/[PAMELA software]/DarthVader/OrbitalInfo/src/OrbitalInfoCore.cpp
ViewVC logotype

Contents of /DarthVader/OrbitalInfo/src/OrbitalInfoCore.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.51 - (show annotations) (download)
Tue Nov 15 09:58:30 2011 UTC (14 years, 1 month ago) by pam-mep
Branch: MAIN
Changes since 1.50: +1 -1 lines
bug with Sij fixed

1 // C/C++ headers
2 //
3 #include <fstream>
4 #include <string.h>
5 #include <iostream>
6 #include <cstring>
7 #include <stdio.h>
8 //
9 // ROOT headers
10 //
11 //#include <TCanvas.h>
12 //#include <TH2F.h> //for test only. Vitaly.
13 //#include <TF1.h>
14
15 #include <TTree.h>
16 #include <TClassEdit.h>
17 #include <TObject.h>
18 #include <TList.h>
19 #include <TArrayI.h>
20 #include <TSystem.h>
21 #include <TSystemDirectory.h>
22 #include <TString.h>
23 #include <TFile.h>
24 #include <TClass.h>
25 #include <TSQLServer.h>
26 #include <TSQLRow.h>
27 #include <TSQLResult.h>
28 //
29 // RunInfo header
30 //
31 #include <RunInfo.h>
32 #include <GLTables.h>
33 //
34 // YODA headers
35 //
36 #include <PamelaRun.h>
37 #include <PscuHeader.h>
38 #include <PscuEvent.h>
39 #include <EventHeader.h>
40 #include <mcmd/McmdEvent.h>
41 #include <mcmd/McmdRecord.h>
42 //
43 // This program headers
44 //
45 #include <OrbitalInfo.h>
46 #include <OrbitalInfoVerl2.h>
47 #include <OrbitalInfoCore.h>
48 #include <InclinationInfo.h>
49
50
51 using namespace std;
52
53 //
54 // CORE ROUTINE
55 //
56 //
57 int OrbitalInfoCore(UInt_t run, TFile *file, GL_TABLES *glt, Int_t OrbitalInfoargc, char *OrbitalInfoargv[]){
58 //
59 Int_t i = 0;
60 TString host = glt->CGetHost();
61 TString user = glt->CGetUser();
62 TString psw = glt->CGetPsw();
63 TSQLServer *dbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data());
64 //
65 stringstream myquery;
66 myquery.str("");
67 myquery << "SET time_zone='+0:00'";
68 dbc->Query(myquery.str().c_str());
69 //
70 TString processFolder = Form("OrbitalInfoFolder_%u",run);
71 //
72 // Set these to true to have a very verbose output.
73 //
74 Bool_t debug = false;
75 //
76 Bool_t verbose = false;
77 //
78 Bool_t standalone = false;
79 //
80 if ( OrbitalInfoargc > 0 ){
81 i = 0;
82 while ( i < OrbitalInfoargc ){
83 if ( !strcmp(OrbitalInfoargv[i],"-processFolder") ) {
84 if ( OrbitalInfoargc < i+1 ){
85 throw -3;
86 };
87 processFolder = (TString)OrbitalInfoargv[i+1];
88 i++;
89 };
90 if ( (!strcmp(OrbitalInfoargv[i],"--debug")) || (!strcmp(OrbitalInfoargv[i],"-g")) ) {
91 verbose = true;
92 debug = true;
93 };
94 if ( (!strcmp(OrbitalInfoargv[i],"--verbose")) || (!strcmp(OrbitalInfoargv[i],"-v")) ) {
95 verbose = true;
96 };
97 if ( (!strcmp(OrbitalInfoargv[i],"--standalone")) ) {
98 standalone = true;
99 };
100 if ( (!strcmp(OrbitalInfoargv[i],"--calculate-pitch")) ) {
101 standalone = false;
102 };
103 i++;
104 };
105 };
106 //
107 const char* outDir = gSystem->DirName(gSystem->DirName(file->GetPath()));
108 //
109 TTree *OrbitalInfotr = 0;
110 UInt_t nevents = 0;
111 UInt_t neventsm = 0;
112 //
113 // variables needed to reprocess data
114 //
115 Long64_t maxsize = 10000000000LL;
116 TTree::SetMaxTreeSize(maxsize);
117 //
118 TString OrbitalInfoversion;
119 ItoRunInfo *runinfo = 0;
120 TArrayI *runlist = 0;
121 TTree *OrbitalInfotrclone = 0;
122 Bool_t reproc = false;
123 Bool_t reprocall = false;
124 UInt_t nobefrun = 0;
125 UInt_t noaftrun = 0;
126 UInt_t numbofrun = 0;
127 stringstream ftmpname;
128 TString fname;
129 UInt_t totfileentries = 0;
130 UInt_t idRun = 0;
131 //
132 // My variables. Vitaly.
133 //
134 // UInt_t oi = 0;
135 Int_t tmpSize = 0;
136 //
137 // variables needed to handle error signals
138 //
139 Int_t code = 0;
140 Int_t sgnl;
141 //
142 // OrbitalInfo classes
143 //
144 OrbitalInfo *orbitalinfo = new OrbitalInfo();
145 OrbitalInfo *orbitalinfoclone = new OrbitalInfo();
146
147 //
148 // define variables for opening and reading level0 file
149 //
150 TFile *l0File = 0;
151 TTree *l0tr = 0;
152 // TTree *l0trm = 0;
153 TChain *ch = 0;
154 // EM: open also header branch
155 TBranch *l0head = 0;
156 pamela::EventHeader *eh = 0;
157 pamela::PscuHeader *ph = 0;
158 pamela::McmdEvent *mcmdev = 0;
159 pamela::McmdRecord *mcmdrc = 0;
160 // end EM
161
162 // pamela::RunHeaderEvent *reh = new pamela::RunHeaderEvent;
163 // pamela::EventHeader *eH = new pamela::EventHeader;
164
165 //
166 // Define other basic variables
167 //
168 UInt_t procev = 0;
169 stringstream file2;
170 stringstream file3;
171 stringstream qy;
172 Int_t totevent = 0;
173 UInt_t atime = 0;
174 UInt_t re = 0;
175 UInt_t ik = 0;
176
177 // Position
178 Float_t lon, lat, alt;
179
180 //
181 // IGRF stuff
182 //
183 Float_t dimo = 0.0; // dipole moment (computed from dat files)
184 Float_t bnorth, beast, bdown, babs;
185 Float_t xl; // L value
186 Float_t icode; // code value for L accuracy (see fortran code)
187 Float_t bab1; // What's the difference with babs?
188 Float_t stps = 0.005; // step size for field line tracing
189 Float_t bdel = 0.01; // required accuracy
190 Float_t bequ; // equatorial b value (also called b_0)
191 Bool_t value = 0; // false if bequ is not the minimum b value
192 Float_t rr0; // equatorial radius normalized to earth radius
193
194 //
195 // Working filename
196 //
197 TString outputfile;
198 stringstream name;
199 name.str("");
200 name << outDir << "/";
201 //
202 // temporary file and folder
203 //
204 TFile *tempfile = 0;
205 TTree *tempOrbitalInfo = 0;
206 stringstream tempname;
207 stringstream OrbitalInfofolder;
208 Bool_t myfold = false;
209 tempname.str("");
210 tempname << outDir;
211 tempname << "/" << processFolder.Data();
212 OrbitalInfofolder.str("");
213 OrbitalInfofolder << tempname.str().c_str();
214 tempname << "/OrbitalInfotree_run";
215 tempname << run << ".root";
216 UInt_t totnorun = 0;
217 //
218 // DB classes
219 //
220 GL_ROOT *glroot = new GL_ROOT();
221 GL_TIMESYNC *dbtime = 0;
222 GL_TLE *gltle = new GL_TLE();
223 //
224 //Quaternions classes
225 //
226 Quaternions *L_QQ_Q_l_lower = new Quaternions();
227 InclinationInfo *RYPang_lower = new InclinationInfo();
228 Quaternions *L_QQ_Q_l_upper = new Quaternions();
229 InclinationInfo *RYPang_upper = new InclinationInfo();
230
231 cEci eCi;
232
233 // Initialize fortran routines!!!
