| 9 |
// ROOT headers |
// ROOT headers |
| 10 |
// |
// |
| 11 |
//#include <TCanvas.h> |
//#include <TCanvas.h> |
| 12 |
//#include <TH2F.h> //for test only. Vitaly. |
#include <TH2F.h> //for test only. Vitaly. |
| 13 |
|
#include <TVector3.h> |
| 14 |
//#include <TF1.h> |
//#include <TF1.h> |
| 15 |
|
|
| 16 |
#include <TTree.h> |
#include <TTree.h> |
| 48 |
#include <OrbitalInfoCore.h> |
#include <OrbitalInfoCore.h> |
| 49 |
#include <InclinationInfo.h> |
#include <InclinationInfo.h> |
| 50 |
|
|
| 51 |
|
// |
| 52 |
|
// Tracker and ToF classes headers and definitions |
| 53 |
|
// |
| 54 |
|
#include <ToFLevel2.h> |
| 55 |
|
#include <TrkLevel2.h> |
| 56 |
|
|
| 57 |
using namespace std; |
using namespace std; |
| 58 |
|
|
| 71 |
stringstream myquery; |
stringstream myquery; |
| 72 |
myquery.str(""); |
myquery.str(""); |
| 73 |
myquery << "SET time_zone='+0:00'"; |
myquery << "SET time_zone='+0:00'"; |
| 74 |
dbc->Query(myquery.str().c_str()); |
delete dbc->Query(myquery.str().c_str()); |
| 75 |
// |
// |
| 76 |
TString processFolder = Form("OrbitalInfoFolder_%u",run); |
TString processFolder = Form("OrbitalInfoFolder_%u",run); |
| 77 |
// |
// |
| 127 |
TTree *OrbitalInfotrclone = 0; |
TTree *OrbitalInfotrclone = 0; |
| 128 |
Bool_t reproc = false; |
Bool_t reproc = false; |
| 129 |
Bool_t reprocall = false; |
Bool_t reprocall = false; |
| 130 |
|
Bool_t igrfloaded = false; |
| 131 |
UInt_t nobefrun = 0; |
UInt_t nobefrun = 0; |
| 132 |
UInt_t noaftrun = 0; |
UInt_t noaftrun = 0; |
| 133 |
UInt_t numbofrun = 0; |
UInt_t numbofrun = 0; |
| 135 |
TString fname; |
TString fname; |
| 136 |
UInt_t totfileentries = 0; |
UInt_t totfileentries = 0; |
| 137 |
UInt_t idRun = 0; |
UInt_t idRun = 0; |
| 138 |
|
UInt_t anni5 = 60 * 60 * 24 * 365 * 5 ;//1576800 |
| 139 |
// |
// |
| 140 |
// My variables. Vitaly. |
// My variables. Vitaly. |
| 141 |
// |
// |
| 188 |
// |
// |
| 189 |
// IGRF stuff |
// IGRF stuff |
| 190 |
// |
// |
| 191 |
Float_t dimo = 0.0; // dipole moment (computed from dat files) |
Double_t dimo = 0.0; // dipole moment (computed from dat files) // EM GCC 4.7 |
| 192 |
Float_t bnorth, beast, bdown, babs; |
Float_t bnorth, beast, bdown, babs; |
| 193 |
Float_t xl; // L value |
Float_t xl; // L value |
| 194 |
Float_t icode; // code value for L accuracy (see fortran code) |
Float_t icode; // code value for L accuracy (see fortran code) |
| 231 |
// |
// |
| 232 |
//Quaternions classes |
//Quaternions classes |
| 233 |
// |
// |
| 234 |
Quaternions *L_QQ_Q_l_lower = new Quaternions(); |
Quaternions *L_QQ_Q_l_lower = 0; |
| 235 |
InclinationInfo *RYPang_lower = new InclinationInfo(); |
InclinationInfo *RYPang_lower = 0; |
| 236 |
Quaternions *L_QQ_Q_l_upper = new Quaternions(); |
Quaternions *L_QQ_Q_l_upper = 0; |
| 237 |
InclinationInfo *RYPang_upper = new InclinationInfo(); |
InclinationInfo *RYPang_upper = 0; |
| 238 |
|
|
| 239 |
cEci eCi; |
cEci eCi; |
| 240 |
|
|
| 241 |
// Initialize fortran routines!!! |
// Initialize fortran routines!!! |
| 242 |
|
Int_t ltp1 = 0; |
| 243 |
Int_t ltp2 = 0; |
Int_t ltp2 = 0; |
| 244 |
Int_t ltp3 = 0; |
Int_t ltp3 = 0; |
| 245 |
Int_t uno = 1; |
// Int_t uno = 1; |
| 246 |
const char *niente = " "; |
// const char *niente = " "; |
| 247 |
|
GL_PARAM *glparam0 = new GL_PARAM(); |
| 248 |
GL_PARAM *glparam = new GL_PARAM(); |
GL_PARAM *glparam = new GL_PARAM(); |
| 249 |
GL_PARAM *glparam2 = new GL_PARAM(); |
GL_PARAM *glparam2 = new GL_PARAM(); |
| 250 |
|
GL_PARAM *glparam3 = new GL_PARAM(); |
| 251 |
|
|
| 252 |
// |
// |
| 253 |
// Orientation variables. Vitaly |
// Orientation variables. Vitaly |
| 255 |
UInt_t evfrom = 0; |
UInt_t evfrom = 0; |
| 256 |
UInt_t jumped = 0; |
UInt_t jumped = 0; |
| 257 |
Int_t itr = -1; |
Int_t itr = -1; |
| 258 |
Double_t A1; |
// Double_t A1; |
| 259 |
Double_t A2; |
// Double_t A2; |
| 260 |
Double_t A3; |
// Double_t A3; |
| 261 |
Double_t Px = 0; |
Double_t Px = 0; |
| 262 |
Double_t Py = 0; |
Double_t Py = 0; |
| 263 |
Double_t Pz = 0; |
Double_t Pz = 0; |
| 264 |
TTree *ttof = 0; |
TTree *ttof = 0; |
| 265 |
ToFLevel2 *tof = new ToFLevel2(); |
ToFLevel2 *tof = new ToFLevel2(); |
| 266 |
|
TTree *ttrke = 0; |
| 267 |
|
TrkLevel2 *trke = new TrkLevel2(); |
| 268 |
OrientationInfo *PO = new OrientationInfo(); |
OrientationInfo *PO = new OrientationInfo(); |
| 269 |
Int_t nz = 6; |
Int_t nz = 6; |
| 270 |
Float_t zin[6]; |
Float_t zin[6]; |
| 271 |
Int_t nevtofl2 = 0; |
Int_t nevtofl2 = 0; |
| 272 |
|
Int_t nevtrkl2 = 0; |
| 273 |
if ( verbose ) cout<<"Reading quaternions external file"<<endl; |
if ( verbose ) cout<<"Reading quaternions external file"<<endl; |
| 274 |
cout.setf(ios::fixed,ios::floatfield); |
cout.setf(ios::fixed,ios::floatfield); |
| 275 |
/******Reading recovered quaternions...*********/ |
/******Reading recovered quaternions...*********/ |
|
//cout<<"START reading recovered quaternions..."<<endl; |
|
| 276 |
vector<Double_t> recqtime; |
vector<Double_t> recqtime; |
| 277 |
vector<Float_t> recq0; |
vector<Float_t> recq0; |
| 278 |
vector<Float_t> recq1; |
vector<Float_t> recq1; |
| 279 |
vector<Float_t> recq2; |
vector<Float_t> recq2; |
| 280 |
vector<Float_t> recq3; |
vector<Float_t> recq3; |
| 281 |
Float_t Norm = 1; |
Float_t Norm = 1; |
| 282 |
Int_t parerror=glparam->Query_GL_PARAM(1,303,dbc); // parameters stored in DB in GL_PRAM table |
Int_t parerror=glparam0->Query_GL_PARAM(1,303,dbc); // parameters stored in DB in GL_PRAM table |
| 283 |
|
if ( verbose ) cout<<parerror<<"\t"<<(char*)(glparam0->PATH+glparam0->NAME).Data()<<endl; |
| 284 |
|
ifstream in((char*)(glparam0->PATH+glparam0->NAME).Data(),ios::in); |
| 285 |
if ( parerror<0 ) { |
if ( parerror<0 ) { |
| 286 |
code = parerror; |
code = parerror; |
| 287 |
goto closeandexit; |
//goto closeandexit; |
| 288 |
}; |
} |
|
ifstream in((glparam->PATH+glparam->NAME).Data(),ios::in); |
|
|
//cout<<"ifstream loaded..."<<endl; |
|
| 289 |
while(!in.eof()){ |
while(!in.eof()){ |
| 290 |
recqtime.resize(recqtime.size()+1); |
recqtime.resize(recqtime.size()+1); |
| 291 |
Int_t sizee = recqtime.size(); |
Int_t sizee = recqtime.size(); |
| 299 |
in>>recq2[sizee-1]; |
in>>recq2[sizee-1]; |
| 300 |
in>>recq3[sizee-1]; |
in>>recq3[sizee-1]; |
| 301 |
in>>Norm; |
in>>Norm; |
|
//cout<<recqtime[sizee]<<endl; |
|
| 302 |
} |
} |
| 303 |
|
in.close(); |
| 304 |
if ( verbose ) cout<<"We have read recovered data"<<endl; |
if ( verbose ) cout<<"We have read recovered data"<<endl; |
| 305 |
|
if (debug) cout << "size of recovered quaterions data set is " << recqtime.size() << endl; |
| 306 |
|
|
| 307 |
|
vector<UInt_t> RTtime1; |
| 308 |
|
vector<UInt_t> RTtime2; |
| 309 |
|
vector<Double_t> RTbank1; |
| 310 |
|
vector<Double_t> RTbank2; |
| 311 |
|
vector<Int_t> RTazim; |
| 312 |
|
vector<Int_t> RTdir1; |
| 313 |
|
vector<Int_t> RTdir2; |
| 314 |
|
vector<Int_t> RTerrq; |
| 315 |
|
|
| 316 |
|
// 10RED CHECK |
| 317 |
|
|
| 318 |
|
// TH2F* DIFFX = new TH2F("diffx","",100,0,100,90,0,90); |
| 319 |
|
// TH2F* DIFFY = new TH2F("diffy","",100,0,100,90,0,90); |
| 320 |
|
// TH2F* DIFFZ = new TH2F("diffz","",100,0,100,90,0,90); |
| 321 |
|
|
| 322 |
|
ofstream mc; |
| 323 |
|
TString gr = "methodscomparison_"; |
| 324 |
|
gr+=run; |
| 325 |
|
gr+=".txt"; |
| 326 |
|
mc.open(gr); |
| 327 |
|
mc.setf(ios::fixed,ios::floatfield); |
| 328 |
|
// 10RED CHECK END |
| 329 |
|
|
| 330 |
|
if ( verbose ) cout<<"read Rotation Table"<<endl; |
| 331 |
|
|
| 332 |
|
Int_t parerror2=glparam0->Query_GL_PARAM(1,305,dbc); |
| 333 |
|
ifstream an((char*)(glparam0->PATH+glparam0->NAME).Data(),ios::in); |
| 334 |
|
if ( verbose ) cout<<parerror2<<"\t"<<(char*)(glparam0->PATH+glparam0->NAME).Data()<<endl; |
| 335 |
|
// if ( parerror2<0 ) { |
| 336 |
|
// code = parerror; |
| 337 |
|
//goto closeandexit; |
| 338 |
|
// } |
| 339 |
|
|
| 340 |
|
//ifstream an("/data03/Malakhov/pam9Malakhov/installed10/calib/orb-param/RDBCC.txt",ios::in); |
| 341 |
|
while(!an.eof()){ |
| 342 |
|
RTtime1.resize(RTtime1.size()+1); |
| 343 |
|
Int_t sizee = RTtime1.size(); |
| 344 |
|
RTbank1.resize(sizee+1); |
| 345 |
|
RTazim.resize(sizee+1); |
| 346 |
|
RTdir1.resize(sizee+1); |
| 347 |
|
RTerrq.resize(sizee+1); |
| 348 |
|
an>>RTtime1[sizee-1]; |
| 349 |
|
an>>RTbank1[sizee-1]; |
| 350 |
|
an>>RTazim[sizee-1]; |
| 351 |
|
an>>RTdir1[sizee-1]; |
| 352 |
|
an>>RTerrq[sizee-1]; |
| 353 |
|
if(sizee>1) { |
| 354 |
|
RTtime2.resize(sizee+1); |
| 355 |
|
RTbank2.resize(sizee+1); |
| 356 |
|
RTdir2.resize(sizee+1); |
| 357 |
|
RTtime2[sizee-2]=RTtime1[sizee-1]; |
| 358 |
|
RTbank2[sizee-2]=RTbank1[sizee-1]; |
| 359 |
|
RTdir2[sizee-2]=RTdir1[sizee-1]; |
| 360 |
|
} |
| 361 |
|
} |
| 362 |
|
an.close(); |
| 363 |
|
//cout<<"put some number here"<<endl; |
| 364 |
|
//Int_t yupi; |
| 365 |
|
//cin>>yupi; |
| 366 |
|
|
| 367 |
|
if ( verbose ) cout<<"We have read Rotation Table"<<endl; |
| 368 |
|
//Geomagnetic coordinates calculations staff |
| 369 |
|
|
| 370 |
|
GMtype_CoordGeodetic location; |
| 371 |
|
// GMtype_CoordDipole GMlocation; |
| 372 |
|
GMtype_Ellipsoid Ellip; |
| 373 |
|
GMtype_Data G0, G1, H1; |
| 374 |
|
|
| 375 |
|
