;
1591 t.resize(sizee);
1592 q0.resize(sizee);
1593 q1.resize(sizee);
1594 q2.resize(sizee);
1595 q3.resize(sizee);
1596 mode.resize(sizee);
1597 Roll.resize(sizee);
1598 Pitch.resize(sizee);
1599 Yaw.resize(sizee);
1600 }
1601
1602 //Find fitting sine functions for q0,q1,q2,q3 and Yaw-angle;
1603 void sineparam(vector<Sine>& qsine, vector<Double_t>& qtime, vector<Float_t>& q, vector<Float_t>& Roll, vector<Float_t>& Pitch, Float_t limsin){
1604 UInt_t mulast = 0;
1605 UInt_t munow = 0;
1606 UInt_t munext = 0;
1607 Bool_t increase = false;
1608 Bool_t decrease = false;
1609 Bool_t Max_is_defined = false;
1610 Bool_t Start_point_is_defined = false;
1611 Bool_t Period_is_defined = false;
1612 Bool_t Large_gap = false;
1613 Bool_t normal_way = true;
1614 Bool_t small_gap_on_ridge = false;
1615 Double_t t1 = 0;
1616 Double_t t1A = 0;
1617 Int_t sinesize = 0;
1618 Int_t nfi = 0;
1619 for(UInt_t mu = 0;mu<qtime.size();mu++){
1620 //cout<<"Roll["<<mu<<"] = "<<Roll[mu]<<endl;
1621 if(TMath::Abs(Roll[mu])<1. && TMath::Abs(Pitch[mu])<1. && TMath::Abs(q[mu])<limsin){
1622 //cout<<"q["<<mu<<endl<<"] = "<<q[mu]<<endl;
1623 if(mulast!=0 && munow!=0 && munext!=0){mulast=munow;munow=munext;munext=mu;}
1624 if(munext==0 && munow!=0)munext=mu;
1625 if(munow==0 && mulast!=0)munow=mu;
1626 if(mulast==0)mulast=mu;
1627
1628 //cout<<"mulast = "<<mulast<<"\tmunow = "<<munow<<"\tmunext = "<<munext<<endl;
1629 //Int_t ref;
1630 //cin>>ref;
1631 if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && q[mulast]*q[munext]>0 && qtime[munext]-qtime[mulast]>400)small_gap_on_ridge = true;
1632 if(munext>mulast && (qtime[munext]-qtime[mulast]>=2000 || qtime[munext]-qtime[mulast]<0)){if(Large_gap){normal_way = false;Large_gap = false;}else{Large_gap = true;normal_way = false;}}else normal_way = true;
1633 //if(normal_way)cout<<"Normal_Way"<<endl;
1634 if(Large_gap || small_gap_on_ridge){
1635 //cout<<"Large gap..."<<endl;
1636 //if(small_gap_on_ridge)cout<<"small gap..."<<endl;
1637 //cout<<"q["<<mulast<<"] = "<<q[mulast]<<"\tq["<<munow<<"] = "<<q[munow]<<"\tq["<<munext<<"] = "<<q[munext]<<endl;
1638 //cout<<"qtime["<<mulast<<"] = "<<qtime[mulast]<<"\tqtime["<<munow<<"] = "<<qtime[munow]<<"\tqtime["<<munext<<"] = "<<qtime[munext]<<endl;
1639 increase = false;
1640 decrease = false;
1641 if(nfi>0){
1642 qsine.resize(qsine.size()-1);
1643 sinesize = qsine.size();
1644 //cout<<"nfi was larger then zero"<<endl;
1645 }else{
1646 //cout<<"nfi was not larger then zero :( nfi = "<<nfi<<endl;
1647 //cout<<"qsine.size = "<<qsine.size()<<endl;
1648 if(!Period_is_defined){
1649 //cout<<"Period was defined"<<endl;
1650 if(qsine.size()>1){
1651 qsine[sinesize-1].b = qsine[sinesize-2].b;
1652 qsine[sinesize-1].c = qsine[sinesize-2].c;
1653 }else{
1654 qsine[sinesize-1].b = TMath::Pi()/1591.54;
1655 qsine[sinesize-1].c = qsine[sinesize-1].startPoint;
1656 }
1657 }
1658 if(!Max_is_defined){
1659 //cout<<"Max was already defined"<<endl;
1660 if(qsine.size()>1)qsine[sinesize-1].A = qsine[sinesize-2].A;else qsine[sinesize-1].A = limsin;
1661 }
1662 qsine[sinesize-1].NeedFit = true;
1663 }
1664 qsine[sinesize-1].finishPoint = qtime[munow];
1665 //cout<<"finish point before large gap = "<<qtime[munow]<<endl;
1666 nfi = 0;
1667 Max_is_defined = false;
1668 Start_point_is_defined = false;
1669 Period_is_defined = false;
1670 small_gap_on_ridge = false;
1671 }
1672 //cout<<"Slope "<<increase<<"\t"<<decrease<<endl;
1673 //cout<<"mulast = "<<mulast<<"\tmunow = "<<munow<<"\tmunext = "<<munext<<endl;
1674 if((munext>munow) && (munow>mulast) && normal_way){
1675 if(!increase && !decrease){