234 Int_t ltp2 = 0;
235 Int_t ltp3 = 0;
236 Int_t uno = 1;
237 const char *niente = " ";
238 GL_PARAM *glparam = new GL_PARAM();
239 GL_PARAM *glparam2 = new GL_PARAM();
240
241 //
242 // Orientation variables. Vitaly
243 //
244 UInt_t evfrom = 0;
245 UInt_t jumped = 0;
246 Int_t itr = -1;
247 Double_t A1;
248 Double_t A2;
249 Double_t A3;
250 Double_t Px = 0;
251 Double_t Py = 0;
252 Double_t Pz = 0;
253 TTree *ttof = 0;
254 ToFLevel2 *tof = new ToFLevel2();
255 OrientationInfo *PO = new OrientationInfo();
256 Int_t nz = 6;
257 Float_t zin[6];
258 Int_t nevtofl2 = 0;
259 if ( verbose ) cout<<"Reading quaternions external file"<<endl;
260 cout.setf(ios::fixed,ios::floatfield);
261 /******Reading recovered quaternions...*********/
262 vector<Double_t> recqtime;
263 vector<Float_t> recq0;
264 vector<Float_t> recq1;
265 vector<Float_t> recq2;
266 vector<Float_t> recq3;
267 Float_t Norm = 1;
268 Int_t parerror=glparam->Query_GL_PARAM(1,303,dbc); // parameters stored in DB in GL_PRAM table
269 ifstream in((glparam->PATH+glparam->NAME).Data(),ios::in);
270 if ( parerror<0 ) {
271 code = parerror;
272 goto closeandexit;
273 };
274 while(!in.eof()){
275 recqtime.resize(recqtime.size()+1);
276 Int_t sizee = recqtime.size();
277 recq0.resize(sizee);
278 recq1.resize(sizee);
279 recq2.resize(sizee);
280 recq3.resize(sizee);
281 in>>recqtime[sizee-1];
282 in>>recq0[sizee-1];
283 in>>recq1[sizee-1];
284 in>>recq2[sizee-1];
285 in>>recq3[sizee-1];
286 in>>Norm;
287 }
288 if ( verbose ) cout<<"We have read recovered data"<<endl;
289
290
291 parerror=glparam->Query_GL_PARAM(1,301,dbc); // parameters stored in DB in GL_PRAM table
292 if ( parerror<0 ) {
293 code = parerror;
294 goto closeandexit;
295 };
296 ltp2 = (Int_t)(glparam->PATH+glparam->NAME).Length();
297 if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam->PATH+glparam->NAME).Data());
298 //
299 parerror=glparam2->Query_GL_PARAM(1,302,dbc); // parameters stored in DB in GL_PRAM table
300 if ( parerror<0 ) {
301 code = parerror;
302 goto closeandexit;
303 };
304 ltp3 = (Int_t)(glparam2->PATH+glparam2->NAME).Length();
305 if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam2->PATH+glparam2->NAME).Data());
306 //
307 initize_((char *)niente,&uno,(char *)(glparam->PATH+glparam->NAME).Data(),&ltp2,(char *)(glparam2->PATH+glparam2->NAME).Data(),&ltp3);
308 //
309 // End IGRF stuff//
310 //
311 for (Int_t ip=0;ip<nz;ip++){
312 zin[ip] = tof->GetZTOF(tof->GetToFPlaneID(ip));
313 };
314 //
315 if ( !standalone ){
316 //
317 // Does it contain the Tracker tree?
318 //
319 ttof = (TTree*)file->Get("ToF");
320 if ( !ttof ) {
321 if ( verbose ) printf(" OrbitalInfo - ERROR: no tof tree\n");
322 code = -900;
323 goto closeandexit;
324 };
325 ttof->SetBranchAddress("ToFLevel2",&tof);
326 nevtofl2 = ttof->GetEntries();
327 };
328 //
329 // Let's start!
330 //
331 // As a first thing we must check what we have to do: if run = 0 we must process all events in the file has been passed
332 // if run != 0 we must process only that run but first we have to check if the tree MyDetector2 already exist in the file
333 // if it exists we are reprocessing data and we must delete that entries, if not we must create it.
334 //
335 if ( run == 0 ) reproc = true;
336 //
337 //
338 // Output file is "outputfile"
339 //
340 if ( !file->IsOpen() ){
341 //printf(" OrbitalInfo - ERROR: cannot open file for writing\n");
342 throw -901;
343 };
344 //
345 // Retrieve GL_RUN variables from the level2 file
346 //
347 OrbitalInfoversion = OrbitalInfoInfo(false); // we should decide how to handle versioning system
348 //
349 // create an interface to RunInfo called "runinfo"
350 //
351 runinfo = new ItoRunInfo(file);
352 //
353 // open "Run" tree in level2 file, if not existing return an error (sngl != 0)
354 //
355 sgnl = 0;
356 sgnl = runinfo->Update(run, "ORB", OrbitalInfoversion);
357 //sgnl = runinfo->Read(run);
358
359 if ( sgnl ){
360 //printf("OrbitalInfo - ERROR: RunInfo exited with non-zero status\n");
361 code = sgnl;
362 goto closeandexit;
363 } else {
364 sgnl = 0;
365 };
366 //
367 // number of events in the file BEFORE the first event of our run
368 //
369 nobefrun = runinfo->GetFirstEntry();
370 //
371 // total number of events in the file
372 //
373 totfileentries = runinfo->GetFileEntries();
374 //
375 // first file entry AFTER the last event of our run
376 //
377 noaftrun = runinfo->GetLastEntry() + 1;
378 //
379 // number of run to be processed
380 //
381 numbofrun = runinfo->GetNoRun();
382 totnorun = runinfo->GetRunEntries();
383 //
384 // Try to access the OrbitalInfo tree in the file, if it exists we are reprocessing data if not we are processing a new run
385 //
386 OrbitalInfotrclone = (TTree*)file->Get("OrbitalInfo");
387 //
388 if ( !OrbitalInfotrclone ){
389 //
390 // tree does not exist, we are not reprocessing
391 //
392 reproc = false;
393 if ( run == 0 ){
394 if (verbose) printf(" OrbitalInfo - WARNING: you are reprocessing data but OrbitalInfo tree does not exist!\n");
395 }
396 if ( runinfo->IsReprocessing() && run != 0 ) {
397 if (verbose) printf(" OrbitalInfo - WARNING: it seems you are not reprocessing data but OrbitalInfo\n versioning information already exists in RunInfo.\n");
398 }
399 } else {
400 //
401 // tree exists, we are reprocessing data. Are we reprocessing a single run or all the file?
402 //
403 OrbitalInfotrclone->SetAutoSave(900000000000000LL);
404 reproc = true;
405 //
406 //
407 if (verbose) printf("\n Preparing the pre-processing...\n");
408 //
409 if ( run == 0 || totnorun == 1 ){
410 //
411 // we are reprocessing all the file
412 // if we are reprocessing everything we don't need to copy any old event and we can just work with the new tree and delete the old one immediately
413 //
414 reprocall = true;
415 //
416 if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing all runs\n");
417 //
418 } else {
419 //
420 // we are reprocessing a single run, we must copy to the new tree the events in the file which preceed the first event of the run
421 //
422 reprocall = false;
423 //
424 if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing run number %u \n",run);
425 //
426 // copying old tree to a new file
427 //
428 gSystem->MakeDirectory(OrbitalInfofolder.str().c_str());
429 myfold = true;
430 tempfile = new TFile(tempname.str().c_str(),"RECREATE");
431 tempOrbitalInfo = OrbitalInfotrclone->CloneTree(-1,"fast");
432 tempOrbitalInfo->SetName("OrbitalInfo-old");
433 tempfile->Write();
434 tempfile->Close();
435 }
436 //
437 // Delete the old tree from old file and memory
438 //
439 OrbitalInfotrclone->Delete("all");
440 //
441 if (verbose) printf(" ...done!\n");
442 //
443 };
444 //
445 // create mydetector tree mydect
446 //
447 file->cd();
448 OrbitalInfotr = new TTree("OrbitalInfo-new","PAMELA OrbitalInfo data");
449 OrbitalInfotr->SetAutoSave(900000000000000LL);
450 orbitalinfo->Set();//ELENA **TEMPORANEO?**
451 OrbitalInfotr->Branch("OrbitalInfo","OrbitalInfo",&orbitalinfo);
452 //
453 if ( reproc && !reprocall ){
454 //
455 // open new file and retrieve also tree informations
456 //
457 tempfile = new TFile(tempname.str().c_str(),"READ");
458 OrbitalInfotrclone = (TTree*)tempfile->Get("OrbitalInfo-old");
459 OrbitalInfotrclone->SetAutoSave(900000000000000LL);
460 OrbitalInfotrclone->SetBranchAddress("OrbitalInfo",&orbitalinfoclone);
461 //
462 if ( nobefrun > 0 ){
463 if (verbose){
464 printf("\n Pre-processing: copying events from the old tree before the processed run\n");
465 printf(" Copying %u events in the file which are before the beginning of the run %u \n",nobefrun,run);
466 printf(" Start copying at event number 0, end copying at event number %u \n",nobefrun);
467 }
468 for (UInt_t j = 0; j < nobefrun; j++){
469 //
470 if ( OrbitalInfotrclone->GetEntry(j) <= 0 ) throw -36;
471 //
472 // copy orbitalinfoclone to mydec
473 //
474 orbitalinfo->Clear();
475 //
476 memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone));
477 //
478 // Fill entry in the new tree
479 //
480 OrbitalInfotr->Fill();
481 //
482 };
483 if (verbose) printf(" Finished successful copying!\n");
484 };
485 };
486 //
487 //
488 // Get the list of run to be processed, if only one run has to be processed the list will contain one entry only.