// { // this braces is necessary to avoid jump to label 'closeandexit' error // but it is wrong since the variable "igpath" will not exist outside. To overcome the "jump to label 'closeandexit' error" it is necessary to set the "igpath" before line 276 |
| 376 |
|
// TString igpath="/data03/Malakhov/pam9Malakhov/installed10/calib/orb-param/"; |
| 377 |
|
// } |
| 378 |
|
|
| 379 |
|
// GM_ScanIGRF(glparam->PATH, &G0, &G1, &H1); |
| 380 |
|
GM_ScanIGRF(dbc, &G0, &G1, &H1); |
| 381 |
|
|
| 382 |
|
//cout << G0.element[0] << "\t" << G1.element[0] << "\t" << H1.element[0] << endl; |
| 383 |
|
//cout << G0.element[5] << "\t" << G1.element[5] << "\t" << H1.element[5] << endl; |
| 384 |
|
|
| 385 |
|
GM_SetEllipsoid(&Ellip); |
| 386 |
|
|
| 387 |
|
// IGRF stuff moved inside run loop! |
| 388 |
|
|
|
parerror=glparam->Query_GL_PARAM(1,301,dbc); // parameters stored in DB in GL_PRAM table |
|
|
if ( parerror<0 ) { |
|
|
code = parerror; |
|
|
goto closeandexit; |
|
|
}; |
|
|
ltp2 = (Int_t)(glparam->PATH+glparam->NAME).Length(); |
|
|
if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam->PATH+glparam->NAME).Data()); |
|
|
// |
|
|
parerror=glparam2->Query_GL_PARAM(1,302,dbc); // parameters stored in DB in GL_PRAM table |
|
|
if ( parerror<0 ) { |
|
|
code = parerror; |
|
|
goto closeandexit; |
|
|
}; |
|
|
ltp3 = (Int_t)(glparam2->PATH+glparam2->NAME).Length(); |
|
|
if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam2->PATH+glparam2->NAME).Data()); |
|
|
// |
|
|
initize_((char *)niente,&uno,(char *)(glparam->PATH+glparam->NAME).Data(),<p2,(char *)(glparam2->PATH+glparam2->NAME).Data(),<p3); |
|
|
// |
|
|
// End IGRF stuff// |
|
|
// |
|
| 389 |
for (Int_t ip=0;ip<nz;ip++){ |
for (Int_t ip=0;ip<nz;ip++){ |
| 390 |
zin[ip] = tof->GetZTOF(tof->GetToFPlaneID(ip)); |
zin[ip] = tof->GetZTOF(tof->GetToFPlaneID(ip)); |
| 391 |
}; |
}; |
| 399 |
if ( verbose ) printf(" OrbitalInfo - ERROR: no tof tree\n"); |
if ( verbose ) printf(" OrbitalInfo - ERROR: no tof tree\n"); |
| 400 |
code = -900; |
code = -900; |
| 401 |
goto closeandexit; |
goto closeandexit; |
| 402 |
}; |
} |
| 403 |
ttof->SetBranchAddress("ToFLevel2",&tof); |
ttof->SetBranchAddress("ToFLevel2",&tof); |
| 404 |
nevtofl2 = ttof->GetEntries(); |
nevtofl2 = ttof->GetEntries(); |
| 405 |
}; |
|
| 406 |
|
ttrke = (TTree*)file->Get("Tracker"); |
| 407 |
|
if ( !ttrke ) { |
| 408 |
|
if ( verbose ) printf(" OrbitalInfo - ERROR: no trk tree\n"); |
| 409 |
|
code = -903; |
| 410 |
|
goto closeandexit; |
| 411 |
|
} |
| 412 |
|
ttrke->SetBranchAddress("TrkLevel2",&trke); |
| 413 |
|
nevtrkl2 = ttrke->GetEntries(); |
| 414 |
|
} |
| 415 |
// |
// |
| 416 |
// Let's start! |
// Let's start! |
| 417 |
// |
// |
| 500 |
// |
// |
| 501 |
reprocall = true; |
reprocall = true; |
| 502 |
// |
// |
| 503 |
if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing all runs\n"); |
if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing all runs\n Deleting old tree...\n"); |
| 504 |
// |
// |
| 505 |
} else { |
} else { |
| 506 |
// |
// |
| 518 |
tempOrbitalInfo = OrbitalInfotrclone->CloneTree(-1,"fast"); |
tempOrbitalInfo = OrbitalInfotrclone->CloneTree(-1,"fast"); |
| 519 |
tempOrbitalInfo->SetName("OrbitalInfo-old"); |
tempOrbitalInfo->SetName("OrbitalInfo-old"); |
| 520 |
tempfile->Write(); |
tempfile->Write(); |
| 521 |
|
tempOrbitalInfo->Delete(); |
| 522 |
tempfile->Close(); |
tempfile->Close(); |
| 523 |
} |
} |
| 524 |
// |
// |
| 525 |
// Delete the old tree from old file and memory |
// Delete the old tree from old file and memory |
| 526 |
// |
// |
| 527 |
|
OrbitalInfotrclone->Clear(); |
| 528 |
OrbitalInfotrclone->Delete("all"); |
OrbitalInfotrclone->Delete("all"); |
| 529 |
// |
// |
| 530 |
if (verbose) printf(" ...done!\n"); |
if (verbose) printf(" ...done!\n"); |
| 570 |
// |
// |
| 571 |
}; |
}; |
| 572 |
if (verbose) printf(" Finished successful copying!\n"); |
if (verbose) printf(" Finished successful copying!\n"); |
| 573 |
}; |
}; |
| 574 |
}; |
}; |
| 575 |
// |
// |
| 576 |
// |
// |
| 581 |
// Loop over the run to be processed |
// Loop over the run to be processed |
| 582 |
// |
// |
| 583 |
for (UInt_t irun=0; irun < numbofrun; irun++){ |
for (UInt_t irun=0; irun < numbofrun; irun++){ |
| 584 |
|
|
| 585 |
|
L_QQ_Q_l_lower = new Quaternions(); |
| 586 |
|
RYPang_lower = new InclinationInfo(); |
| 587 |
|
L_QQ_Q_l_upper = new Quaternions(); |
| 588 |
|
RYPang_upper = new InclinationInfo(); |
| 589 |
|
|
| 590 |
// |
// |
| 591 |
// retrieve the first run ID to be processed using the RunInfo list |
// retrieve the first run ID to be processed using the RunInfo list |
| 592 |
// |
// |
| 649 |
// |
// |
| 650 |
// if ( !totevent ) goto closeandexit; |
// if ( !totevent ) goto closeandexit; |
| 651 |
// Open Level0 file |
// Open Level0 file |
| 652 |
|
if ( l0File ) l0File->Close(); |
| 653 |
l0File = new TFile(fname.Data()); |
l0File = new TFile(fname.Data()); |
| 654 |
if ( !l0File ) { |
if ( !l0File ) { |
| 655 |
if ( debug ) printf(" OrbitalInfo - ERROR: problems opening Level0 file\n"); |
if ( debug ) printf(" OrbitalInfo - ERROR: problems opening Level0 file\n"); |
| 688 |
code = -12; |
code = -12; |
| 689 |
goto closeandexit; |
goto closeandexit; |
| 690 |
}; |
}; |
| 691 |
|
|
| 692 |
|
// |
| 693 |
|
// open IGRF files and do it only once if we are processing a full level2 file |
| 694 |
|
// |
| 695 |
|
if ( !igrfloaded ){ |
| 696 |
|
|
| 697 |
|
if ( l0head->GetEntry(runinfo->EV_FROM) > 0 ){ |
| 698 |
|
igrfloaded = true; |
| 699 |
|
// |
| 700 |
|
// absolute time of first event of the run (it should not matter a lot) |
| 701 |
|
// |
| 702 |
|
ph = eh->GetPscuHeader(); |
| 703 |
|
atime = dbtime->DBabsTime(ph->GetOrbitalTime()); |
| 704 |
|
|
| 705 |
|
parerror=glparam->Query_GL_PARAM(atime-anni5,301,dbc); // parameters stored in DB in GL_PRAM table |
| 706 |
|
if ( parerror<0 ) { |
| 707 |
|
code = parerror; |
| 708 |
|
goto closeandexit; |
| 709 |
|
} |
| 710 |
|
ltp1 = (Int_t)(glparam->PATH+glparam->NAME).Length(); |
| 711 |
|
if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam->PATH+glparam->NAME).Data()); |
| 712 |
|
// |
| 713 |
|
parerror=glparam2->Query_GL_PARAM(atime,301,dbc); // parameters stored in DB in GL_PRAM table |
| 714 |
|
if ( parerror<0 ) { |
| 715 |
|
code = parerror; |
| 716 |
|
goto closeandexit; |
| 717 |
|
} |
| 718 |
|
ltp2 = (Int_t)(glparam2->PATH+glparam2->NAME).Length(); |
| 719 |
|
if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam2->PATH+glparam2->NAME).Data()); |
| 720 |
|
// |
| 721 |
|
parerror=glparam3->Query_GL_PARAM(atime,302,dbc); // parameters stored in DB in GL_PRAM table |
| 722 |
|
if ( parerror<0 ) { |
| 723 |
|
code = parerror; |
| 724 |
|
goto closeandexit; |
| 725 |
|
} |
| 726 |
|
ltp3 = (Int_t)(glparam3->PATH+glparam3->NAME).Length(); |
| 727 |
|
if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam3->PATH+glparam3->NAME).Data()); |
| 728 |
|
// |
| 729 |
|
initize_((char *)(glparam->PATH+glparam->NAME).Data(),<p1,(char *)(glparam2->PATH+glparam2->NAME).Data(),<p2,(char *)(glparam3->PATH+glparam3->NAME).Data(),<p3); |
| 730 |
|
// |
| 731 |
|
if (debug) cout<<"initize: "<<(char *)(glparam->PATH+glparam->NAME).Data()<<"\t"<<(char *)(glparam2->PATH+glparam2->NAME).Data()<<"\t"<<(char *)(glparam3->PATH+glparam3->NAME).Data()<<endl; |
| 732 |
|
} |
| 733 |
|
} |
| 734 |
|
// |
| 735 |
|
// End IGRF stuff// |
| 736 |
|
// |
| 737 |
|
|
| 738 |
// |
// |
| 739 |
// TTree *tp = (TTree*)l0File->Get("RunHeader"); |
// TTree *tp = (TTree*)l0File->Get("RunHeader"); |
| 740 |
// tp->SetBranchAddress("Header", &eH); |
// tp->SetBranchAddress("Header", &eH); |
| 857 |
|
|
| 858 |
// UInt_t mctren = 0; |
// UInt_t mctren = 0; |
| 859 |
// UInt_t mcreen = 0; |
// UInt_t mcreen = 0; |
| 860 |
UInt_t numrec = 0; |
// UInt_t numrec = 0; |
| 861 |
// |
// |
| 862 |
Double_t upperqtime = 0; |
// Double_t upperqtime = 0; |
| 863 |
Double_t lowerqtime = 0; |
Double_t lowerqtime = 0; |
| 864 |
|
|
| 865 |
// Double_t incli = 0; |
// Double_t incli = 0; |
| 866 |
// oi = 0; |
// oi = 0; |
| 867 |
// UInt_t ooi = 0; |
// UInt_t ooi = 0; |
| 868 |
// |
// |
| 869 |
// init quaternions information from mcmd-packets |
// init quaternions information from mcmd-packets |
| 870 |
// |
// |
| 871 |
Bool_t isf = true; |
Bool_t isf = true; |
| 872 |
// Int_t fgh = 0; |
// Int_t fgh = 0; |
| 873 |
|
|
| 874 |
vector<Float_t> q0; |
vector<Float_t> q0; |
| 875 |
vector<Float_t> q1; |
vector<Float_t> q1; |
| 883 |
|
|
| 884 |
Int_t nt = 0; |
Int_t nt = 0; |
| 885 |
|
|
|
//init sine-function interpolation |
|
|
|
|
|
//cout<<"Sine coeficient initialisation..."<<endl; |
|
|
vector<Sine> q0sine; |
|
|
vector<Sine> q1sine; |
|
|
vector<Sine> q2sine; |
|
|
vector<Sine> q3sine; |
|
|
vector<Sine> Yawsine; |
|
|
|
|
|
/*TH2F* q0testing = new TH2F(); |
|
|
TH2F* q1testing = new TH2F(); |
|
|
TH2F* q2testing = new TH2F(); |
|
|
TH2F* q3testing = new TH2F(); |
|
|
TH2F* Pitchtesting = new TH2F(); |
|
|
*/ |
|
| 886 |
UInt_t must = 0; |
UInt_t must = 0; |
| 887 |
|
|
| 888 |
// |
// |
| 928 |
if ( verbose ) printf(" OrbitalInfo - ERROR: no tof events with entry = %i in Level2 file\n",itr); |
if ( verbose ) printf(" OrbitalInfo - ERROR: no tof events with entry = %i in Level2 file\n",itr); |
| 929 |
if ( debug ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall); |