1676 //cout<<"Normal way have started"<<endl;
1677 qsine.resize(qsine.size()+1);
1678 sinesize = qsine.size();
1679 qsine[sinesize-1].startPoint=qtime[mulast];
1680 if(q[munext]>q[munow] && q[munow]>q[mulast]) increase = true;
1681 if(q[munext]<q[munow] && q[munow]<q[mulast]) decrease = true;
1682 }
1683 //if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && TMath::Abs(q[munow])>limsin && qtime[munow]-qtime[mulast]>=400 || qtime[munext]-qtime[munow]>=400){small_gap_on_ridge = true;mu--;continue;}
1684 if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && TMath::Abs(q[munow])>0.9*limsin && qtime[munow]-qtime[mulast]<400 && qtime[munext]-qtime[munow]<400){
1685 //cout<<"Max point is qtime = "<<qtime[munow]<<"\tq = "<<q[munow]<<endl;
1686 if(q[munow]>q[mulast]){
1687 increase = false;
1688 decrease = true;
1689 }
1690 if(q[munow]<q[mulast]){
1691 increase = true;
1692 decrease = false;
1693 }
1694 if(Max_is_defined && !Start_point_is_defined){
1695 Double_t qPer = qtime[munow]-t1A;
1696 if(qPer>1000){
1697 //cout<<"qsine["<<sinesize-1<<"] = "<<qPer<<" = "<<qtime[munow]<<" - "<<t1A<<"\tlim = "<<limsin<<endl;
1698 qsine[sinesize-1].b=TMath::Pi()/qPer;
1699 if(decrease)qsine[sinesize-1].c=-qsine[sinesize-1].b*t1A;
1700 if(increase)qsine[sinesize-1].c=-qsine[sinesize-1].b*(t1A-qPer);
1701 Period_is_defined = true;
1702 }
1703 }
1704 Max_is_defined = true;
1705 qsine[sinesize-1].A = TMath::Abs(q[munow]);
1706 if(Start_point_is_defined && Period_is_defined){
1707 qsine[sinesize-1].finishPoint = qtime[munow];
1708 nfi++;
1709 qsine[sinesize-1].NeedFit = false;
1710 Max_is_defined = false;
1711 Start_point_is_defined = false;
1712 Period_is_defined = false;
1713 qsine.resize(qsine.size()+1);
1714 sinesize = qsine.size();
1715 qsine[sinesize-1].startPoint = qtime[munow];
1716 }
1717 if(!Start_point_is_defined) t1A=qtime[munow];
1718 }
1719 //if((q[munow]>=0 && q[mulast]<=0) || (q[munow]<=0 && q[mulast]>=0))cout<<"cross zero point diference = "<<qtime[munext] - qtime[mulast]<<"\tqlast = "<<qtime[mulast]<<"\tqnow = "<<qtime[munow]<<"\tqnext = "<<qtime[munext]<<endl;
1720 if(((q[munow]>=0 && q[mulast]<=0) || (q[munow]<=0 && q[mulast]>=0)) && qtime[munow]-qtime[mulast]<2000 && qtime[munext]-qtime[munow]<2000){
1721 Double_t tcrosszero = 0;
1722 //cout<<"cross zero point...qtime = "<<qtime[munow]<<endl;
1723 if(q[munow]==0.) tcrosszero = qtime[munow];else
1724 if(q[mulast]==0.)tcrosszero = qtime[mulast];else{
1725 Double_t k_ = (q[munow]-q[mulast])/(qtime[munow]-qtime[mulast]);
1726 Double_t b_ = q[munow]-k_*qtime[munow];
1727 tcrosszero = -b_/k_;
1728 }
1729 if(Start_point_is_defined){
1730 //cout<<"Start Point allready defined"<<endl;
1731 Double_t qPer = tcrosszero - t1;
1732 qsine[sinesize-1].b = TMath::Pi()/qPer;
1733 //cout<<"qsine["<<sinesize-1<<"].b = "<<TMath::Pi()/qPer<<endl;
1734 Period_is_defined = true;
1735 Float_t x0 = 0;
1736 if(decrease)x0 = t1;
1737 if(increase)x0 = tcrosszero;
1738 qsine[sinesize-1].c = -qsine[sinesize-1].b*x0;
1739 if(Max_is_defined){
1740 //cout<<"Max was previous defined"<<endl;
1741 qsine[sinesize-1].finishPoint = qtime[munow];
1742 nfi++;
1743 qsine[sinesize-1].NeedFit = false;
1744 Max_is_defined = false;
1745 t1 = tcrosszero;
1746 Start_point_is_defined = true;
1747 Period_is_defined = false;
1748 qsine.resize(qsine.size()+1);
1749 sinesize = qsine.size();
1750 qsine[sinesize-1].startPoint = qtime[munow];
1751 }
1752 }else{
1753 t1 = tcrosszero;
1754 Start_point_is_defined = true;
1755 }
1756 }
1757 }
1758 }
1759 }
1760
1761 //cout<<"FINISH SINE INTERPOLATION FUNCTION..."<<endl<<endl;
1762 }

  ViewVC Help
Powered by ViewVC 1.1.23