489 //
490 runlist = runinfo->GetRunList();
491 //
492 // Loop over the run to be processed
493 //
494 for (UInt_t irun=0; irun < numbofrun; irun++){
495 //
496 // retrieve the first run ID to be processed using the RunInfo list
497 //
498
499 idRun = runlist->At(irun);
500 if (verbose){
501 printf("\n\n\n ####################################################################### \n");
502 printf(" PROCESSING RUN NUMBER %i \n",(int)idRun);
503 printf(" ####################################################################### \n\n\n");
504 }
505 //
506 runinfo->ID_ROOT_L0 = 0;
507 //
508 // store in the runinfo class the GL_RUN variables for our run
509 //
510 sgnl = 0;
511 sgnl = runinfo->GetRunInfo(idRun);
512 if ( sgnl ){
513 if ( debug ) printf("\n OrbitalInfo - ERROR: RunInfo exited with non-zero status\n");
514 code = sgnl;
515 goto closeandexit;
516 } else {
517 sgnl = 0;
518 };
519 //
520 // now you can access that variables using the RunInfo class this way runinfo->ID_REG_RUN
521 //
522 if ( runinfo->ID_ROOT_L0 == 0 ){
523 if ( debug ) printf("\n OrbitalInfo - ERROR: no run with ID_RUN = %u \n\n Exiting... \n\n",idRun);
524 code = -5;
525 goto closeandexit;
526 };
527 //
528 // prepare the timesync for the db
529 //
530 dbtime = new GL_TIMESYNC(runinfo->ID_ROOT_L0,"ID",dbc);
531
532 //
533 // Search in the DB the path and name of the LEVEL0 file to be processed.
534 //
535 glroot->Query_GL_ROOT(runinfo->ID_ROOT_L0,dbc);
536 //
537 ftmpname.str("");
538 ftmpname << glroot->PATH.Data() << "/";
539 ftmpname << glroot->NAME.Data();
540 fname = ftmpname.str().c_str();
541 ftmpname.str("");
542 //
543 // print nout informations
544 //
545 totevent = runinfo->NEVENTS;
546 evfrom = runinfo->EV_FROM;
547 //cout<<"totevents = "<<totevent<<"\n";
548 if (verbose){
549 printf("\n LEVEL0 data file: %s \n",fname.Data());
550 printf(" RUN HEADER absolute time is: %u \n",runinfo->RUNHEADER_TIME);
551 printf(" RUN TRAILER absolute time is: %u \n",runinfo->RUNTRAILER_TIME);
552 printf(" %i events to be processed for run %u: from %i to %i \n\n",totevent,idRun,runinfo->EV_FROM+1,runinfo->EV_FROM+totevent);
553 }//
554 //
555 // if ( !totevent ) goto closeandexit;
556 // Open Level0 file
557 l0File = new TFile(fname.Data());
558 if ( !l0File ) {
559 if ( debug ) printf(" OrbitalInfo - ERROR: problems opening Level0 file\n");
560 code = -6;
561 goto closeandexit;
562 };
563 l0tr = (TTree*)l0File->Get("Physics");
564 if ( !l0tr ) {
565 if ( debug ) printf(" OrbitalInfo - ERROR: no Physics tree in Level0 file\n");
566 l0File->Close();
567 code = -7;
568 goto closeandexit;
569 };
570 // EM: open header branch as well
571 l0head = l0tr->GetBranch("Header");
572 if ( !l0head ) {
573 if ( debug ) printf(" OrbitalInfo - ERROR: no Header branch in Level0 tree\n");
574 l0File->Close();
575 code = -8;
576 goto closeandexit;
577 };
578 l0tr->SetBranchAddress("Header", &eh);
579 // end EM
580 nevents = l0head->GetEntries();
581 //
582 if ( nevents < 1 && totevent ) {
583 if ( debug ) printf(" OrbitalInfo - ERROR: Level0 file is empty\n\n");
584 l0File->Close();
585 code = -11;
586 goto closeandexit;
587 };
588 //
589 if ( runinfo->EV_TO > nevents-1 && totevent ) {
590 if ( debug ) printf(" OrbitalInfo - ERROR: too few entries in the registry tree\n");
591 l0File->Close();
592 code = -12;
593 goto closeandexit;
594 };
595 //
596 // TTree *tp = (TTree*)l0File->Get("RunHeader");
597 // tp->SetBranchAddress("Header", &eH);
598 // tp->SetBranchAddress("RunHeader", &reh);
599 // tp->GetEntry(0);
600 // ph = eH->GetPscuHeader();
601 // ULong_t TimeSync = reh->LAST_TIME_SYNC_INFO;
602 // ULong_t ObtSync = reh->OBT_TIME_SYNC;
603 // if ( debug ) printf(" 1 TimeSync %lu ObtSync %lu DeltaOBT %lu\n",TimeSync,ObtSync,TimeSync-ObtSync);
604 //
605 ULong_t TimeSync = (ULong_t)dbtime->GetTimesync();
606 ULong_t ObtSync = (ULong_t)(dbtime->GetObt0()/1000);
607 ULong_t DeltaOBT = TimeSync - ObtSync;
608
609 if ( debug ) printf(" 2 TimeSync %lu ObtSync %lu DeltaOBT %lu\n",(ULong_t)(dbtime->GetTimesync()/1000),(ULong_t)dbtime->GetObt0(),TimeSync-ObtSync);
610 //
611 // Read MCMDs from up to 11 files, 5 before and 5 after the present one in order to have some kind of inclination information
612 //
613 ch = new TChain("Mcmd","Mcmd");
614 //
615 // look in the DB to find the closest files to this run
616 //
617 TSQLResult *pResult = 0;
618 TSQLRow *Row = 0;
619 stringstream myquery;
620 UInt_t l0fid[10];
621 Int_t i = 0;
622 memset(l0fid,0,10*sizeof(Int_t));
623 //
624 myquery.str("");
625 myquery << "select ID_ROOT_L0 from GL_RUN where RUNHEADER_TIME<=" << runinfo->RUNHEADER_TIME << " group by ID_ROOT_L0 order by RUNHEADER_TIME desc limit 5;";
626 //
627 pResult = dbc->Query(myquery.str().c_str());
628 //
629 i = 9;
630 if( pResult ){
631 //
632 Row = pResult->Next();
633 //
634 while ( Row ){
635 //
636 // store infos and exit
637 //
638 l0fid[i] = (UInt_t)atoll(Row->GetField(0));
639 i--;
640 Row = pResult->Next();
641 //
642 };
643 pResult->Delete();
644 };
645 //
646 myquery.str("");
647 myquery << "select ID_ROOT_L0 from GL_RUN where RUNHEADER_TIME>" << runinfo->RUNHEADER_TIME << " group by ID_ROOT_L0 order by RUNHEADER_TIME asc limit 5;";
648 //
649 pResult = dbc->Query(myquery.str().c_str());
650 //
651 i = 0;
652 if( pResult ){
653 //
654 Row = pResult->Next();
655 //
656 while ( Row ){
657 //
658 // store infos and exit
659 //
660 l0fid[i] = (UInt_t)atoll(Row->GetField(0));
661 i++;
662 Row = pResult->Next();
663 //
664 };
665 pResult->Delete();
666 };
667 //
668 i = 0;
669 UInt_t previd = 0;
670 while ( i < 10 ){
671 if ( l0fid[i] && previd != l0fid[i] ){
672 previd = l0fid[i];
673 myquery.str("");
674 myquery << "select PATH,NAME from GL_ROOT where ID=" << l0fid[i] << " ;";
675 //
676 pResult = dbc->Query(myquery.str().c_str());
677 //
678 if( pResult ){
679 //
680 Row = pResult->Next();
681 //
682 if ( debug ) printf(" Using inclination informations from file: %s \n",(((TString)gSystem->ExpandPathName(Row->GetField(0)))+"/"+(TString)Row->GetField(1)).Data());
683 ch->Add(((TString)gSystem->ExpandPathName(Row->GetField(0)))+"/"+(TString)Row->GetField(1));
684 //
685 pResult->Delete();
686 };
687 };
688 i++;
689 };
690 //
691 // l0trm = (TTree*)l0File->Get("Mcmd");
692 // ch->ls();
693 ch->SetBranchAddress("Mcmd",&mcmdev);
694 // printf(" entries %llu \n", ch->GetEntries());
695 // l0trm = ch->GetTree();
696 // neventsm = l0trm->GetEntries();
697 neventsm = ch->GetEntries();
698 if ( debug ) printf(" entries %u \n", neventsm);
699 // neventsm = 0;
700 //
701 if (neventsm == 0){
702 if ( debug ) printf("InclinationInfo - WARNING: No quaternions in this File");
703 // l0File->Close();
704 code = 900;
705 // goto closeandexit;
706 }
707 //
708
709 // l0trm->SetBranchAddress("Mcmd", &mcmdev);
710 // l0trm->SetBranchAddress("Header", &eh);
711 //
712 //
713 //
714
715 // UInt_t mctren = 0;
716 // UInt_t mcreen = 0;
717 UInt_t numrec = 0;
718 //
719 Double_t upperqtime = 0;
720 Double_t lowerqtime = 0;
721
722 // Double_t incli = 0;
723 // oi = 0;
724 // UInt_t ooi = 0;
725 //
726 // init quaternions information from mcmd-packets
727 //
728 Bool_t isf = true;
729 // Int_t fgh = 0;
730
731 vector<Float_t> q0;
732 vector<Float_t> q1;
733 vector<Float_t> q2;
734 vector<Float_t> q3;
735 vector<Double_t> qtime;
736 vector<Float_t> qPitch;
737 vector<Float_t> qRoll;
738 vector<Float_t> qYaw;
739 vector<Int_t> qmode;
740
741 Int_t nt = 0;
742
743 //init sine-function interpolation
744
745 //cout<<"Sine coeficient initialisation..."<<endl;
746 vector<Sine> q0sine;
747 vector<Sine> q1sine;
748 vector<Sine> q2sine;
749 vector<Sine> q3sine;
750 vector<Sine> Yawsine;
751
752 /*TH2F* q0testing = new TH2F();