if ( debug ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall); |
| 930 |
l0File->Close(); |
l0File->Close(); |
| 931 |
code = -901; |
code = -904; |
| 932 |
goto closeandexit; |
goto closeandexit; |
| 933 |
}; |
}; |
| 934 |
// |
// |
| 935 |
tof->Clear(); |
tof->Clear(); |
| 936 |
// |
// |
| 937 |
if ( ttof->GetEntry(itr) <= 0 ) throw -36; |
if ( ttof->GetEntry(itr) <= 0 ){ |
| 938 |
|
if ( verbose ) printf(" problems with tof tree entries... entry = %i in Level2 file\n",itr); |
| 939 |
|
if ( verbose ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall); |
| 940 |
|
throw -36; |
| 941 |
|
} |
| 942 |
// |
// |
| 943 |
}; |
} |
| 944 |
|
// |
| 945 |
|
// retrieve tracker informations |
| 946 |
|
// |
| 947 |
|
if ( !standalone ){ |
| 948 |
|
if ( itr > nevtrkl2 ){ |
| 949 |
|
if ( verbose ) printf(" OrbitalInfo - ERROR: no trk events with entry = %i in Level2 file\n",itr); |
| 950 |
|
if ( debug ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall); |
| 951 |
|
l0File->Close(); |
| 952 |
|
code = -905; |
| 953 |
|
goto closeandexit; |
| 954 |
|
}; |
| 955 |
|
// |
| 956 |
|
trke->Clear(); |
| 957 |
|
// |
| 958 |
|
if ( ttrke->GetEntry(itr) <= 0 ) throw -36; |
| 959 |
|
// |
| 960 |
|
} |
| 961 |
|
|
| 962 |
|
|
| 963 |
// |
// |
| 964 |
procev++; |
procev++; |
| 965 |
// |
// |
| 971 |
OrbitalInfoTrkVar *t_orb = new OrbitalInfoTrkVar(); |
OrbitalInfoTrkVar *t_orb = new OrbitalInfoTrkVar(); |
| 972 |
if( !(orbitalinfo->OrbitalInfoTrk) ) orbitalinfo->OrbitalInfoTrk = new TClonesArray("OrbitalInfoTrkVar",2); |
if( !(orbitalinfo->OrbitalInfoTrk) ) orbitalinfo->OrbitalInfoTrk = new TClonesArray("OrbitalInfoTrkVar",2); |
| 973 |
TClonesArray &tor = *orbitalinfo->OrbitalInfoTrk; |
TClonesArray &tor = *orbitalinfo->OrbitalInfoTrk; |
| 974 |
|
|
| 975 |
|
// Geomagnetic coordinates calculation variables |
| 976 |
|
GMtype_CoordSpherical CoordSpherical, DipoleSpherical; |
| 977 |
|
GMtype_CoordCartesian CoordCartesian, DipoleCartesian; |
| 978 |
|
GMtype_Model Model; |
| 979 |
|
GMtype_Pole Pole; |
| 980 |
|
|
| 981 |
// |
// |
| 982 |
// Fill OBT, pkt_num and absTime |
// Fill OBT, pkt_num and absTime |
| 983 |
// |
// |
| 1007 |
+ (month*31.+ (float) day)/365. |
+ (month*31.+ (float) day)/365. |
| 1008 |
+ (hour*3600.+min*60.+(float)sec)/(24.*3600.*365.); |
+ (hour*3600.+min*60.+(float)sec)/(24.*3600.*365.); |
| 1009 |
// |
// |
| 1010 |
if ( debug ) printf(" %i compute magnetic dipole moment get dipole moment for year\n",procev); |
if ( debug ) printf(" %i compute magnetic dipole moment get dipole moment for year\n",procev); |
| 1011 |
|
if ( debug ) printf(" %i jyear %f dimo %f \n",procev,jyear,dimo); |
| 1012 |
feldcof_(&jyear, &dimo); // get dipole moment for year |
feldcof_(&jyear, &dimo); // get dipole moment for year |
| 1013 |
if ( debug ) printf(" %i compute magnetic dipole moment end\n",procev); |
if ( debug ) printf(" %i compute magnetic dipole moment end\n",procev); |
| 1014 |
|
|
| 1015 |
|
GM_TimeAdjustCoefs(year, jyear, G0, G1, H1, &Model); |
| 1016 |
|
GM_PoleLocation(Model, &Pole); |
| 1017 |
|
|
| 1018 |
} else { |
} else { |
| 1019 |
code = -56; |
code = -56; |
| 1020 |
goto closeandexit; |
goto closeandexit; |
| 1024 |
// |
// |
| 1025 |
cOrbit orbits(*gltle->GetTle()); |
cOrbit orbits(*gltle->GetTle()); |
| 1026 |
// |
// |
|
if ( debug ) printf(" I am Here \n"); |
|
|
// |
|
| 1027 |
// synchronize with quaternions data |
// synchronize with quaternions data |
| 1028 |
// |
// |
| 1029 |
if ( isf && neventsm>0 ){ |
if ( isf && neventsm>0 ){ |
| 1031 |
// First event |
// First event |
| 1032 |
// |
// |
| 1033 |
isf = false; |
isf = false; |
| 1034 |
upperqtime = atime; |
// upperqtime = atime; |
| 1035 |
lowerqtime = runinfo->RUNHEADER_TIME; |
lowerqtime = runinfo->RUNHEADER_TIME; |
| 1036 |
for ( ik = 0; ik < neventsm; ik++){ //number of macrocommad packets |
for ( ik = 0; ik < neventsm; ik++){ //number of macrocommad packets |
| 1037 |
if ( ch->GetEntry(ik) <= 0 ) throw -36; |
if ( ch->GetEntry(ik) <= 0 ) throw -36; |
| 1038 |
tmpSize = mcmdev->Records->GetEntries(); |
tmpSize = mcmdev->Records->GetEntries(); |
| 1039 |
numrec = tmpSize; |
// numrec = tmpSize; |
| 1040 |
|
if ( debug ) cout << "packet number " << ik <<"\tnumber of subpackets is " << tmpSize << endl; |
| 1041 |
for (Int_t j3 = 0;j3<tmpSize;j3++){ //number of subpackets |
for (Int_t j3 = 0;j3<tmpSize;j3++){ //number of subpackets |
|
if ( debug ) printf(" ik %i j3 %i eh eh eh \n",ik,j3); |
|
| 1042 |
mcmdrc = (pamela::McmdRecord*)mcmdev->Records->At(j3); |
mcmdrc = (pamela::McmdRecord*)mcmdev->Records->At(j3); |
| 1043 |
if ( mcmdrc ){ // missing inclination bug [8RED 090116] |
if ( mcmdrc ){ // missing inclination bug [8RED 090116] |
| 1044 |
|
if ( debug ) printf(" pluto \n"); |
| 1045 |
if ((int)mcmdrc->ID1 == 226 && mcmdrc->Mcmd_Block_crc_ok == 1){ //Check that it is Inclination Packet |
if ((int)mcmdrc->ID1 == 226 && mcmdrc->Mcmd_Block_crc_ok == 1){ //Check that it is Inclination Packet |
| 1046 |
L_QQ_Q_l_upper->fill(mcmdrc->McmdData); |
L_QQ_Q_l_upper->fill(mcmdrc->McmdData); |
| 1047 |
for (UInt_t ui = 0; ui < 6; ui++){ |
for (UInt_t ui = 0; ui < 6; ui++){ |
| 1048 |
if (ui>0){ |
if (ui>0){ |
| 1049 |
if (L_QQ_Q_l_upper->time[ui]>L_QQ_Q_l_upper->time[0]){ |
if (L_QQ_Q_l_upper->time[ui]>L_QQ_Q_l_upper->time[0]){ |
| 1050 |
|
if ( debug ) printf(" here1 %i \n",ui); |
| 1051 |
Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[ui]*1000-DeltaOBT*1000)); |
Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[ui]*1000-DeltaOBT*1000)); |
| 1052 |
Int_t recSize = recqtime.size(); |
Int_t recSize = recqtime.size(); |
| 1053 |
for(Int_t mu = nt;mu<recSize;mu++){ |
if(lowerqtime > recqtime[recSize-1]){ |
| 1054 |
if(recqtime[mu]>lowerqtime && recqtime[mu]<u_time){ |
// to avoid interpolation between bad quaternions arrays |
| 1055 |
nt=mu; |
if(sqrt(pow(L_QQ_Q_l_upper->quat[ui][0],2)+pow(L_QQ_Q_l_upper->quat[ui][1],2)+pow(L_QQ_Q_l_upper->quat[ui][2],2)+pow(L_QQ_Q_l_upper->quat[ui][3],2))>0.99999){ |
|
Int_t sizeqmcmd = qtime.size(); |
|
|
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
|
|
qtime[sizeqmcmd]=recqtime[mu]; |
|
|
q0[sizeqmcmd]=recq0[mu]; |
|
|
q1[sizeqmcmd]=recq1[mu]; |
|
|
q2[sizeqmcmd]=recq2[mu]; |
|
|
q3[sizeqmcmd]=recq3[mu]; |
|
|
qmode[sizeqmcmd]=-10; |
|
|
orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi); |
|
|
RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]); |
|
|
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
|
|
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
|
|
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
|
|
} |
|
|
if(recqtime[mu]>=u_time){ |
|
| 1056 |
Int_t sizeqmcmd = qtime.size(); |
Int_t sizeqmcmd = qtime.size(); |
| 1057 |
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
| 1058 |
qtime[sizeqmcmd]=u_time; |
qtime[sizeqmcmd]=u_time; |
| 1067 |
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
| 1068 |
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
| 1069 |
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
| 1070 |
break; |
} |
| 1071 |
|
} |
| 1072 |
|
for(Int_t mu = nt;mu<recSize;mu++){ |
| 1073 |
|
if(recqtime[mu]>lowerqtime && recqtime[mu]<u_time){ |
| 1074 |
|
if(sqrt(pow(recq0[mu],2)+pow(recq1[mu],2)+pow(recq2[mu],2)+pow(recq3[mu],2))>0.99999){ |
| 1075 |
|
nt=mu; |
| 1076 |
|
Int_t sizeqmcmd = qtime.size(); |
| 1077 |
|
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
| 1078 |
|
qtime[sizeqmcmd]=recqtime[mu]; |
| 1079 |
|
q0[sizeqmcmd]=recq0[mu]; |
| 1080 |
|
q1[sizeqmcmd]=recq1[mu]; |
| 1081 |
|
q2[sizeqmcmd]=recq2[mu]; |
| 1082 |
|
q3[sizeqmcmd]=recq3[mu]; |
| 1083 |
|
qmode[sizeqmcmd]=-10; |
| 1084 |
|
orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi); |
| 1085 |
|
RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]); |
| 1086 |
|
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
| 1087 |
|
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
| 1088 |
|
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
| 1089 |
|
} |
| 1090 |
|
} |
| 1091 |
|
if(recqtime[mu]>=u_time){ |
| 1092 |
|
if(sqrt(pow(L_QQ_Q_l_upper->quat[ui][0],2)+pow(L_QQ_Q_l_upper->quat[ui][1],2)+pow(L_QQ_Q_l_upper->quat[ui][2],2)+pow(L_QQ_Q_l_upper->quat[ui][3],2))>0.99999){ |
| 1093 |
|
Int_t sizeqmcmd = qtime.size(); |
| 1094 |
|
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
| 1095 |
|
qtime[sizeqmcmd]=u_time; |
| 1096 |
|
q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][0]; |
| 1097 |
|
q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][1]; |
| 1098 |
|
q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][2]; |
| 1099 |
|
q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][3]; |
| 1100 |
|
qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui); |
| 1101 |
|
lowerqtime = u_time; |
| 1102 |
|
orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi); |
| 1103 |
|
RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[ui][0],L_QQ_Q_l_upper->quat[ui][1],L_QQ_Q_l_upper->quat[ui][2],L_QQ_Q_l_upper->quat[ui][3]); |
| 1104 |
|
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
| 1105 |
|
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
| 1106 |
|
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
| 1107 |
|
break; |
| 1108 |