753 TH2F* q1testing = new TH2F();
754 TH2F* q2testing = new TH2F();
755 TH2F* q3testing = new TH2F();
756 TH2F* Pitchtesting = new TH2F();
757 */
758 UInt_t must = 0;
759
760 //
761 // run over all the events of the run
762 //
763 if (verbose) printf("\n Ready to start! \n\n Processed events: \n\n");
764 //
765 //
766 for ( re = runinfo->EV_FROM; re < (runinfo->EV_FROM+runinfo->NEVENTS); re++){
767 //
768 if ( procev%1000 == 0 && procev > 0 && verbose ) printf(" %iK \n",procev/1000);
769 if ( debug ) printf(" %i \n",procev);
770 //
771 if ( l0head->GetEntry(re) <= 0 ) throw -36;
772 //
773 // absolute time of this event
774 //
775 ph = eh->GetPscuHeader();
776 atime = dbtime->DBabsTime(ph->GetOrbitalTime());
777 if ( debug ) printf(" %i absolute time \n",procev);
778 //
779 // paranoid check
780 //
781 if ( (atime > (runinfo->RUNTRAILER_TIME+1)) || (atime < (runinfo->RUNHEADER_TIME-1)) ) {
782 if (verbose) printf(" OrbitalInfo - WARNING: event at time outside the run time window, skipping it\n");
783 jumped++;
784 // debug = true;
785 continue;
786 }
787
788 //
789 // retrieve tof informations
790 //
791 if ( !reprocall ){
792 itr = nobefrun + (re - evfrom - jumped);
793 //itr = re-(46438+200241);
794 } else {
795 itr = runinfo->GetFirstEntry() + (re - evfrom - jumped);
796 };
797 //
798 if ( !standalone ){
799 if ( itr > nevtofl2 ){
800 if ( verbose ) printf(" OrbitalInfo - ERROR: no tof events with entry = %i in Level2 file\n",itr);
801 if ( debug ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall);
802 l0File->Close();
803 code = -901;
804 goto closeandexit;
805 };
806 //
807 tof->Clear();
808 //
809 if ( ttof->GetEntry(itr) <= 0 ) throw -36;
810 //
811 };
812 //
813 procev++;
814 //
815 // start processing
816 //
817 if ( debug ) printf(" %i start processing \n",procev);
818 orbitalinfo->Clear();
819 //
820 OrbitalInfoTrkVar *t_orb = new OrbitalInfoTrkVar();
821 if( !(orbitalinfo->OrbitalInfoTrk) ) orbitalinfo->OrbitalInfoTrk = new TClonesArray("OrbitalInfoTrkVar",2);
822 TClonesArray &tor = *orbitalinfo->OrbitalInfoTrk;
823 //
824 // Fill OBT, pkt_num and absTime
825 //
826 orbitalinfo->pkt_num = ph->GetCounter();
827 orbitalinfo->OBT = ph->GetOrbitalTime();
828 orbitalinfo->absTime = atime;
829 if ( debug ) printf(" %i pktnum obt abstime \n",procev);
830 //
831 // Propagate the orbit from the tle time to atime, using SGP(D)4.
832 //
833 if ( debug ) printf(" %i sgp4 \n",procev);
834 cCoordGeo coo;
835 Float_t jyear=0.;
836 //
837 if(atime >= gltle->GetToTime()) {
838 if ( !gltle->Query(atime, dbc) ){
839 //
840 // Compute the magnetic dipole moment.
841 //
842 if ( debug ) printf(" %i compute magnetic dipole moment \n",procev);
843 UInt_t year, month, day, hour, min, sec;
844 //
845 TTimeStamp t = TTimeStamp(atime, kTRUE);
846 t.GetDate(kTRUE, 0, &year, &month, &day);
847 t.GetTime(kTRUE, 0, &hour, &min, &sec);
848 jyear = (float) year
849 + (month*31.+ (float) day)/365.
850 + (hour*3600.+min*60.+(float)sec)/(24.*3600.*365.);
851 //
852 if ( debug ) printf(" %i compute magnetic dipole moment get dipole moment for year\n",procev);
853 feldcof_(&jyear, &dimo); // get dipole moment for year
854 if ( debug ) printf(" %i compute magnetic dipole moment end\n",procev);
855 } else {
856 code = -56;
857 goto closeandexit;
858 };
859 }
860 coo = getCoo(atime, gltle->GetFromTime(), gltle->GetTle());
861 //
862 cOrbit orbits(*gltle->GetTle());
863 //
864 if ( debug ) printf(" I am Here \n");
865 //
866 // synchronize with quaternions data
867 //
868 if ( isf && neventsm>0 ){
869 //
870 // First event
871 //
872 isf = false;
873 upperqtime = atime;
874 lowerqtime = runinfo->RUNHEADER_TIME;
875 for ( ik = 0; ik < neventsm; ik++){ //number of macrocommad packets
876 if ( ch->GetEntry(ik) <= 0 ) throw -36;
877 tmpSize = mcmdev->Records->GetEntries();
878 numrec = tmpSize;
879 for (Int_t j3 = 0;j3<tmpSize;j3++){ //number of subpackets
880 if ( debug ) printf(" ik %i j3 %i eh eh eh \n",ik,j3);
881 mcmdrc = (pamela::McmdRecord*)mcmdev->Records->At(j3);
882 if ( mcmdrc ){ // missing inclination bug [8RED 090116]
883 if ( debug ) printf(" pluto \n");
884 if ((int)mcmdrc->ID1 == 226 && mcmdrc->Mcmd_Block_crc_ok == 1){ //Check that it is Inclination Packet
885 L_QQ_Q_l_upper->fill(mcmdrc->McmdData);
886 for (UInt_t ui = 0; ui < 6; ui++){
887 if (ui>0){
888 if (L_QQ_Q_l_upper->time[ui]>L_QQ_Q_l_upper->time[0]){
889 if ( debug ) printf(" here1 %i \n",ui);
890 Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[ui]*1000-DeltaOBT*1000));
891 Int_t recSize = recqtime.size();
892 for(Int_t mu = nt;mu<recSize;mu++){
893 if(recqtime[mu]>lowerqtime && recqtime[mu]<u_time){
894 nt=mu;
895 Int_t sizeqmcmd = qtime.size();
896 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
897 qtime[sizeqmcmd]=recqtime[mu];
898 q0[sizeqmcmd]=recq0[mu];
899 q1[sizeqmcmd]=recq1[mu];
900 q2[sizeqmcmd]=recq2[mu];
901 q3[sizeqmcmd]=recq3[mu];
902 qmode[sizeqmcmd]=-10;
903 orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi);
904 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]);
905 qRoll[sizeqmcmd]=RYPang_upper->Kren;
906 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
907 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
908 }
909 if(recqtime[mu]>=u_time){
910 Int_t sizeqmcmd = qtime.size();
911 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
912 qtime[sizeqmcmd]=u_time;
913 q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][0];
914 q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][1];
915 q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][2];
916 q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][3];
917 qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui);
918 lowerqtime = u_time;
919 orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi);
920 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[ui][0],L_QQ_Q_l_upper->quat[ui][1],L_QQ_Q_l_upper->quat[ui][2],L_QQ_Q_l_upper->quat[ui][3]);
921 qRoll[sizeqmcmd]=RYPang_upper->Kren;
922 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
923 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
924 break;
925 }
926 }
927 }
928 }else{
929 if ( debug ) printf(" here2 %i \n",ui);
930 Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000));
931 if(lowerqtime>u_time)nt=0;
932 Int_t recSize = recqtime.size();
933 for(Int_t mu = nt;mu<recSize;mu++){
934 if(recqtime[mu]>lowerqtime && recqtime[mu]<u_time){
935 nt=mu;
936 Int_t sizeqmcmd = qtime.size();
937 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
938 qtime[sizeqmcmd]=recqtime[mu];
939 q0[sizeqmcmd]=recq0[mu];
940 q1[sizeqmcmd]=recq1[mu];
941 q2[sizeqmcmd]=recq2[mu];
942 q3[sizeqmcmd]=recq3[mu];
943 qmode[sizeqmcmd]=-10;
944 orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi);
945 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]);
946 qRoll[sizeqmcmd]=RYPang_upper->Kren;
947 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
948 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
949 }
950 if(recqtime[mu]>=u_time){
951 Int_t sizeqmcmd = qtime.size();
952 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
953 qtime[sizeqmcmd]=u_time;
954 q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][0];
955 q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][1];
956 q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][2];
957 q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][3];
958 qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui);
959 lowerqtime = u_time;
960 orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi);
961 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]);
962 qRoll[sizeqmcmd]=RYPang_upper->Kren;
963 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
964 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
965 CopyQ(L_QQ_Q_l_lower,L_QQ_Q_l_upper);
966 break;
967 }
968 }
969 }
970 }
971 }
972 }
973 if ( debug ) printf(" ciccio \n");
974 }
975 }
976
977 if(qtime.size()==0){
978 for(UInt_t my=0;my<recqtime.size();my++){
979 Int_t sizeqmcmd = qtime.size();
980 inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
981 qtime[sizeqmcmd]=recqtime[my];
982 q0[sizeqmcmd]=recq0[my];
983 q1[sizeqmcmd]=recq1[my];
984 q2[sizeqmcmd]=recq2[my];
985 q3[sizeqmcmd]=recq3[my];
986 qmode[sizeqmcmd]=-10;
987 orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi);
988 RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[my],recq1[my],recq2[my],recq3[my]);
989 qRoll[sizeqmcmd]=RYPang_upper->Kren;
990 qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
991 qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
992 }
993 }
994
995 if ( debug ) printf(" fuffi \n");
996
997 //sineparam(q0sine,qtime,q0,qRoll,qPitch,0.60);
998 //sineparam(q1sine,qtime,q1,qRoll,qPitch,0.82);
999 //sineparam(q2sine,qtime,q2,qRoll,qPitch,0.82);
1000 //sineparam(q3sine,qtime,q3,qRoll,qPitch,0.60);
1001 //sineparam(Yawsine,qtime,qYaw,qRoll,qPitch,4);
1002
1003 if ( debug ) printf(" puffi \n");
1004 Double_t tmin = 9999999999.;
1005 Double_t tmax = 0.;
1006 for(UInt_t tre = 0;tre<qtime.size();tre++){
1007 if(qtime[tre]>tmax)tmax = qtime[tre];
1008 if(qtime[tre]<tmin)tmin = qtime[tre];
1009 }
1010 if ( debug ) printf(" gnfuffi \n");
1011
1012 //q0testing->SetName("q0testing");
1013 //q1testing->SetName("q1testing");
1014 //q2testing->SetName("q2testing");
1015 //q3testing->SetName("q3testing");
1016
1017 // Int_t ss=10.*(tmax-tmin);
1018 //q0testing->SetBins(ss,tmin,tmax,1000,-1.,1.);
1019 //Pitchtesting->SetBins(ss,tmin,tmax,1000,-40.,40.);
1020
1021 // for(Int_t tre = 0;tre<qtime.size();tre++){
1022 //cout<<"q0["<<tre<<" = "<<q0[tre]<<endl;
1023 //q0testing->Fill(qtime[tre],q0[tre]);
1024 //q1testing->Fill(qtime[tre],q1[tre]);
1025 //Pitchtesting->Fill(qtime[tre],qPitch[tre],100);
1026 //if(qmode[tre] == -10)Pitchtesting->Fill(qtime[tre],10,100);
1027 //q2testing->Fill(qtime[tre],q2[tre],100);
1028 //q3testing->Fill(qtime[tre],q3[tre],100);
1029 // }
1030
1031 //for(Int_t tre=0;tre<q0sine.size();tre++)cout<<q1sine[tre].A<<"*sin("<<q1sine[tre].b<<"x+"<<q1sine[tre].c<<")\t time start: "<<q1sine[tre].startPoint<<"\ttime end: "<<q1sine[tre].finishPoint<<endl;
1032 //for(Int_t tre=0;tre<q0sine.size();tre++)cout<<q1sine[tre].A<<"*sin("<<q1sine[tre].b<<"x+"<<q1sine[tre].c<<")\t time start: "<<q0sine[tre].startPoint<<"\ttime end: "<<q0sine[tre].finishPoint<<endl;
1033 } // if we processed first event
1034
1035 //Filling Inclination information
1036 Double_t incli = 0;
1037 if ( qtime.size() > 1 ){
1038 for(UInt_t mu = must;mu<qtime.size()-1;mu++){
1039 if ( debug ) printf(" ??grfuffi %i sixe %i must %i \n",mu,qtime.size()-1,must);
1040 if(qtime[mu+1]>qtime[mu]){
1041 if ( debug ) printf(" grfuffi2 %i \n",mu);
1042 if(atime<=qtime[mu+1] && atime>=qtime[mu]){
1043 must = mu;
1044 incli = (qPitch[mu+1]-qPitch[mu])/(qtime[mu+1]-qtime[mu]);
1045 orbitalinfo->theta = incli*atime+qPitch[mu+1]-incli*qtime[mu+1];
1046 incli = (qRoll[mu+1]-qRoll[mu])/(qtime[mu+1]-qtime[mu]);
1047 orbitalinfo->etha = incli*atime+qRoll[mu+1]-incli*qtime[mu+1];
1048 incli = (qYaw[mu+1]-qYaw[mu])/(qtime[mu+1]-qtime[mu]);
1049 orbitalinfo->phi = incli*atime+qYaw[mu+1]-incli*qtime[mu+1];
1050
1051 incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]);
1052 orbitalinfo->q0 = incli*atime+q0[mu+1]-incli*qtime[mu+1];
1053 incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]);
1054 orbitalinfo->q1 = incli*atime+q1[mu+1]-incli*qtime[mu+1];
1055 incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]);
1056 orbitalinfo->q2 = incli*atime+q2[mu+1]-incli*qtime[mu+1];
1057 incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]);
1058 orbitalinfo->q3 = incli*atime+q3[mu+1]-incli*qtime[mu+1];
1059
1060 orbitalinfo->TimeGap = qtime[mu+1]-qtime[mu];
1061 orbitalinfo->mode = qmode[mu+1];
1062 //if(qmode[mu+1]==-10) orbitalinfo->R10r = true;else orbitalinfo->R10r = false;
1063 //reserved for next versions Vitaly.
1064 /*if(qmode[mu+1]==-10 || qmode[mu+1]==0 || qmode[mu+1]==1 || qmode[mu+1]==3 || qmode[mu+1]==4 || qmode[mu+1]==6){
1065 //linear interpolation
1066 incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]);
1067 orbitalinfo->q0 = incli*atime+q0[mu+1]-incli*qtime[mu+1];
1068 incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]);
1069 orbitalinfo->q1 = incli*atime+q1[mu+1]-incli*qtime[mu+1];
1070 incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]);
1071 orbitalinfo->q2 = incli*atime+q2[mu+1]-incli*qtime[mu+1];
1072 incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]);
1073 orbitalinfo->q3 = incli*atime+q3[mu+1]-incli*qtime[mu+1];
1074 }else{
1075 //sine interpolation
1076 for(UInt_t mt=0;mt<q0sine.size();mt++){
1077 if(atime<=q0sine[mt].finishPoint && atime>=q0sine[mt].startPoint){
1078 if(!q0sine[mt].NeedFit)orbitalinfo->q0=q0sine[mt].A*sin(q0sine[mt].b*atime+q0sine[mt].c);else{
1079 incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]);
1080 orbitalinfo->q0 = incli*atime+q0[mu+1]-incli*qtime[mu+1];
1081 }
1082 }
1083 if(atime<=q1sine[mt].finishPoint && atime>=q1sine[mt].startPoint){
1084 if(!q1sine[mt].NeedFit)orbitalinfo->q1=q1sine[mt].A*sin(q1sine[mt].b*atime+q1sine[mt].c);else{
1085 incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]);
1086 orbitalinfo->q1 = incli*atime+q1[mu+1]-incli*qtime[mu+1];
1087 }
1088 }
1089 if(atime<=q2sine[mt].finishPoint && atime>=q2sine[mt].startPoint){
1090 if(!q2sine[mt].NeedFit)orbitalinfo->q2=q0sine[mt].A*sin(q2sine[mt].b*atime+q2sine[mt].c);else{
1091 incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]);
1092 orbitalinfo->q2 = incli*atime+q2[mu+1]-incli*qtime[mu+1];
1093 }
1094 }
1095 if(atime<=q3sine[mt].finishPoint && atime>=q3sine[mt].startPoint){
1096 if(!q3sine[mt].NeedFit)orbitalinfo->q3=q0sine[mt].A*sin(q3sine[mt].b*atime+q3sine[mt].c);else{
1097 incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]);
1098 orbitalinfo->q3 = incli*atime+q3[mu+1]-incli*qtime[mu+1];
1099 }
1100 }
1101 if(atime<=Yawsine[mt].finishPoint && atime>=Yawsine[mt].startPoint){
1102 if(!Yawsine[mt].NeedFit)orbitalinfo->phi=Yawsine[mt].A*sin(Yawsine[mt].b*atime+Yawsine[mt].c);else{
1103 incli = (qYaw[mu+1]-qYaw[mu])/(qtime[mu+1]-qtime[mu]);
1104 orbitalinfo->phi = incli*atime+qYaw[mu+1]-incli*qtime[mu+1];
1105 }
1106 }
1107 }
1108 }*/
1109 //q0testing->Fill(atime,orbitalinfo->q0,100);
1110 //q1testing->Fill(atime,orbitalinfo->q1,100);
1111 //Pitchtesting->Fill(atime,orbitalinfo->etha);
1112 //q2testing->Fill(atime,orbitalinfo->q2);
1113 //q3testing->Fill(atime,orbitalinfo->q3);
1114 break;
1115 }
1116 }
1117 }
1118 }
1119 //
1120 // ops no inclination information
1121 //
1122
1123 if ( orbitalinfo->q0< -999 || orbitalinfo->q1 < -999 || orbitalinfo->q2 < -999 || orbitalinfo->q3 < -999 || orbitalinfo->q0 != orbitalinfo->q0 || orbitalinfo->q1 != orbitalinfo->q1 || orbitalinfo->q2 != orbitalinfo->q2 || orbitalinfo->q3 != orbitalinfo->q3 ){
1124 orbitalinfo->mode = 10;
1125 orbitalinfo->q0 = -1000.;
1126 orbitalinfo->q1 = -1000.;
1127 orbitalinfo->q2 = -1000.;
1128 orbitalinfo->q3 = -1000.;
1129 orbitalinfo->etha = -1000.;
1130 orbitalinfo->phi = -1000.;
1131 orbitalinfo->theta = -1000.;
1132 };
1133 //
1134 // #########################################################################################################################
1135 //
1136 // fill orbital positions
1137 //
1138 // Build coordinates in the right range. We want to convert,
1139 // longitude from (0, 2*pi) to (-180deg, 180deg). Altitude is
1140 // in meters.