|
} |
| 1109 |
} |
} |
| 1110 |
} |
} |
| 1111 |
} |
} |
| 1112 |
}else{ |
}else{ |
| 1113 |
|
if ( debug ) printf(" here2 %i \n",ui); |
| 1114 |
Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); |
Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); |
| 1115 |
if(lowerqtime>u_time)nt=0; |
if(lowerqtime>u_time)nt=0; |
| 1116 |
Int_t recSize = recqtime.size(); |
Int_t recSize = recqtime.size(); |
| 1117 |
for(Int_t mu = nt;mu<recSize;mu++){ |
if(lowerqtime > recqtime[recSize-1]){ |
| 1118 |
if(recqtime[mu]>lowerqtime && recqtime[mu]<u_time){ |
if(sqrt(pow(L_QQ_Q_l_upper->quat[ui][0],2)+pow(L_QQ_Q_l_upper->quat[ui][1],2)+pow(L_QQ_Q_l_upper->quat[ui][2],2)+pow(L_QQ_Q_l_upper->quat[ui][3],2))>0.99999){ |
|
nt=mu; |
|
|
Int_t sizeqmcmd = qtime.size(); |
|
|
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
|
|
qtime[sizeqmcmd]=recqtime[mu]; |
|
|
q0[sizeqmcmd]=recq0[mu]; |
|
|
q1[sizeqmcmd]=recq1[mu]; |
|
|
q2[sizeqmcmd]=recq2[mu]; |
|
|
q3[sizeqmcmd]=recq3[mu]; |
|
|
qmode[sizeqmcmd]=-10; |
|
|
orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi); |
|
|
RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]); |
|
|
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
|
|
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
|
|
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
|
|
} |
|
|
if(recqtime[mu]>=u_time){ |
|
| 1119 |
Int_t sizeqmcmd = qtime.size(); |
Int_t sizeqmcmd = qtime.size(); |
| 1120 |
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
| 1121 |
qtime[sizeqmcmd]=u_time; |
qtime[sizeqmcmd]=u_time; |
| 1130 |
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
| 1131 |
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
| 1132 |
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
| 1133 |
CopyQ(L_QQ_Q_l_lower,L_QQ_Q_l_upper); |
} |
| 1134 |
break; |
} |
| 1135 |
|
for(Int_t mu = nt;mu<recSize;mu++){ |
| 1136 |
|
if(recqtime[mu]>lowerqtime && recqtime[mu]<u_time){ |
| 1137 |
|
if(sqrt(pow(recq0[mu],2)+pow(recq1[mu],2)+pow(recq2[mu],2)+pow(recq3[mu],2))>0.99999){ |
| 1138 |
|
nt=mu; |
| 1139 |
|
Int_t sizeqmcmd = qtime.size(); |
| 1140 |
|
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
| 1141 |
|
qtime[sizeqmcmd]=recqtime[mu]; |
| 1142 |
|
q0[sizeqmcmd]=recq0[mu]; |
| 1143 |
|
q1[sizeqmcmd]=recq1[mu]; |
| 1144 |
|
q2[sizeqmcmd]=recq2[mu]; |
| 1145 |
|
q3[sizeqmcmd]=recq3[mu]; |
| 1146 |
|
qmode[sizeqmcmd]=-10; |
| 1147 |
|
orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi); |
| 1148 |
|
RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]); |
| 1149 |
|
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
| 1150 |
|
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
| 1151 |
|
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
| 1152 |
|
} |
| 1153 |
|
} |
| 1154 |
|
if(recqtime[mu]>=u_time){ |
| 1155 |
|
if(sqrt(pow(L_QQ_Q_l_upper->quat[0][0],2)+pow(L_QQ_Q_l_upper->quat[0][1],2)+pow(L_QQ_Q_l_upper->quat[0][2],2)+pow(L_QQ_Q_l_upper->quat[0][3],2))>0.99999){ |
| 1156 |
|
Int_t sizeqmcmd = qtime.size(); |
| 1157 |
|
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
| 1158 |
|
qtime[sizeqmcmd]=u_time; |
| 1159 |
|
q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][0]; |
| 1160 |
|
q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][1]; |
| 1161 |
|
q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][2]; |
| 1162 |
|
q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][3]; |
| 1163 |
|
qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui); |
| 1164 |
|
lowerqtime = u_time; |
| 1165 |
|
orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi); |
| 1166 |
|
RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]); |
| 1167 |
|
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
| 1168 |
|
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
| 1169 |
|
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
| 1170 |
|
CopyQ(L_QQ_Q_l_lower,L_QQ_Q_l_upper); |
| 1171 |
|
break; |
| 1172 |
|
} |
| 1173 |
} |
} |
| 1174 |
} |
} |
| 1175 |
} |
} |
| 1176 |
} |
} |
| 1177 |
} |
} |
| 1178 |
} |
} |
| 1179 |
|
//if ( debug ) cout << "subpacket " << j3 << "\t qtime = " << qtime[qtime.size()-1] << endl; |
| 1180 |
} |
} |
| 1181 |
} |
} |
| 1182 |
|
|
| 1183 |
|
if(qtime.size()==0){ // in case if no orientation information in data |
| 1184 |
|
if ( debug ) cout << "qtime.size() = 0" << endl; |
| 1185 |
|
for(UInt_t my=0;my<recqtime.size();my++){ |
| 1186 |
|
if(sqrt(pow(recq0[my],2)+pow(recq1[my],2)+pow(recq2[my],2)+pow(recq3[my],2))>0.99999){ |
| 1187 |
|
Int_t sizeqmcmd = qtime.size(); |
| 1188 |
|
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
| 1189 |
|
qtime[sizeqmcmd]=recqtime[my]; |
| 1190 |
|
q0[sizeqmcmd]=recq0[my]; |
| 1191 |
|
q1[sizeqmcmd]=recq1[my]; |
| 1192 |
|
q2[sizeqmcmd]=recq2[my]; |
| 1193 |
|
q3[sizeqmcmd]=recq3[my]; |
| 1194 |
|
qmode[sizeqmcmd]=-10; |
| 1195 |
|
orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi); |
| 1196 |
|
RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[my],recq1[my],recq2[my],recq3[my]); |
| 1197 |
|
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
| 1198 |
|
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
| 1199 |
|
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
| 1200 |
|
} |
| 1201 |
|
} |
| 1202 |
|
} |
| 1203 |
|
|
| 1204 |
|
|
| 1205 |
sineparam(q0sine,qtime,q0,qRoll,qPitch,0.58); |
if ( debug ) printf(" puffi \n"); |
|
sineparam(q1sine,qtime,q1,qRoll,qPitch,0.79); |
|
|
sineparam(q2sine,qtime,q2,qRoll,qPitch,0.79); |
|
|
sineparam(q3sine,qtime,q3,qRoll,qPitch,0.58); |
|
|
sineparam(Yawsine,qtime,qYaw,qRoll,qPitch,4); |
|
| 1206 |
Double_t tmin = 9999999999.; |
Double_t tmin = 9999999999.; |
| 1207 |
Double_t tmax = 0.; |
Double_t tmax = 0.; |
| 1208 |
for(UInt_t tre = 0;tre<qtime.size();tre++){ |
for(UInt_t tre = 0;tre<qtime.size();tre++){ |
| 1209 |
if(qtime[tre]>tmax)tmax = qtime[tre]; |
if(qtime[tre]>tmax)tmax = qtime[tre]; |
| 1210 |
if(qtime[tre]<tmin)tmin = qtime[tre]; |
if(qtime[tre]<tmin)tmin = qtime[tre]; |
| 1211 |
} |
} |
| 1212 |
|
// sorting quaternions by time |
| 1213 |
//q0testing->SetName("q0testing"); |
Bool_t t = true; |
| 1214 |
//q1testing->SetName("q1testing"); |
while(t){ |
| 1215 |
//q2testing->SetName("q2testing"); |
t=false; |
| 1216 |
//q3testing->SetName("q3testing"); |
for(UInt_t i=0;i<qtime.size()-1;i++){ |
| 1217 |
|
if(qtime[i]>qtime[i+1]){ |
| 1218 |
// Int_t ss=10.*(tmax-tmin); |
Double_t tmpr = qtime[i]; |
| 1219 |
//q0testing->SetBins(ss,tmin,tmax,1000,-1.,1.); |
qtime[i]=qtime[i+1]; |
| 1220 |
//Pitchtesting->SetBins(ss,tmin,tmax,1000,-40.,40.); |
qtime[i+1] = tmpr; |
| 1221 |
|
tmpr = q0[i]; |
| 1222 |
// for(Int_t tre = 0;tre<qtime.size();tre++){ |
q0[i]=q0[i+1]; |
| 1223 |
//cout<<"q0["<<tre<<" = "<<q0[tre]<<endl; |
q0[i+1] = tmpr; |
| 1224 |
//q0testing->Fill(qtime[tre],q0[tre]); |
tmpr = q1[i]; |
| 1225 |
//q1testing->Fill(qtime[tre],q1[tre]); |
q1[i]=q1[i+1]; |
| 1226 |
//Pitchtesting->Fill(qtime[tre],qPitch[tre],100); |
q1[i+1] = tmpr; |
| 1227 |
//if(qmode[tre] == -10)Pitchtesting->Fill(qtime[tre],10,100); |
tmpr = q2[i]; |
| 1228 |
//q2testing->Fill(qtime[tre],q2[tre],100); |
q2[i]=q2[i+1]; |
| 1229 |
//q3testing->Fill(qtime[tre],q3[tre],100); |
q2[i+1] = tmpr; |
| 1230 |
// } |
tmpr = q3[i]; |
| 1231 |
|
q3[i]=q3[i+1]; |
| 1232 |
//for(Int_t tre=0;tre<q0sine.size();tre++)cout<<q1sine[tre].A<<"*sin("<<q1sine[tre].b<<"x+"<<q1sine[tre].c<<")\t time start: "<<q1sine[tre].startPoint<<"\ttime end: "<<q1sine[tre].finishPoint<<endl; |
q3[i+1] = tmpr; |
| 1233 |
//for(Int_t tre=0;tre<q0sine.size();tre++)cout<<q1sine[tre].A<<"*sin("<<q1sine[tre].b<<"x+"<<q1sine[tre].c<<")\t time start: "<<q0sine[tre].startPoint<<"\ttime end: "<<q0sine[tre].finishPoint<<endl; |
tmpr = qRoll[i]; |
| 1234 |
|
qRoll[i]=qRoll[i+1]; |
| 1235 |
|
qRoll[i+1] = tmpr; |
| 1236 |
|
tmpr = qYaw[i]; |
| 1237 |
|
qYaw[i]=qYaw[i+1]; |
| 1238 |
|
qYaw[i+1] = tmpr; |
| 1239 |
|
tmpr = qPitch[i]; |
| 1240 |
|
qPitch[i]=qPitch[i+1]; |
| 1241 |
|
qPitch[i+1] = tmpr; |
| 1242 |
|
t=true; |
| 1243 |
|
} |
| 1244 |
|
} |
| 1245 |
|
} |
| 1246 |
|
|
| 1247 |
|
if ( debug ){ |
| 1248 |
|
cout << "we have loaded quaternions: size of quaternions set is "<< qtime.size() << endl; |
| 1249 |
|
for(UInt_t i=0;i<qtime.size();i++) cout << qtime[i] << "\t"; |
| 1250 |
|
cout << endl << endl; |
| 1251 |
|
Int_t lopu; |
| 1252 |
|
cin >> lopu; |
| 1253 |
|
} |
| 1254 |
|
|
| 1255 |
} // if we processed first event |
} // if we processed first event |
| 1256 |
|
|
| 1257 |
|
|
| 1258 |
//Filling Inclination information |
//Filling Inclination information |
| 1259 |
Double_t incli = 0; |
Double_t incli = 0; |
| 1260 |
for(UInt_t mu = must;mu<qtime.size()-1;mu++){ |
if ( qtime.size() > 1 ){ |
| 1261 |
if(qtime[mu+1]>qtime[mu]){ |
if ( debug ) cout << "ok quaternions is exist and mu = " << must << endl; |
| 1262 |
if(atime<=qtime[mu+1] && atime>=qtime[mu]){ |
if ( debug ) cout << "qtimes[ " << qtime[0] << " , " << qtime[qtime.size()-1] << " ]\tatime = "<<atime<<endl; |
| 1263 |
must = mu; |
for(UInt_t mu = must;mu<qtime.size()-1;mu++){ |
| 1264 |
incli = (qPitch[mu+1]-qPitch[mu])/(qtime[mu+1]-qtime[mu]); |
if ( debug ) printf(" ??grfuffi %i sixe %i must %i \n",mu,qtime.size()-1,must); |
| 1265 |