1141 lon = (coo.m_Lon > M_PI) ? rad2deg(coo.m_Lon - 2*M_PI) : rad2deg(coo.m_Lon);
1142 lat = rad2deg(coo.m_Lat);
1143 alt = coo.m_Alt;
1144 //
1145 if( lon<180 && lon>-180 && lat<90 && lat>-90 && alt>0 ){
1146 //
1147 orbitalinfo->lon = lon;
1148 orbitalinfo->lat = lat;
1149 orbitalinfo->alt = alt ;
1150 //
1151 // compute mag field components and L shell.
1152 //
1153 feldg_(&lat, &lon, &alt, &bnorth, &beast, &bdown, &babs);
1154 shellg_(&lat, &lon, &alt, &dimo, &xl, &icode, &bab1);
1155 findb0_(&stps, &bdel, &value, &bequ, &rr0);
1156 //
1157 orbitalinfo->Bnorth = bnorth;
1158 orbitalinfo->Beast = beast;
1159 orbitalinfo->Bdown = bdown;
1160 orbitalinfo->Babs = babs;
1161 orbitalinfo->BB0 = babs/bequ;
1162 orbitalinfo->L = xl;
1163 // Set Stormer vertical cutoff using L shell.
1164 orbitalinfo->cutoffsvl = 14.9/(xl*xl);
1165 //
1166 };
1167 //
1168 if ( debug ) printf(" pitch angle \n");
1169 //
1170 // pitch angles
1171 //
1172 //if ( orbitalinfo->mode != 10 && orbitalinfo->mode != 5 && orbitalinfo->mode !=7 && orbitalinfo->mode != 9 ){
1173 if( orbitalinfo->TimeGap>0 && orbitalinfo->TimeGap<2000000){
1174 //
1175 Float_t Bx = -orbitalinfo->Bdown;
1176 Float_t By = orbitalinfo->Beast;
1177 Float_t Bz = orbitalinfo->Bnorth;
1178 //
1179 TMatrixD Fij = PO->ECItoGreenwich(PO->QuatoECI(orbitalinfo->q0,orbitalinfo->q1,orbitalinfo->q2,orbitalinfo->q3),orbitalinfo->absTime);
1180 TMatrixD Gij = PO->ColPermutation(Fij);
1181 TMatrixD Dij = PO->GreenwichtoGEO(orbitalinfo->lat,orbitalinfo->lon,Fij);
1182 TMatrixD Iij = PO->ColPermutation(Dij);
1183 //
1184 orbitalinfo->Iij.ResizeTo(Iij);
1185 orbitalinfo->Iij = Iij;
1186 //
1187 A1 = Iij(0,2);
1188 A2 = Iij(1,2);
1189 A3 = Iij(2,2);
1190 //
1191 // orbitalinfo->pamzenitangle = (Float_t)PO->GetPitchAngle(1,0,0,A1,A2,A3); // Angle between zenit and Pamela's main axiz
1192 // orbitalinfo->pamBangle = (Float_t)PO->GetPitchAngle(A1,A2,A3,Bx,By,Bz); // Angle between Pamela's main axiz and B
1193 //
1194 if ( !standalone && tof->ntrk() > 0 ){
1195 //
1196 Int_t nn = 0;
1197 for(Int_t nt=0; nt < tof->ntrk(); nt++){
1198 //
1199 ToFTrkVar *ptt = tof->GetToFTrkVar(nt);
1200 Double_t E11x = ptt->xtr_tof[0]; // tr->x[0];
1201 Double_t E11y = ptt->ytr_tof[0]; //tr->y[0];
1202 Double_t E11z = zin[0];
1203 Double_t E22x = ptt->xtr_tof[3];//tr->x[3];
1204 Double_t E22y = ptt->ytr_tof[3];//tr->y[3];
1205 Double_t E22z = zin[3];
1206 if ( (E11x < 100. && E11y < 100. && E22x < 100. && E22y < 100.) || ptt->trkseqno != -1 ){
1207 Double_t norm = sqrt(pow(E22x-E11x,2)+pow(E22y-E11y,2)+pow(E22z-E11z,2));
1208 // Double_t MyAzim = TMath::RadToDeg()*atan(TMath::Abs(E22y-E11y)/TMath::Abs(E22x-E11x));
1209 // if(E22x-E11x>=0 && E22y-E11y <0) MyAzim = 360. - MyAzim;
1210 // if(E22x-E11x>=0 && E22y-E11y >=0) MyAzim = MyAzim;
1211 // if(E22x-E11x<0 && E22y-E11y >0) MyAzim = 180. - MyAzim;
1212 // if(E22x-E11x<0 && E22y-E11y <0) MyAzim = 180. + MyAzim;
1213 Px = (E22x-E11x)/norm;
1214 Py = (E22y-E11y)/norm;
1215 Pz = (E22z-E11z)/norm;
1216 //
1217 t_orb->trkseqno = ptt->trkseqno;
1218 //
1219 TMatrixD Eij = PO->PamelatoGEO(Iij,Px,Py,Pz);
1220 t_orb->Eij.ResizeTo(Eij);
1221 t_orb->Eij = Eij;
1222 //
1223 TMatrixD Sij = PO->PamelatoGEO(Gij,Px,Py,Pz);
1224 t_orb->Sij.ResizeTo(Sij);
1225 t_orb->Sij = Sij;
1226 //
1227 t_orb->pitch = (Float_t)PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),Bx,By,Bz);
1228 //
1229 //
1230 Double_t omega = PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),cos(orbitalinfo->lon+TMath::Pi()/2)-sin(orbitalinfo->lon+TMath::Pi()/2),cos(orbitalinfo->lon+TMath::Pi()/2)+sin(orbitalinfo->lon+TMath::Pi()/2),1);
1231 //
1232 t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow((1+sqrt(1-pow(orbitalinfo->L,-3/2)*cos(omega))),2));
1233 //
1234 if ( t_orb->pitch != t_orb->pitch ) t_orb->pitch = -1000.;
1235 if ( t_orb->cutoff != t_orb->cutoff ) t_orb->cutoff = -1000.;
1236 //
1237 if ( debug ) printf(" orbitalinfo->cutoffsvl %f vitaly %f \n",orbitalinfo->cutoffsvl,t_orb->cutoff);
1238 //
1239 new(tor[nn]) OrbitalInfoTrkVar(*t_orb);
1240 nn++;
1241 //
1242 t_orb->Clear();
1243 //
1244 };
1245 //
1246 };
1247 } else {
1248 if ( debug ) printf(" mmm... mode %u standalone %i ntrk %i \n",orbitalinfo->mode,standalone,tof->ntrk());
1249 };
1250 //
1251 } else {
1252 if ( !standalone && tof->ntrk() > 0 ){
1253 //
1254 Int_t nn = 0;
1255 for(Int_t nt=0; nt < tof->ntrk(); nt++){
1256 //
1257 ToFTrkVar *ptt = tof->GetToFTrkVar(nt);
1258 if ( ptt->trkseqno != -1 ){
1259 //
1260 t_orb->trkseqno = ptt->trkseqno;
1261 //
1262 t_orb->Eij = 0;
1263 //
1264 t_orb->Sij = 0;
1265 //
1266 t_orb->pitch = -1000.;
1267 //
1268 t_orb->cutoff = -1000.;
1269 //
1270 new(tor[nn]) OrbitalInfoTrkVar(*t_orb);
1271 nn++;
1272 //
1273 t_orb->Clear();
1274 //
1275 };
1276 //
1277 };
1278 };
1279 };
1280 //
1281 // Fill the class
1282 //
1283 OrbitalInfotr->Fill();
1284 //
1285 delete t_orb;
1286 //
1287 }; // loop over the events in the run
1288 //
1289 // Here you may want to clear some variables before processing another run
1290 //
1291
1292 //gStyle->SetOptStat(000000);
1293 //gStyle->SetPalette(1);
1294
1295 /*TCanvas* c1 = new TCanvas("c1","",1200,800);
1296 //c1->Divide(1,4);
1297 c1->cd(1);
1298 //q0testing->Draw("colz");
1299 //c1->cd(2);
1300 //q1testing->Draw("colz");
1301 //c1->cd(3);
1302 Pitchtesting->Draw("colz");
1303 //c1->cd(4);
1304 //q3testing->Draw("colz");
1305 c1->SaveAs("9.Rollhyst.png");
1306 delete c1;*/
1307
1308 delete dbtime;
1309 if ( L_QQ_Q_l_upper ) delete L_QQ_Q_l_upper;
1310 if ( L_QQ_Q_l_lower ) delete L_QQ_Q_l_lower;
1311 if ( RYPang_upper ) delete RYPang_upper;
1312 if ( RYPang_lower ) delete RYPang_lower;
1313 }; // process all the runs
1314
1315 if (verbose) printf("\n Finished processing data \n");
1316 //
1317 closeandexit:
1318 //
1319 // we have finished processing the run(s). If we processed a single run now we must copy all the events after our run from the old tree to the new one and delete the old tree.
1320 //
1321 if ( !reprocall && reproc && code >= 0 ){
1322 if ( totfileentries > noaftrun ){
1323 if (verbose){
1324 printf("\n Post-processing: copying events from the old tree after the processed run\n");
1325 printf(" Copying %i events in the file which are after the end of the run %i \n",(int)(totfileentries-noaftrun),(int)run);
1326 printf(" Start copying at event number %i end copying at event number %i \n",(int)noaftrun,(int)totfileentries);
1327 }
1328 for (UInt_t j = noaftrun; j < totfileentries; j++ ){
1329 //
1330 // Get entry from old tree
1331 //
1332 if ( OrbitalInfotrclone->GetEntry(j) <= 0 ) throw -36;
1333 //
1334 // copy orbitalinfoclone to OrbitalInfo
1335 //
1336 orbitalinfo->Clear();
1337 //
1338 memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone));
1339 //
1340 // Fill entry in the new tree
1341 //
1342 OrbitalInfotr->Fill();
1343 };
1344 if (verbose) printf(" Finished successful copying!\n");
1345 };
1346 };
1347 //
1348 // Close files, delete old tree(s), write and close level2 file
1349 //
1350 if ( l0File ) l0File->Close();
1351 if ( tempfile ) tempfile->Close();
1352 if ( myfold ) gSystem->Unlink(tempname.str().c_str());
1353 //
1354 if ( runinfo ) runinfo->Close();
1355 if ( OrbitalInfotr ) OrbitalInfotr->SetName("OrbitalInfo");
1356 if ( tof ) tof->Delete();
1357 if ( ttof ) ttof->Delete();
1358 //
1359 if ( file ){
1360 file->cd();
1361 file->Write();
1362 };
1363 //
1364 if ( myfold ) gSystem->Unlink(OrbitalInfofolder.str().c_str());
1365 //
1366 // the end
1367 //
1368 if ( dbc ){
1369 dbc->Close();
1370 delete dbc;
1371 };
1372 if (verbose) printf("\n Exiting...\n");
1373 if(OrbitalInfotr)OrbitalInfotr->Delete();
1374 //
1375 if ( PO ) delete PO;
1376 if ( orbitalinfo ) delete orbitalinfo;
1377 if ( orbitalinfoclone ) delete orbitalinfoclone;
1378 if ( glroot ) delete glroot;
1379 if ( runinfo ) delete runinfo;
1380 //
1381 if(code < 0) throw code;
1382 return(code);
1383 }
1384
1385
1386 //
1387 // Returns the cCoordGeo structure holding the geographical
1388 // coordinates for the event (see sgp4.h).
1389 //
1390 // atime is the abstime of the event in UTC unix time.
1391 // tletime is the time of the tle in UTC unix time.
1392 // tle is the previous and nearest tle (compared to atime).
1393 cCoordGeo getCoo(UInt_t atime, UInt_t tletime, cTle *tle)
1394 {
1395 cEci eci;
1396 cOrbit orbit(*tle);
1397 orbit.getPosition((double) (atime - tletime)/60., &eci);
1398
1399 return eci.toGeo();
1400 }
1401
1402 // function of copyng of quatrnions classes
1403
1404 void CopyQ(Quaternions *Q1, Quaternions *Q2){
1405 for(UInt_t i = 0; i < 6; i++){
1406 Q1->time[i]=Q2->time[i];
1407 for (UInt_t j = 0; j < 4; j++)Q1->quat[i][j]=Q2->quat[i][j];
1408 }
1409 return;
1410 }
1411
1412 // functions of copyng InclinationInfo classes
1413
1414 void CopyAng(InclinationInfo *A1, InclinationInfo *A2){
1415 A1->Tangazh = A2->Tangazh;
1416 A1->Ryskanie = A2->Ryskanie;
1417 A1->Kren = A2->Kren;
1418 return;
1419 }
1420
1421 UInt_t holeq(Double_t lower,Double_t upper,Quaternions *Qlower, Quaternions *Qupper, UInt_t f){
1422
1423 UInt_t hole = 10;
1424 Bool_t R10l = false; // Sign of R10 mode in lower quaternions array
1425 Bool_t R10u = false; // Sign of R10 mode in upper quaternions array
1426 Bool_t insm = false; // Sign that we inside quaternions array
1427 Bool_t mxtml = false; // Sign of mixt mode in lower quaternions array
1428 Bool_t mxtmu = false; // Sign of mixt mode in upper quaternions array
1429 Bool_t npasm = false; // Sign of normall pass between R10 and non R10 or between non R10 and R10
1430 UInt_t NCQl = 6; // Number of correct quaternions in lower array
1431 UInt_t NCQu = 6; // Number of correct quaternions in upper array
1432 if (f>0){
1433 insm = true;
1434 if(Qupper->time[f]-Qupper->time[f-1]==30) R10u = false;
1435 if(Qupper->time[f]-Qupper->time[f-1]<1) R10u = true;
1436 }else{
1437 insm = false;
1438 if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]<2)) R10l = true;
1439 if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]<2)) R10u = true;
1440 if((Qlower->time[5]-Qlower->time[0]==150)&&(Qlower->time[1]-Qlower->time[0]==30)) R10l = false;
1441 if((Qupper->time[5]-Qupper->time[0]==150)&&(Qupper->time[1]-Qupper->time[0]==30)) R10u = false;
1442 if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]==30)){
1443 mxtml = true;
1444 for(UInt_t i = 1; i < 6; i++){
1445 if(Qlower->time[i]-Qlower->time[0]==30*i) NCQl=i;
1446 }
1447 }
1448 if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]==30)){
1449 mxtmu = true;
1450 for(UInt_t i = 1; i < 6; i++){
1451 if(Qupper->time[i]-Qupper->time[0]==30*i) NCQu=i;
1452 }
1453 }
1454 }
1455
1456 if(((upper-lower==1.5)||(upper-lower==3.)||(upper-lower==30.)||(upper-lower==31.5)||(upper-lower==33.)||(upper-lower==181.5)||(upper-lower==210.)||(upper-lower==211.5))&&!insm) npasm = true;
1457
1458
1459 if (R10u&&insm) hole=0; // best event R10
1460 if ((upper-lower<=5)&&(!insm)&&R10l&&R10u) hole = 1; // when first of 6 quaternions in array is correct
1461 if (((!R10u)&&insm)||((!insm)&&(!R10u)&&(!R10l)&&((upper-lower==210+(6-NCQl)*30)||(upper-lower==30)))) hole = 2; //non R10
1462 if (npasm&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 3; //normall pass from R10 to non R10 or from non R10 to R10
1463 if ((!npasm)&&(upper-lower<=300)&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 4; // eliminable hole between R10 and non R10 or between non R10 and R10
1464 if ((upper-lower>=300)&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 5; //uneliminable hole between R10 and non R10 or between non R10 and R10
1465 if ((upper-lower>5)&&(upper-lower<=300)&&R10u&&R10l) hole = 6; // eliminable hole inside R10
1466 if ((upper-lower>300)&&R10u&&R10l) hole = 7; //uneliminable hole inside R10
1467 if ((upper-lower>210)&&(upper-lower<=1200)&&(!R10u)&&(!R10l)) hole = 8; //eliminable hole inside non R10
1468 if ((upper-lower>1200)&&!R10u&&!R10l) hole = 9; // uneliminable hole inside non R10
1469 return hole;
1470 }
1471
1472 void inclresize(vector<Double_t>& t,vector<Float_t>& q0,vector<Float_t>& q1,vector<Float_t>& q2,vector<Float_t>& q3,vector<Int_t>& mode,vector<Float_t>& Roll,vector<Float_t>& Pitch,vector<Float_t>& Yaw){
1473 Int_t sizee = t.size()+1;
1474 t.resize(sizee);
1475 q0.resize(sizee);
1476 q1.resize(sizee);
1477 q2.resize(sizee);
1478 q3.resize(sizee);
1479 mode.resize(sizee);
1480 Roll.resize(sizee);
1481 Pitch.resize(sizee);
1482 Yaw.resize(sizee);
1483 }
1484
1485 //Find fitting sine functions for q0,q1,q2,q3 and Yaw-angle;
1486 void sineparam(vector<Sine>& qsine, vector<Double_t>& qtime, vector<Float_t>& q, vector<Float_t>& Roll, vector<Float_t>& Pitch, Float_t limsin){
1487 UInt_t mulast = 0;
1488 UInt_t munow = 0;