orbitalinfo->theta = incli*atime+qPitch[mu+1]-incli*qtime[mu+1]; |
if(qtime[mu+1]>qtime[mu]){ |
| 1266 |
incli = (qRoll[mu+1]-qRoll[mu])/(qtime[mu+1]-qtime[mu]); |
if ( debug ) cout << "qtime[" << mu << "] = " << qtime[mu] << "\tqtime[" << mu+1 << "] = " << qtime[mu+1] << "\tatime = " << atime << endl; |
| 1267 |
orbitalinfo->etha = incli*atime+qRoll[mu+1]-incli*qtime[mu+1]; |
if(atime<=qtime[mu+1] && atime>=qtime[mu]){ |
| 1268 |
incli = (qYaw[mu+1]-qYaw[mu])/(qtime[mu+1]-qtime[mu]); |
if ( debug ) cout << "here we have found proper quaternions for interpolation: mu = "<<mu<<endl; |
| 1269 |
orbitalinfo->phi = incli*atime+qYaw[mu+1]-incli*qtime[mu+1]; |
must = mu; |
| 1270 |
|
incli = (qPitch[mu+1]-qPitch[mu])/(qtime[mu+1]-qtime[mu]); |
| 1271 |
incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]); |
orbitalinfo->theta = incli*atime+qPitch[mu+1]-incli*qtime[mu+1]; |
| 1272 |
orbitalinfo->q0t = incli*atime+q0[mu+1]-incli*qtime[mu+1]; |
incli = (qRoll[mu+1]-qRoll[mu])/(qtime[mu+1]-qtime[mu]); |
| 1273 |
incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]); |
orbitalinfo->etha = incli*atime+qRoll[mu+1]-incli*qtime[mu+1]; |
| 1274 |
orbitalinfo->q1t = incli*atime+q1[mu+1]-incli*qtime[mu+1]; |
incli = (qYaw[mu+1]-qYaw[mu])/(qtime[mu+1]-qtime[mu]); |
| 1275 |
incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]); |
orbitalinfo->phi = incli*atime+qYaw[mu+1]-incli*qtime[mu+1]; |
| 1276 |
orbitalinfo->q2t = incli*atime+q2[mu+1]-incli*qtime[mu+1]; |
|
| 1277 |
incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]); |
incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]); |
| 1278 |
orbitalinfo->q3t = incli*atime+q3[mu+1]-incli*qtime[mu+1]; |
orbitalinfo->q0 = incli*atime+q0[mu+1]-incli*qtime[mu+1]; |
| 1279 |
|
incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]); |
| 1280 |
orbitalinfo->TimeGap = qtime[mu+1]-qtime[mu]; |
orbitalinfo->q1 = incli*atime+q1[mu+1]-incli*qtime[mu+1]; |
| 1281 |
orbitalinfo->mode = qmode[mu+1]; |
incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]); |
| 1282 |
if(qmode[mu+1]==-10) orbitalinfo->R10r = true;else orbitalinfo->R10r = false; |
orbitalinfo->q2 = incli*atime+q2[mu+1]-incli*qtime[mu+1]; |
| 1283 |
if(qmode[mu+1]==-10 || qmode[mu+1]==0 || qmode[mu+1]==1 || qmode[mu+1]==3 || qmode[mu+1]==4 || qmode[mu+1]==6){ |
incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]); |
| 1284 |
//linear interpolation |
orbitalinfo->q3 = incli*atime+q3[mu+1]-incli*qtime[mu+1]; |
| 1285 |
incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]); |
Float_t tg = (qtime[mu+1]-qtime[mu])/1000.; |
| 1286 |
orbitalinfo->q0 = incli*atime+q0[mu+1]-incli*qtime[mu+1]; |
if(tg>=1) tg=0.00; |
| 1287 |
incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]); |
orbitalinfo->TimeGap = TMath::Min(TMath::Abs(qtime[mu+1])-atime,TMath::Abs(atime-qtime[mu]))+tg;//qtime[mu+1]-qtime[mu]; |
| 1288 |
orbitalinfo->q1 = incli*atime+q1[mu+1]-incli*qtime[mu+1]; |
orbitalinfo->mode = qmode[mu+1]; |
| 1289 |
incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]); |
|
| 1290 |
orbitalinfo->q2 = incli*atime+q2[mu+1]-incli*qtime[mu+1]; |
//if(atime==qtime[mu] || atime==qtime[mu+1]) orbitalinfo->qkind = 0; else orbitalinfo->qkind=1; |
| 1291 |
incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]); |
//if(qmode[mu+1]==-10) orbitalinfo->R10r = true;else orbitalinfo->R10r = false; |
| 1292 |
orbitalinfo->q3 = incli*atime+q3[mu+1]-incli*qtime[mu+1]; |
if ( debug ) printf(" grfuffi4 %i \n",mu); |
| 1293 |
}else{ |
|
| 1294 |
//sine interpolation |
break; |
| 1295 |
for(UInt_t mt=0;mt<q0sine.size();mt++){ |
} |
| 1296 |
if(atime<=q0sine[mt].finishPoint && atime>=q0sine[mt].startPoint){ |
} |
| 1297 |
if(!q0sine[mt].NeedFit)orbitalinfo->q0=q0sine[mt].A*sin(q0sine[mt].b*atime+q0sine[mt].c);else{ |
} |
|
incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]); |
|
|
orbitalinfo->q0 = incli*atime+q0[mu+1]-incli*qtime[mu+1]; |
|
|
} |
|
|
} |
|
|
if(atime<=q1sine[mt].finishPoint && atime>=q1sine[mt].startPoint){ |
|
|
if(!q1sine[mt].NeedFit)orbitalinfo->q1=q1sine[mt].A*sin(q1sine[mt].b*atime+q1sine[mt].c);else{ |
|
|
incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]); |
|
|
orbitalinfo->q1 = incli*atime+q1[mu+1]-incli*qtime[mu+1]; |
|
|
} |
|
|
} |
|
|
if(atime<=q2sine[mt].finishPoint && atime>=q2sine[mt].startPoint){ |
|
|
if(!q2sine[mt].NeedFit)orbitalinfo->q2=q0sine[mt].A*sin(q2sine[mt].b*atime+q2sine[mt].c);else{ |
|
|
incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]); |
|
|
orbitalinfo->q2 = incli*atime+q2[mu+1]-incli*qtime[mu+1]; |
|
|
} |
|
|
} |
|
|
if(atime<=q3sine[mt].finishPoint && atime>=q3sine[mt].startPoint){ |
|
|
if(!q3sine[mt].NeedFit)orbitalinfo->q3=q0sine[mt].A*sin(q3sine[mt].b*atime+q3sine[mt].c);else{ |
|
|
incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]); |
|
|
orbitalinfo->q3 = incli*atime+q3[mu+1]-incli*qtime[mu+1]; |
|
|
} |
|
|
} |
|
|
if(atime<=Yawsine[mt].finishPoint && atime>=Yawsine[mt].startPoint){ |
|
|
if(!Yawsine[mt].NeedFit)orbitalinfo->phi=Yawsine[mt].A*sin(Yawsine[mt].b*atime+Yawsine[mt].c);else{ |
|
|
incli = (qYaw[mu+1]-qYaw[mu])/(qtime[mu+1]-qtime[mu]); |
|
|
orbitalinfo->phi = incli*atime+qYaw[mu+1]-incli*qtime[mu+1]; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
//q0testing->Fill(atime,orbitalinfo->q0,100); |
|
|
//q1testing->Fill(atime,orbitalinfo->q1,100); |
|
|
//Pitchtesting->Fill(atime,orbitalinfo->etha); |
|
|
//q2testing->Fill(atime,orbitalinfo->q2); |
|
|
//q3testing->Fill(atime,orbitalinfo->q3); |
|
|
break; |
|
|
} |
|
|
} |
|
| 1298 |
} |
} |
| 1299 |
|
if ( debug ) printf(" grfuffi5 \n"); |
| 1300 |
// |
// |
| 1301 |
// ops no inclination information |
// ops no inclination information |
| 1302 |
// |
// |
| 1303 |
|
|
| 1304 |
if ( orbitalinfo->q0< -999 || orbitalinfo->q1 < -999 || orbitalinfo->q2 < -999 || orbitalinfo->q3 < -999 || orbitalinfo->q0 != orbitalinfo->q0 || orbitalinfo->q1 != orbitalinfo->q1 || orbitalinfo->q2 != orbitalinfo->q2 || orbitalinfo->q3 != orbitalinfo->q3 ){ |
if ( orbitalinfo->q0< -999 || orbitalinfo->q1 < -999 || orbitalinfo->q2 < -999 || orbitalinfo->q3 < -999 || orbitalinfo->q0 != orbitalinfo->q0 || orbitalinfo->q1 != orbitalinfo->q1 || orbitalinfo->q2 != orbitalinfo->q2 || orbitalinfo->q3 != orbitalinfo->q3 ){ |
| 1305 |
|
if ( debug ) cout << "ops no iclination information" << endl; |
| 1306 |
orbitalinfo->mode = 10; |
orbitalinfo->mode = 10; |
| 1307 |
orbitalinfo->q0 = -1000.; |
orbitalinfo->q0 = -1000.; |
| 1308 |
orbitalinfo->q1 = -1000.; |
orbitalinfo->q1 = -1000.; |
| 1311 |
orbitalinfo->etha = -1000.; |
orbitalinfo->etha = -1000.; |
| 1312 |
orbitalinfo->phi = -1000.; |
orbitalinfo->phi = -1000.; |
| 1313 |
orbitalinfo->theta = -1000.; |
orbitalinfo->theta = -1000.; |
| 1314 |
}; |
orbitalinfo->TimeGap = -1000.; |
| 1315 |
|
//orbitalinfo->qkind = -1000; |
| 1316 |
|
|
| 1317 |
|
// if ( debug ){ |
| 1318 |
|
// Int_t lopu; |
| 1319 |
|
// cin >> lopu; |
| 1320 |
|
// } |
| 1321 |
|
if ( debug ) printf(" grfuffi6 \n"); |
| 1322 |
|
} |
| 1323 |
// |
// |
| 1324 |
|
if ( debug ) printf(" filling \n"); |
| 1325 |
// ######################################################################################################################### |
// ######################################################################################################################### |
| 1326 |
// |
// |
| 1327 |
// fill orbital positions |
// fill orbital positions |
| 1332 |
lon = (coo.m_Lon > M_PI) ? rad2deg(coo.m_Lon - 2*M_PI) : rad2deg(coo.m_Lon); |
lon = (coo.m_Lon > M_PI) ? rad2deg(coo.m_Lon - 2*M_PI) : rad2deg(coo.m_Lon); |
| 1333 |
lat = rad2deg(coo.m_Lat); |
lat = rad2deg(coo.m_Lat); |
| 1334 |
alt = coo.m_Alt; |
alt = coo.m_Alt; |
| 1335 |
// |
|
| 1336 |
|
cOrbit orbits2(*gltle->GetTle()); |
| 1337 |
|
orbits2.getPosition((double) (atime - gltle->GetFromTime())/60., &eCi); |
| 1338 |
|
// Float_t x=eCi.getPos().m_x; |
| 1339 |
|
// Float_t y=eCi.getPos().m_y; |
| 1340 |
|
// Float_t z=eCi.getPos().m_z; |
| 1341 |
|
|
| 1342 |
|
TVector3 V(eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z); |
| 1343 |
|
TVector3 Pos(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z); |
| 1344 |
|
|
| 1345 |
|
Float_t dlon=Pos.Phi()*TMath::RadToDeg()-lon; |
| 1346 |
|
|
| 1347 |
|
Pos.RotateZ(-dlon*TMath::DegToRad()); |
| 1348 |
|
V.RotateZ(-dlon*TMath::DegToRad()); |
| 1349 |
|
Float_t diro; |
| 1350 |
|
if(V.Z()>0) diro=1; else diro=-1; |
| 1351 |
|
|
| 1352 |
|
// 10REDNEW |
| 1353 |
|
Int_t errq=0; |
| 1354 |
|
Int_t azim=0;; |
| 1355 |
|
for(UInt_t mu = must;mu<RTtime2.size()-1;mu++){ |
| 1356 |
|
if(atime<=RTtime2[mu] && atime>=RTtime1[mu]){ |
| 1357 |
|
errq=RTerrq[mu]; |
| 1358 |
|
azim=RTazim[mu]; |
| 1359 |
|
} |
| 1360 |
|
} |
| 1361 |
|
orbitalinfo->errq = errq; |
| 1362 |
|
orbitalinfo->azim = azim; |
| 1363 |
|
orbitalinfo->qkind = 0; |
| 1364 |
|
|
| 1365 |
|
if ( debug ) printf(" coord done \n"); |
| 1366 |
if( lon<180 && lon>-180 && lat<90 && lat>-90 && alt>0 ){ |
if( lon<180 && lon>-180 && lat<90 && lat>-90 && alt>0 ){ |
| 1367 |
// |
// |
| 1368 |
orbitalinfo->lon = lon; |
orbitalinfo->lon = lon; |
| 1369 |
orbitalinfo->lat = lat; |
orbitalinfo->lat = lat; |
| 1370 |
orbitalinfo->alt = alt ; |
orbitalinfo->alt = alt; |
| 1371 |
|
orbitalinfo->V = V; |
| 1372 |
|
|
| 1373 |
|
// GMtype_CoordGeodetic location; |
| 1374 |
|
location.lambda = lon; |
| 1375 |
|
location.phi = lat; |
| 1376 |
|
location.HeightAboveEllipsoid = alt; |
| 1377 |
|
|
| 1378 |
|
GM_GeodeticToSpherical(Ellip, location, &CoordSpherical); |
| 1379 |
|
GM_SphericalToCartesian(CoordSpherical, &CoordCartesian); |
| 1380 |
|
GM_EarthCartToDipoleCartCD(Pole, CoordCartesian, &DipoleCartesian); |
| 1381 |
|
GM_CartesianToSpherical(DipoleCartesian, &DipoleSpherical); |
| 1382 |
|
orbitalinfo->londip = DipoleSpherical.lambda; |
| 1383 |
|
orbitalinfo->latdip = DipoleSpherical.phig; |
| 1384 |
|
|
| 1385 |
|
if(debug)cout<<"geodetic:\t"<<lon<<"\t"<<lat<<"\tgeomagnetic:\t"<<orbitalinfo->londip<<"\t"<<orbitalinfo->latdip<<endl; |
| 1386 |
|
|
| 1387 |
// |
// |
| 1388 |
// compute mag field components and L shell. |
// compute mag field components and L shell. |
| 1389 |
// |
// |
| 1390 |
|
if ( debug ) printf(" call igrf feldg \n"); |
| 1391 |
feldg_(&lat, &lon, &alt, &bnorth, &beast, &bdown, &babs); |
feldg_(&lat, &lon, &alt, &bnorth, &beast, &bdown, &babs); |
| 1392 |
|
if ( debug ) printf(" call igrf shellg \n"); |
| 1393 |
shellg_(&lat, &lon, &alt, &dimo, &xl, &icode, &bab1); |
shellg_(&lat, &lon, &alt, &dimo, &xl, &icode, &bab1); |
| 1394 |
|
if ( debug ) printf(" call igrf findb \n"); |
| 1395 |
findb0_(&stps, &bdel, &value, &bequ, &rr0); |
findb0_(&stps, &bdel, &value, &bequ, &rr0); |
| 1396 |
// |
// |
| 1397 |
|
if ( debug ) printf(" done igrf \n"); |
| 1398 |
orbitalinfo->Bnorth = bnorth; |
orbitalinfo->Bnorth = bnorth; |
| 1399 |
orbitalinfo->Beast = beast; |
orbitalinfo->Beast = beast; |
| 1400 |
orbitalinfo->Bdown = bdown; |
orbitalinfo->Bdown = bdown; |
| 1401 |
orbitalinfo->Babs = babs; |
orbitalinfo->Babs = babs; |
| 1402 |
|
orbitalinfo->M = dimo; |
| 1403 |
orbitalinfo->BB0 = babs/bequ; |
orbitalinfo->BB0 = babs/bequ; |
| 1404 |
orbitalinfo->L = xl; |
orbitalinfo->L = xl; |
| 1405 |
// Set Stormer vertical cutoff using L shell. |
// Set Stormer vertical cutoff using L shell. |
| 1406 |
orbitalinfo->cutoffsvl = 14.9/(xl*xl); |
orbitalinfo->cutoffsvl = 14.295 / (xl*xl); // |
| 1407 |
|
if(debug)cout << "L = " << xl << "\tM = " << dimo << "\tvertical cutoff: "<< orbitalinfo->cutoffsvl << endl; |
| 1408 |
|
|
| 1409 |
|
/* |
| 1410 |
|
---------- Forwarded message ---------- |
| 1411 |
|
Date: Wed, 09 May 2012 12:16:47 +0200 |
| 1412 |
|
From: Alessandro Bruno <alessandro.bruno@ba.infn.it> |
| 1413 |
|
To: Mirko Boezio <mirko.boezio@ts.infn.it> |
| 1414 |
|
Cc: Francesco S. Cafagna <Francesco.Cafagna@ba.infn.it> |
| 1415 |
|
Subject: Störmer vertical cutoff |
| 1416 |
|
|
| 1417 |
|
Ciao Mirko, |
| 1418 |
|
volevo segnalarti che il valore dello Störmer vertical cutoff nel Level2 è |
| 1419 |
|
sovrastimato di circa il 4%. |
| 1420 |
|
Dopo un'approfondita analisi con l'IGRF-05 abbiamo ricavano un valore pari |
| 1421 |
|
a: 14.295 / L^2 anzichè 14.9 / L^2, valore obsoleto in quanto riferito agli |
| 1422 |
|
anni '50. |
| 1423 |
|
*/ |
| 1424 |
|
//14.9/(xl*xl); |
| 1425 |
|
orbitalinfo->igrf_icode = icode; |
| 1426 |
// |
// |
| 1427 |
}; |
} |
| 1428 |
// |
// |
| 1429 |
if ( debug ) printf(" pitch angle \n"); |
if ( debug ) printf(" pitch angle \n"); |
| 1430 |
// |
// |
| 1431 |
// pitch angles |
// pitch angles |
| 1432 |
// |
// |
| 1433 |
if ( orbitalinfo->mode != 10 && orbitalinfo->mode != 5 && orbitalinfo->mode !=7 && orbitalinfo->mode != 9 ){ |
if( orbitalinfo->TimeGap>0){ |
| 1434 |
// |
// |
| 1435 |
Float_t Bx = -orbitalinfo->Bdown; //don't need for PamExp ExpOnly for all geography areas |
if ( debug ) printf(" timegap %f \n",orbitalinfo->TimeGap); |
| 1436 |
Float_t By = orbitalinfo->Beast; //don't need for PamExp ExpOnly for all geography areas |
Float_t Bx = -orbitalinfo->Bdown; |
| 1437 |
Float_t Bz = orbitalinfo->Bnorth; //don't need for PamExp ExpOnly for all geography areas |
Float_t By = orbitalinfo->Beast; |
| 1438 |
// |
Float_t Bz = orbitalinfo->Bnorth; |
| 1439 |
TMatrixD Fij = PO->ECItoGreenwich(PO->QuatoECI(orbitalinfo->q0,orbitalinfo->q1,orbitalinfo->q2,orbitalinfo->q3),orbitalinfo->absTime); |
|
| 1440 |
TMatrixD Dij = PO->GreenwichtoGEO(orbitalinfo->lat,orbitalinfo->lon,Fij); |
TMatrixD Qiji(3,3); |
| 1441 |
|
TMatrixD Qij = PO->QuatoECI(orbitalinfo->q0,orbitalinfo->q1,orbitalinfo->q2,orbitalinfo->q3); |
| 1442 |
|
TMatrixD Dij = PO->ECItoGEO(Qij,orbitalinfo->absTime,orbitalinfo->lat,orbitalinfo->lon); |
| 1443 |
|
|
| 1444 |
|
//10REDNEW |
| 1445 |
|
/* If initial orientation data have reason to be inaccurate */ |
| 1446 |
|
Double_t tg = 0; |
| 1447 |
|
if ( debug ) cout<<modf(orbitalinfo->TimeGap,&tg)<<endl; |
| 1448 |
|
// if(orbitalinfo->TimeGap>0 && errq==0 && azim==0){ // 10RED CHECK (comparison between three metod of recovering orientation) |
| 1449 |
|
if(((orbitalinfo->TimeGap>60.0 && TMath::Abs(orbitalinfo->etha)>0.5) || errq!=0 || modf(orbitalinfo->TimeGap,&tg)*1000>700 || modf(orbitalinfo->TimeGap,&tg)*1000==0.0 ) && azim==0){ //Standard condition to use this; One of these two cases should be commented |
| 1450 |
|
/* found in Rotation Table this data for this time interval*/ |
| 1451 |
|
if(atime<RTtime1[0]) |
| 1452 |
|
orbitalinfo->azim = 5; //means that RotationTable no started yet |
| 1453 |
|
else{ |
| 1454 |
|
for(UInt_t mu = must;mu<RTtime2.size()-1;mu++){ |
| 1455 |
|
if(atime<=RTtime2[mu] && atime>=RTtime1[mu]){ |
| 1456 |
|
// search for angle betwean velosity and direction to north in tangential to Earth surfase plane in satellite position |
| 1457 |
|
Double_t tlat=orbitalinfo->lat; |
| 1458 |
|
/* Double_t phint=(163.7-0.0002387*tlat-0.005802*tlat*tlat-0.005802e-7*tlat*tlat*tlat-1.776e-6*tlat*tlat*tlat*tlat+1.395e-10*tlat*tlat*tlat*tlat*tlat); |
| 1459 |
|
Double_t phin=TMath::Abs(90.0*(1+diro)-phint); |
| 1460 |
|
Double_t phi=TMath::Abs(90.0*(1-diro)-TMath::RadToDeg()*atan(TMath::Abs(tan(TMath::DegToRad()*phin))/sqrt(1+pow(tan(TMath::DegToRad()*tlat),2)))); |
| 1461 |
|
|
| 1462 |
|
//Get vectors of Satellite reference frame axis in GEO in satndard case (No rotations, all Euler angles equals to 0) |
| 1463 |
|
TVector3 XDij(0,sin(TMath::DegToRad()*phi),cos(TMath::DegToRad()*phi)); |
| 1464 |
|
TVector3 YDij(1,0,0); |
| 1465 |
|
TVector3 ZDij(0,sin(TMath::DegToRad()*(phi+90)),cos(TMath::DegToRad()*(phi+90.0))); |
| 1466 |
|
|
| 1467 |
|
//Get Vectors to rotate about |
| 1468 |
|
TVector3 B1 = V; |
| 1469 |
|
B1.RotateZ(-lon*TMath::DegToRad()); |
| 1470 |
|
B1.RotateY(lat*TMath::DegToRad()); |
| 1471 |
|
Float_t elipangle=TMath::ACos((pow(B1.Y(),2)+pow(B1.Z(),2))/B1.Mag()/sqrt(pow(B1.Y(),2)+pow(B1.Z(),2))); |
| 1472 |
|
TVector3 Tre(0,B1.Y(),B1.Z()); |
| 1473 |
|
if(B1.X()<0) elipangle=-elipangle; |
| 1474 |
|
TVector3 Vperp=B1; // axis to rotate around initial Dij on ellip and spitch angles |
| 1475 |
|
Vperp.RotateX(TMath::Pi()/2.); |
| 1476 |
|
Vperp.SetX(0); |
| 1477 |
|
*/ Double_t kar=(RTbank2[mu]-RTbank1[mu])/(RTtime2[mu]-RTtime1[mu]); |
| 1478 |
|
Double_t bak=RTbank1[mu]-kar*RTtime1[mu]; |
| 1479 |
|
Double_t bank=kar*atime+bak; |
| 1480 |
|
Float_t spitch = 0.00001; // temprary not zero to avoid problem with tranzition from Euler angles to orientation matrix |
| 1481 |
|
|
| 1482 |
|
//Estimations of pitch angle of satellite |
| 1483 |
|
if(TMath::Abs(bank)>0.7){ |
| 1484 |
|
Float_t spitch1=TMath::DegToRad()*0.7*RTdir1[mu]; |
| 1485 |
|
Float_t spitch2=TMath::DegToRad()*0.7*RTdir2[mu]; |
| 1486 |
|
Float_t kva=(spitch2-spitch1)/(RTtime2[mu]-RTtime1[mu]); |
| 1487 |
|
Float_t bva=spitch1-kva*RTtime1[mu]; |
| 1488 |
|
spitch=kva*atime+bva; |
| 1489 |
|
} |
| 1490 |
|
/* //spitch=0.0; |
| 1491 |
|
//Rotations future Dij matrix on ellip and spitch angles |
| 1492 |
|
XDij.Rotate(-elipangle-spitch,Vperp); |
| 1493 |
|
YDij.Rotate(-elipangle-spitch,Vperp); |
| 1494 |
|
ZDij.Rotate(-elipangle-spitch,Vperp); |
| 1495 |
|
|
| 1496 |
|
//Rotation on bank angle; |
| 1497 |
|
if(TMath::Abs(bank)>0.5){ |
| 1498 |
|
XDij.Rotate(TMath::DegToRad()*bank,B1); |
| 1499 |
|
YDij.Rotate(TMath::DegToRad()*bank,B1); |
| 1500 |
|
ZDij.Rotate(TMath::DegToRad()*bank,B1); |
| 1501 |
|
} |
| 1502 |
|
Dij(0,0)=XDij.X(); Dij(1,0)=XDij.Y(); Dij(2,0)=XDij.Z(); |
| 1503 |
|
Dij(0,1)=YDij.X(); Dij(1,1)=YDij.Y(); Dij(2,1)=YDij.Z(); |
| 1504 |
|
Dij(0,2)=ZDij.X(); Dij(1,2)=ZDij.Y(); Dij(2,2)=ZDij.Z(); |
| 1505 |
|
*/ |
| 1506 |
|
//Calculate Yaw angle accordingly with fit, see picture FitYaw.jpg |
| 1507 |
|
Double_t yaw=0.00001; // temprary not zero to avoid problem with tranzition from Euler angles to orientation matrix |
| 1508 |
|
if(TMath::Abs(tlat)<70) |
| 1509 |
|
yaw = -3.7e-8*tlat*tlat*tlat*tlat + 1.4e-7*tlat*tlat*tlat - 0.0005*tlat*tlat - 0.00025*tlat + 3.6; |
| 1510 |
|
yaw = diro*yaw; //because should be different sign for ascending and descending orbits! |
| 1511 |
|
|
| 1512 |
|
if(TMath::Abs(bank)>0.5 && TMath::Abs(yaw-orbitalinfo->phi)<3.0) yaw=orbitalinfo->phi; |
| 1513 |
|
|
| 1514 |
|
// Qiji = PO->EulertoEci(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,bank,yaw,spitch); // 10RED CHECK |
| 1515 |
|
Qij = PO->EulertoEci(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,bank,yaw,spitch); // STANDARD |
| 1516 |
|
orbitalinfo->qkind = 1; |