1489 UInt_t munext = 0;
1490 Bool_t increase = false;
1491 Bool_t decrease = false;
1492 Bool_t Max_is_defined = false;
1493 Bool_t Start_point_is_defined = false;
1494 Bool_t Period_is_defined = false;
1495 Bool_t Large_gap = false;
1496 Bool_t normal_way = true;
1497 Bool_t small_gap_on_ridge = false;
1498 Double_t t1 = 0;
1499 Double_t t1A = 0;
1500 Int_t sinesize = 0;
1501 Int_t nfi = 0;
1502 for(UInt_t mu = 0;mu<qtime.size();mu++){
1503 //cout<<"Roll["<<mu<<"] = "<<Roll[mu]<<endl;
1504 if(TMath::Abs(Roll[mu])<1. && TMath::Abs(Pitch[mu])<1. && TMath::Abs(q[mu])<limsin){
1505 //cout<<"q["<<mu<<endl<<"] = "<<q[mu]<<endl;
1506 if(mulast!=0 && munow!=0 && munext!=0){mulast=munow;munow=munext;munext=mu;}
1507 if(munext==0 && munow!=0)munext=mu;
1508 if(munow==0 && mulast!=0)munow=mu;
1509 if(mulast==0)mulast=mu;
1510
1511 //cout<<"mulast = "<<mulast<<"\tmunow = "<<munow<<"\tmunext = "<<munext<<endl;
1512 //Int_t ref;
1513 //cin>>ref;
1514 if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && q[mulast]*q[munext]>0 && qtime[munext]-qtime[mulast]>400)small_gap_on_ridge = true;
1515 if(munext>mulast && (qtime[munext]-qtime[mulast]>=2000 || qtime[munext]-qtime[mulast]<0)){if(Large_gap){normal_way = false;Large_gap = false;}else{Large_gap = true;normal_way = false;}}else normal_way = true;
1516 //if(normal_way)cout<<"Normal_Way"<<endl;
1517 if(Large_gap || small_gap_on_ridge){
1518 //cout<<"Large gap..."<<endl;
1519 //if(small_gap_on_ridge)cout<<"small gap..."<<endl;
1520 //cout<<"q["<<mulast<<"] = "<<q[mulast]<<"\tq["<<munow<<"] = "<<q[munow]<<"\tq["<<munext<<"] = "<<q[munext]<<endl;
1521 //cout<<"qtime["<<mulast<<"] = "<<qtime[mulast]<<"\tqtime["<<munow<<"] = "<<qtime[munow]<<"\tqtime["<<munext<<"] = "<<qtime[munext]<<endl;
1522 increase = false;
1523 decrease = false;
1524 if(nfi>0){
1525 qsine.resize(qsine.size()-1);
1526 sinesize = qsine.size();
1527 //cout<<"nfi was larger then zero"<<endl;
1528 }else{
1529 //cout<<"nfi was not larger then zero :( nfi = "<<nfi<<endl;
1530 //cout<<"qsine.size = "<<qsine.size()<<endl;
1531 if(!Period_is_defined){
1532 //cout<<"Period was defined"<<endl;
1533 if(qsine.size()>1){
1534 qsine[sinesize-1].b = qsine[sinesize-2].b;
1535 qsine[sinesize-1].c = qsine[sinesize-2].c;
1536 }else{
1537 qsine[sinesize-1].b = TMath::Pi()/1591.54;
1538 qsine[sinesize-1].c = qsine[sinesize-1].startPoint;
1539 }
1540 }
1541 if(!Max_is_defined){
1542 //cout<<"Max was already defined"<<endl;
1543 if(qsine.size()>1)qsine[sinesize-1].A = qsine[sinesize-2].A;else qsine[sinesize-1].A = limsin;
1544 }
1545 qsine[sinesize-1].NeedFit = true;
1546 }
1547 qsine[sinesize-1].finishPoint = qtime[munow];
1548 //cout<<"finish point before large gap = "<<qtime[munow]<<endl;
1549 nfi = 0;
1550 Max_is_defined = false;
1551 Start_point_is_defined = false;
1552 Period_is_defined = false;
1553 small_gap_on_ridge = false;
1554 }
1555 //cout<<"Slope "<<increase<<"\t"<<decrease<<endl;
1556 //cout<<"mulast = "<<mulast<<"\tmunow = "<<munow<<"\tmunext = "<<munext<<endl;
1557 if((munext>munow) && (munow>mulast) && normal_way){
1558 if(!increase && !decrease){
1559 //cout<<"Normal way have started"<<endl;
1560 qsine.resize(qsine.size()+1);
1561 sinesize = qsine.size();
1562 qsine[sinesize-1].startPoint=qtime[mulast];
1563 if(q[munext]>q[munow] && q[munow]>q[mulast]) increase = true;
1564 if(q[munext]<q[munow] && q[munow]<q[mulast]) decrease = true;
1565 }
1566 //if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && TMath::Abs(q[munow])>limsin && qtime[munow]-qtime[mulast]>=400 || qtime[munext]-qtime[munow]>=400){small_gap_on_ridge = true;mu--;continue;}
1567 if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && TMath::Abs(q[munow])>0.9*limsin && qtime[munow]-qtime[mulast]<400 && qtime[munext]-qtime[munow]<400){
1568 //cout<<"Max point is qtime = "<<qtime[munow]<<"\tq = "<<q[munow]<<endl;
1569 if(q[munow]>q[mulast]){
1570 increase = false;
1571 decrease = true;
1572 }
1573 if(q[munow]<q[mulast]){
1574 increase = true;
1575 decrease = false;
1576 }
1577 if(Max_is_defined && !Start_point_is_defined){
1578 Double_t qPer = qtime[munow]-t1A;
1579 if(qPer>1000){
1580 //cout<<"qsine["<<sinesize-1<<"] = "<<qPer<<" = "<<qtime[munow]<<" - "<<t1A<<"\tlim = "<<limsin<<endl;
1581 qsine[sinesize-1].b=TMath::Pi()/qPer;
1582 if(decrease)qsine[sinesize-1].c=-qsine[sinesize-1].b*t1A;
1583 if(increase)qsine[sinesize-1].c=-qsine[sinesize-1].b*(t1A-qPer);
1584 Period_is_defined = true;
1585 }
1586 }
1587 Max_is_defined = true;
1588 qsine[sinesize-1].A = TMath::Abs(q[munow]);
1589 if(Start_point_is_defined && Period_is_defined){
1590 qsine[sinesize-1].finishPoint = qtime[munow];
1591 nfi++;
1592 qsine[sinesize-1].NeedFit = false;
1593 Max_is_defined = false;
1594 Start_point_is_defined = false;
1595 Period_is_defined = false;
1596 qsine.resize(qsine.size()+1);
1597 sinesize = qsine.size();
1598 qsine[sinesize-1].startPoint = qtime[munow];
1599 }
1600 if(!Start_point_is_defined) t1A=qtime[munow];
1601 }
1602 //if((q[munow]>=0 && q[mulast]<=0) || (q[munow]<=0 && q[mulast]>=0))cout<<"cross zero point diference = "<<qtime[munext] - qtime[mulast]<<"\tqlast = "<<qtime[mulast]<<"\tqnow = "<<qtime[munow]<<"\tqnext = "<<qtime[munext]<<endl;
1603 if(((q[munow]>=0 && q[mulast]<=0) || (q[munow]<=0 && q[mulast]>=0)) && qtime[munow]-qtime[mulast]<2000 && qtime[munext]-qtime[munow]<2000){
1604 Double_t tcrosszero = 0;
1605 //cout<<"cross zero point...qtime = "<<qtime[munow]<<endl;
1606 if(q[munow]==0.) tcrosszero = qtime[munow];else
1607 if(q[mulast]==0.)tcrosszero = qtime[mulast];else{
1608 Double_t k_ = (q[munow]-q[mulast])/(qtime[munow]-qtime[mulast]);
1609 Double_t b_ = q[munow]-k_*qtime[munow];
1610 tcrosszero = -b_/k_;
1611 }
1612 if(Start_point_is_defined){
1613 //cout<<"Start Point allready defined"<<endl;
1614 Double_t qPer = tcrosszero - t1;
1615 qsine[sinesize-1].b = TMath::Pi()/qPer;
1616 //cout<<"qsine["<<sinesize-1<<"].b = "<<TMath::Pi()/qPer<<endl;
1617 Period_is_defined = true;
1618 Float_t x0 = 0;
1619 if(decrease)x0 = t1;
1620 if(increase)x0 = tcrosszero;
1621 qsine[sinesize-1].c = -qsine[sinesize-1].b*x0;
1622 if(Max_is_defined){
1623 //cout<<"Max was previous defined"<<endl;
1624 qsine[sinesize-1].finishPoint = qtime[munow];
1625 nfi++;
1626 qsine[sinesize-1].NeedFit = false;
1627 Max_is_defined = false;
1628 t1 = tcrosszero;
1629 Start_point_is_defined = true;
1630 Period_is_defined = false;
1631 qsine.resize(qsine.size()+1);
1632 sinesize = qsine.size();
1633 qsine[sinesize-1].startPoint = qtime[munow];
1634 }
1635 }else{
1636 t1 = tcrosszero;
1637 Start_point_is_defined = true;
1638 }
1639 }
1640 }
1641 }
1642 }
1643
1644 //cout<<"FINISH SINE INTERPOLATION FUNCTION..."<<endl<<endl;
1645 }

  ViewVC Help
Powered by ViewVC 1.1.23