| 1517 |
|
|
| 1518 |
|
break; |
| 1519 |
|
} |
| 1520 |
|
} // enf of loop for(UInt_t mu = must;mu<RTtime2.size()-1;mu++){ |
| 1521 |
|
|
| 1522 |
|
//Qij = PO->GEOtoECI(Dij,orbitalinfo->absTime,orbitalinfo->lat,orbitalinfo->lon); // to convert from Dij to Qij |
| 1523 |
|
|
| 1524 |
|
} // end of if(atime<RTtime1[0] |
| 1525 |
|
} // end of f(((orbitalinfo->TimeGap>60.0 && TMath... |
| 1526 |
|
|
| 1527 |
|
TMatrixD qij = PO->ColPermutation(Qij); |
| 1528 |
|
TMatrixD Fij = PO->ECItoGreenwich(Qij,orbitalinfo->absTime); |
| 1529 |
|
TMatrixD Gij = PO->ColPermutation(Fij); |
| 1530 |
|
Dij = PO->ECItoGEO(Qij,orbitalinfo->absTime,orbitalinfo->lat,orbitalinfo->lon); |
| 1531 |
TMatrixD Iij = PO->ColPermutation(Dij); |
TMatrixD Iij = PO->ColPermutation(Dij); |
| 1532 |
// |
TVector3 SP = PO->GetSunPosition(orbitalinfo->absTime); |
| 1533 |
|
// go to Pamela reference frame from Resurs reference frame |
| 1534 |
|
Float_t tmpy = SP.Y(); |
| 1535 |
|
SP.SetY(SP.Z()); |
| 1536 |
|
SP.SetZ(-tmpy); |
| 1537 |
|
TVector3 SunZenith; |
| 1538 |
|
SunZenith.SetMagThetaPhi(1,23.439281*TMath::DegToRad(),TMath::Pi()/2.); |
| 1539 |
|
TVector3 SunMag = -SP; |
| 1540 |
|
SunMag.Rotate(-45*TMath::DegToRad(),SunZenith); |
| 1541 |
|
tmpy=SunMag.Y(); |
| 1542 |
|
SunMag.SetY(SunMag.Z()); |
| 1543 |
|
SunMag.SetZ(-tmpy); |
| 1544 |
|
|
| 1545 |
orbitalinfo->Iij.ResizeTo(Iij); |
orbitalinfo->Iij.ResizeTo(Iij); |
| 1546 |
orbitalinfo->Iij = Iij; |
orbitalinfo->Iij = Iij; |
| 1547 |
// |
// |
| 1548 |
A1 = Iij(0,2); |
// A1 = Iij(0,2); |
| 1549 |
A2 = Iij(1,2); |
// A2 = Iij(1,2); |
| 1550 |
A3 = Iij(2,2); |
// A3 = Iij(2,2); |
| 1551 |
// |
// |
| 1552 |
// orbitalinfo->pamzenitangle = (Float_t)PO->GetPitchAngle(1,0,0,A1,A2,A3); // Angle between zenit and Pamela's main axiz |
// orbitalinfo->pamzenitangle = (Float_t)PO->GetPitchAngle(1,0,0,A1,A2,A3); // Angle between zenit and Pamela's main axiz |
| 1553 |
// orbitalinfo->pamBangle = (Float_t)PO->GetPitchAngle(A1,A2,A3,Bx,By,Bz); // Angle between Pamela's main axiz and B |
// orbitalinfo->pamBangle = (Float_t)PO->GetPitchAngle(A1,A2,A3,Bx,By,Bz); // Angle between Pamela's main axiz and B |
| 1554 |
// |
// |
| 1555 |
|
if ( debug ) printf(" matrixes done \n"); |
| 1556 |
if ( !standalone && tof->ntrk() > 0 ){ |
if ( !standalone && tof->ntrk() > 0 ){ |
| 1557 |
|
if ( debug ) printf(" !standalone \n"); |
| 1558 |
// |
// |
| 1559 |
Int_t nn = 0; |
Int_t nn = 0; |
| 1560 |
for(Int_t nt=0; nt < tof->ntrk(); nt++){ |
for(Int_t nt=0; nt < tof->ntrk(); nt++){ |
| 1561 |
// |
// |
| 1562 |
ToFTrkVar *ptt = tof->GetToFTrkVar(nt); |
ToFTrkVar *ptt = tof->GetToFTrkVar(nt); |
| 1563 |
|
if (debug) cout<<"tof->ntrk() = "<<tof->ntrk()<<"\tptt->trkseqno = "<<ptt->trkseqno<<"\ttrke->ntrk() = "<<trke->ntrk()<<endl; |
| 1564 |
Double_t E11x = ptt->xtr_tof[0]; // tr->x[0]; |
Double_t E11x = ptt->xtr_tof[0]; // tr->x[0]; |
| 1565 |
Double_t E11y = ptt->ytr_tof[0]; //tr->y[0]; |
Double_t E11y = ptt->ytr_tof[0]; //tr->y[0]; |
| 1566 |
Double_t E11z = zin[0]; |
Double_t E11z = zin[0]; |
| 1568 |
Double_t E22y = ptt->ytr_tof[3];//tr->y[3]; |
Double_t E22y = ptt->ytr_tof[3];//tr->y[3]; |
| 1569 |
Double_t E22z = zin[3]; |
Double_t E22z = zin[3]; |
| 1570 |
if ( (E11x < 100. && E11y < 100. && E22x < 100. && E22y < 100.) || ptt->trkseqno != -1 ){ |
if ( (E11x < 100. && E11y < 100. && E22x < 100. && E22y < 100.) || ptt->trkseqno != -1 ){ |
| 1571 |
|
TrkTrack *mytrack = trke->GetStoredTrack(ptt->trkseqno); |
| 1572 |
|
Float_t rig=1/mytrack->GetDeflection(); |
| 1573 |
Double_t norm = sqrt(pow(E22x-E11x,2)+pow(E22y-E11y,2)+pow(E22z-E11z,2)); |
Double_t norm = sqrt(pow(E22x-E11x,2)+pow(E22y-E11y,2)+pow(E22z-E11z,2)); |
| 1574 |
// Double_t MyAzim = TMath::RadToDeg()*atan(TMath::Abs(E22y-E11y)/TMath::Abs(E22x-E11x)); |
// Double_t MyAzim = TMath::RadToDeg()*atan(TMath::Abs(E22y-E11y)/TMath::Abs(E22x-E11x)); |
| 1575 |
// if(E22x-E11x>=0 && E22y-E11y <0) MyAzim = 360. - MyAzim; |
// if(E22x-E11x>=0 && E22y-E11y <0) MyAzim = 360. - MyAzim; |
| 1586 |
t_orb->Eij.ResizeTo(Eij); |
t_orb->Eij.ResizeTo(Eij); |
| 1587 |
t_orb->Eij = Eij; |
t_orb->Eij = Eij; |
| 1588 |
// |
// |
| 1589 |
TMatrixD Sij = PO->PamelatoGEO(Fij,Px,Py,Pz); |
TMatrixD Sij = PO->PamelatoGEO(Gij,Px,Py,Pz); |
| 1590 |
t_orb->Sij.ResizeTo(Sij); |
t_orb->Sij.ResizeTo(Sij); |
| 1591 |
t_orb->Sij = Sij; |
t_orb->Sij = Sij; |
| 1592 |
// |
// |
| 1593 |
t_orb->pitch = (Float_t)PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),Bx,By,Bz); |
t_orb->pitch = (Float_t)PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),Bx,By,Bz); |
| 1594 |
// |
// |
| 1595 |
|
// SunPosition in instrumental reference frame |
| 1596 |
|
TMatrixD Kij = PO->PamelatoGEO(qij,Px,Py,Pz); |
| 1597 |
|
TMatrixD Lij = PO->PamelatoGEO(qij,0,0,1); |
| 1598 |
|
t_orb->sunangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),-SP.X(),-SP.Y(),-SP.Z()); |
| 1599 |
|
t_orb->sunmagangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),SunMag.X(),SunMag.Y(),SunMag.Z()); |
| 1600 |
|
|
| 1601 |
// |
// |
|
Double_t omega = PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),cos(orbitalinfo->lon+TMath::Pi()/2)-sin(orbitalinfo->lon+TMath::Pi()/2),cos(orbitalinfo->lon+TMath::Pi()/2)+sin(orbitalinfo->lon+TMath::Pi()/2),1); |
|
| 1602 |
// |
// |
| 1603 |
t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow((1+sqrt(1-pow(orbitalinfo->L,-3/2)*cos(omega))),2)); |
//Double_t omega = PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),cos(orbitalinfo->lon+TMath::Pi()/2)-sin(orbitalinfo->lon+TMath::Pi()/2),cos(orbitalinfo->lon+TMath::Pi()/2)+sin(orbitalinfo->lon+TMath::Pi()/2),1); |
| 1604 |
|
Double_t omega = PO->GetPitchAngle(-Eij(0,0),-Eij(1,0),-Eij(2,0),1,0,0) * TMath::DegToRad(); |
| 1605 |
|
TVector3 Bxy(0,By,Bz); |
| 1606 |
|
TVector3 Exy(0,-Eij(1,0),-Eij(2,0)); |
| 1607 |
|
Double_t dzeta=Bxy.Angle(Exy); |
| 1608 |
|
if (-Eij(1,0) < 0) dzeta=2.0*TMath::Pi() - dzeta; |
| 1609 |
|
|
| 1610 |
|
if(debug) cout << "omega = "<<omega*TMath::RadToDeg()<<"\tdzeta = "<<dzeta*TMath::RadToDeg()<<endl; |
| 1611 |
|
|
| 1612 |
|
// Formula from D.F. Smart *, M.A. Shea [2005]; A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft |
| 1613 |
|
if(rig>=0) t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); |
| 1614 |
|
else t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(TMath::Pi()+dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); |
| 1615 |
|
if (debug) cout << "R = " << rig << "\tcutoff = " << t_orb->cutoff << endl; |
| 1616 |
|
|
| 1617 |
|
//t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow((1+sqrt(1-pow(orbitalinfo->L,-3/2)*cos(omega))),2)); |
| 1618 |
|
|
| 1619 |
// |
// |
| 1620 |
if ( t_orb->pitch != t_orb->pitch ) t_orb->pitch = -1000.; |
if ( t_orb->pitch != t_orb->pitch ) t_orb->pitch = -1000.; |
| 1621 |
if ( t_orb->cutoff != t_orb->cutoff ) t_orb->cutoff = -1000.; |
if ( t_orb->cutoff != t_orb->cutoff ) t_orb->cutoff = -1000.; |
| 1622 |
|
if ( t_orb->sunangle != t_orb->sunangle ) t_orb->sunangle = -1000.; |
| 1623 |
|
if ( t_orb->sunmagangle != t_orb->sunmagangle ) t_orb->sunmagangle = -1000.; |
| 1624 |
// |
// |
| 1625 |
if ( debug ) printf(" orbitalinfo->cutoffsvl %f vitaly %f \n",orbitalinfo->cutoffsvl,t_orb->cutoff); |
if ( debug ) printf(" orbitalinfo->cutoffsvl %f vitaly %f \n",orbitalinfo->cutoffsvl,t_orb->cutoff); |
| 1626 |
// |
// |
| 1633 |
// |
// |
| 1634 |
}; |
}; |
| 1635 |
} else { |
} else { |
| 1636 |
if ( debug ) printf(" mmm... mode %u standalone %i ntrk %i \n",orbitalinfo->mode,standalone,tof->ntrk()); |
if ( debug ) printf(" mmm... mode %u standalone \n",orbitalinfo->mode); |
| 1637 |
}; |
} |
| 1638 |
// |
// |
| 1639 |
} else { |
} else { |
| 1640 |
if ( !standalone && tof->ntrk() > 0 ){ |
if ( !standalone && tof->ntrk() > 0 ){ |
| 1653 |
// |
// |
| 1654 |
t_orb->pitch = -1000.; |
t_orb->pitch = -1000.; |
| 1655 |
// |
// |
| 1656 |
|
t_orb->sunangle = -1000.; |
| 1657 |
|
// |
| 1658 |
|
t_orb->sunmagangle = -1000; |
| 1659 |
|
// |
| 1660 |
t_orb->cutoff = -1000.; |
t_orb->cutoff = -1000.; |
| 1661 |
// |
// |
| 1662 |
new(tor[nn]) OrbitalInfoTrkVar(*t_orb); |
new(tor[nn]) OrbitalInfoTrkVar(*t_orb); |
| 1668 |
// |
// |
| 1669 |
}; |
}; |
| 1670 |
}; |
}; |
| 1671 |
}; |
}; // if( orbitalinfo->TimeGap>0){ |
| 1672 |
// |
// |
| 1673 |
// Fill the class |
// Fill the class |
| 1674 |
// |
// |
| 1681 |
// Here you may want to clear some variables before processing another run |
// Here you may want to clear some variables before processing another run |
| 1682 |
// |
// |
| 1683 |
|
|
| 1684 |
//gStyle->SetOptStat(000000); |
if ( verbose ) printf(" Clear before new run \n"); |
|
//gStyle->SetPalette(1); |
|
|
|
|
|
/*TCanvas* c1 = new TCanvas("c1","",1200,800); |
|
|
//c1->Divide(1,4); |
|
|
c1->cd(1); |
|
|
//q0testing->Draw("colz"); |
|
|
//c1->cd(2); |
|
|
//q1testing->Draw("colz"); |
|
|
//c1->cd(3); |
|
|
Pitchtesting->Draw("colz"); |
|
|
//c1->cd(4); |
|
|
//q3testing->Draw("colz"); |
|
|
c1->SaveAs("9.Rollhyst.png"); |
|
|
delete c1;*/ |
|
|
|
|
| 1685 |
delete dbtime; |
delete dbtime; |
| 1686 |
if ( L_QQ_Q_l_upper ) delete L_QQ_Q_l_upper; |
|
| 1687 |
|
if ( mcmdrc ) mcmdrc->Clear(); |
| 1688 |
|
mcmdrc = 0; |
| 1689 |
|
|
| 1690 |
|
if ( verbose ) printf(" Clear before new run1 \n"); |
| 1691 |
if ( L_QQ_Q_l_lower ) delete L_QQ_Q_l_lower; |
if ( L_QQ_Q_l_lower ) delete L_QQ_Q_l_lower; |
| 1692 |
|
if ( verbose ) printf(" Clear before new run2 \n"); |
| 1693 |
|
if ( L_QQ_Q_l_upper ) delete L_QQ_Q_l_upper; |
| 1694 |
|
if ( verbose ) printf(" Clear before new run3 \n"); |
| 1695 |
if ( RYPang_upper ) delete RYPang_upper; |
if ( RYPang_upper ) delete RYPang_upper; |
| 1696 |
|
if ( verbose ) printf(" Clear before new run4 \n"); |
| 1697 |
if ( RYPang_lower ) delete RYPang_lower; |
if ( RYPang_lower ) delete RYPang_lower; |
| 1698 |
|
|
| 1699 |
|
if ( l0tr ) l0tr->Delete(); |
| 1700 |
|
|
| 1701 |
|
if ( verbose ) printf(" End run \n"); |
| 1702 |
|
|
| 1703 |
}; // process all the runs |
}; // process all the runs |
| 1704 |
|
|
| 1705 |
if (verbose) printf("\n Finished processing data \n"); |
if (verbose) printf("\n Finished processing data \n"); |
| 1733 |
}; |
}; |
| 1734 |
if (verbose) printf(" Finished successful copying!\n"); |
if (verbose) printf(" Finished successful copying!\n"); |
| 1735 |
}; |
}; |
| 1736 |
|
//if ( OrbitalInfotrclone ) OrbitalInfotrclone->Clear(); |
| 1737 |
|
//if ( OrbitalInfotrclone ) OrbitalInfotrclone->Delete(); |
| 1738 |
}; |
}; |
| 1739 |
// |
// |
| 1740 |
// Close files, delete old tree(s), write and close level2 file |
// Close files, delete old tree(s), write and close level2 file |
| 1741 |
// |
// |
| 1742 |
|
|
| 1743 |
if ( l0File ) l0File->Close(); |
if ( l0File ) l0File->Close(); |
|
if ( tempfile ) tempfile->Close(); |
|
| 1744 |
if ( myfold ) gSystem->Unlink(tempname.str().c_str()); |
if ( myfold ) gSystem->Unlink(tempname.str().c_str()); |
| 1745 |
// |
// |
|
if ( runinfo ) runinfo->Close(); |
|
| 1746 |
if ( OrbitalInfotr ) OrbitalInfotr->SetName("OrbitalInfo"); |
if ( OrbitalInfotr ) OrbitalInfotr->SetName("OrbitalInfo"); |
|
if ( tof ) tof->Delete(); |
|
|
if ( ttof ) ttof->Delete(); |
|
| 1747 |
// |
// |
| 1748 |
if ( file ){ |
if ( file ){ |
| 1749 |
file->cd(); |
file->cd(); |
| 1750 |
file->Write(); |
if ( OrbitalInfotr ) OrbitalInfotr->Write("OrbitalInfo", TObject::kOverwrite); // 10 RED bug fixed |
| 1751 |
}; |
}; |
| 1752 |
// |
// |
| 1753 |
|
if (verbose) printf("\n Exiting...\n"); |
| 1754 |
|
|
| 1755 |
if ( myfold ) gSystem->Unlink(OrbitalInfofolder.str().c_str()); |
if ( myfold ) gSystem->Unlink(OrbitalInfofolder.str().c_str()); |
| 1756 |
// |
// |
| 1757 |
// the end |
// the end |
| 1760 |
dbc->Close(); |
dbc->Close(); |
| 1761 |
delete dbc; |
delete dbc; |
| 1762 |
}; |
}; |
|
if (verbose) printf("\n Exiting...\n"); |
|
|
if(OrbitalInfotr)OrbitalInfotr->Delete(); |
|
| 1763 |
// |
// |
| 1764 |
|
if (verbose) printf("\n Exiting...\n"); |
| 1765 |
|
if ( tempfile ) tempfile->Close(); |
| 1766 |
|
|
| 1767 |
if ( PO ) delete PO; |
if ( PO ) delete PO; |
| 1768 |
if ( orbitalinfo ) delete orbitalinfo; |
if ( gltle ) delete gltle; |
| 1769 |
if ( orbitalinfoclone ) delete orbitalinfoclone; |
if ( glparam ) delete glparam; |
| 1770 |
|
if ( glparam2 ) delete glparam2; |
| 1771 |
|
if ( glparam3 ) delete glparam3; |
| 1772 |
|
if (verbose) printf("\n Exiting3...\n"); |
| 1773 |
if ( glroot ) delete glroot; |
if ( glroot ) delete glroot; |
| 1774 |
|
if (verbose) printf("\n Exiting4...\n"); |
| 1775 |
|
if ( runinfo ) runinfo->Close(); |
| 1776 |
if ( runinfo ) delete runinfo; |
if ( runinfo ) delete runinfo; |
| 1777 |
|
|
| 1778 |
|
if ( tof ) delete tof; |
| 1779 |
|
if ( trke ) delete trke; |
| 1780 |
|
|
| 1781 |
|
if ( debug ){ |
| 1782 |
|
cout << "1 0x" << OrbitalInfotr << endl; |
| 1783 |
|
cout << "2 0x" << OrbitalInfotrclone << endl; |
| 1784 |
|
cout << "3 0x" << l0tr << endl; |
| 1785 |
|
cout << "4 0x" << tempOrbitalInfo << endl; |
| 1786 |
|
cout << "5 0x" << ttof << endl; |
| 1787 |
|
} |
| 1788 |
|
// |
| 1789 |
|
if ( debug ) file->ls(); |
| 1790 |
// |
// |
| 1791 |
if(code < 0) throw code; |
if(code < 0) throw code; |
| 1792 |
return(code); |
return(code); |
| 1834 |
Bool_t R10l = false; // Sign of R10 mode in lower quaternions array |
Bool_t R10l = false; // Sign of R10 mode in lower quaternions array |
| 1835 |
Bool_t R10u = false; // Sign of R10 mode in upper quaternions array |
Bool_t R10u = false; // Sign of R10 mode in upper quaternions array |
| 1836 |
Bool_t insm = false; // Sign that we inside quaternions array |
Bool_t insm = false; // Sign that we inside quaternions array |
| 1837 |
Bool_t mxtml = false; // Sign of mixt mode in lower quaternions array |
// Bool_t mxtml = false; // Sign of mixt mode in lower quaternions array |
| 1838 |
Bool_t mxtmu = false; // Sign of mixt mode in upper quaternions array |
// Bool_t mxtmu = false; // Sign of mixt mode in upper quaternions array |
| 1839 |
Bool_t npasm = false; // Sign of normall pass between R10 and non R10 or between non R10 and R10 |
Bool_t npasm = false; // Sign of normall pass between R10 and non R10 or between non R10 and R10 |
| 1840 |
UInt_t NCQl = 6; // Number of correct quaternions in lower array |
UInt_t NCQl = 6; // Number of correct quaternions in lower array |
| 1841 |
UInt_t NCQu = 6; // Number of correct quaternions in upper array |
// UInt_t NCQu = 6; // Number of correct quaternions in upper array |
| 1842 |
if (f>0){ |
if (f>0){ |
| 1843 |
insm = true; |
insm = true; |
| 1844 |
if(Qupper->time[f]-Qupper->time[f-1]==30) R10u = false; |
if(Qupper->time[f]-Qupper->time[f-1]==30) R10u = false; |
| 1850 |
if((Qlower->time[5]-Qlower->time[0]==150)&&(Qlower->time[1]-Qlower->time[0]==30)) R10l = false; |
if((Qlower->time[5]-Qlower->time[0]==150)&&(Qlower->time[1]-Qlower->time[0]==30)) R10l = false; |
| 1851 |
if((Qupper->time[5]-Qupper->time[0]==150)&&(Qupper->time[1]-Qupper->time[0]==30)) R10u = false; |
if((Qupper->time[5]-Qupper->time[0]==150)&&(Qupper->time[1]-Qupper->time[0]==30)) R10u = false; |
| 1852 |
if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]==30)){ |
if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]==30)){ |
| 1853 |
mxtml = true; |
// mxtml = true; |
| 1854 |
for(UInt_t i = 1; i < 6; i++){ |
for(UInt_t i = 1; i < 6; i++){ |
| 1855 |
if(Qlower->time[i]-Qlower->time[0]==30*i) NCQl=i; |
if(Qlower->time[i]-Qlower->time[0]==30*i) NCQl=i; |
| 1856 |
} |
} |
| 1857 |
} |
} |
| 1858 |
if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]==30)){ |
// if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]==30)){ |
| 1859 |
mxtmu = true; |
// mxtmu = true; |
| 1860 |
for(UInt_t i = 1; i < 6; i++){ |
// for(UInt_t i = 1; i < 6; i++){ |
| 1861 |
if(Qupper->time[i]-Qupper->time[0]==30*i) NCQu=i; |
// if(Qupper->time[i]-Qupper->time[0]==30*i) NCQu=i; |
| 1862 |
} |
// } |
| 1863 |
} |
// } |
| 1864 |
} |
} |
| 1865 |
|
|
| 1866 |
if(((upper-lower==1.5)||(upper-lower==3.)||(upper-lower==30.)||(upper-lower==31.5)||(upper-lower==33.)||(upper-lower==181.5)||(upper-lower==210.)||(upper-lower==211.5))&&!insm) npasm = true; |
if(((upper-lower==1.5)||(upper-lower==3.)||(upper-lower==30.)||(upper-lower==31.5)||(upper-lower==33.)||(upper-lower==181.5)||(upper-lower==210.)||(upper-lower==211.5))&&!insm) npasm = true; |
| 1892 |
Yaw.resize(sizee); |
Yaw.resize(sizee); |
| 1893 |
} |
} |
| 1894 |
|
|
| 1895 |
//Find fitting sine functions for q0,q1,q2,q3 and Yaw-angle; |
// geomagnetic calculation staff |
| 1896 |
void sineparam(vector<Sine>& qsine, vector<Double_t>& qtime, vector<Float_t>& q, vector<Float_t>& Roll, vector<Float_t>& Pitch, Float_t limsin){ |
|
| 1897 |
UInt_t mulast = 0; |
//void GM_ScanIGRF(TString PATH, GMtype_Data *G0, GMtype_Data *G1, GMtype_Data *H1) |
| 1898 |
UInt_t munow = 0; |
void GM_ScanIGRF(TSQLServer *dbc, GMtype_Data *G0, GMtype_Data *G1, GMtype_Data *H1) |
| 1899 |
UInt_t munext = 0; |
{ |
| 1900 |
Bool_t increase = false; |
GL_PARAM *glp = new GL_PARAM(); |
| 1901 |
Bool_t decrease = false; |
Int_t parerror=glp->Query_GL_PARAM(1,304,dbc); // parameters stored in DB in GL_PRAM table |
| 1902 |
Bool_t Max_is_defined = false; |
if ( parerror<0 ) { |
| 1903 |
Bool_t Start_point_is_defined = false; |
throw -902; |
| 1904 |
Bool_t Period_is_defined = false; |
} |
| 1905 |
Bool_t Large_gap = false; |
/*This function scans inputs G0, G1, and H1 of the IGRF table into 3 data arrays*/ |
| 1906 |
Bool_t normal_way = true; |
// TString SATH="/data03/Malakhov/pam9Malakhov/installed10/calib/orb-param/"; |
| 1907 |
Bool_t small_gap_on_ridge = false; |
int i; |
| 1908 |
Double_t t1 = 0; |
double temp; |
| 1909 |
Double_t t1A = 0; |
char buffer[200]; |
| 1910 |
Int_t sinesize = 0; |
FILE *IGRF; |
| 1911 |
Int_t nfi = 0; |
IGRF = fopen((glp->PATH+glp->NAME).Data(), "r"); |
| 1912 |
for(UInt_t mu = 0;mu<qtime.size();mu++){ |
// IGRF = fopen(PATH+"IGRF.tab", "r"); |
| 1913 |
if(Roll[mu]<1. && Pitch[mu]<1.){ |
G0->size = 25; |
| 1914 |
if(munext==0 && munow!=0)munext=mu; |
G1->size = 25; |
| 1915 |
if(munow==0 && mulast!=0)munow=mu; |
H1->size = 25; |
| 1916 |
if(mulast==0)mulast=mu; |
for( i = 0; i < 4; i++) |
| 1917 |
if(mulast!=0 && munow!=0 && munext!=0){mulast=munow;munow=munext;munext=mu;} |
{ |
| 1918 |
if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && TMath::Abs(q[munow])>limsin && qtime[munext]-qtime[mulast]>400)small_gap_on_ridge = true; |
fgets(buffer, 200, IGRF); |
|
if(munext>mulast && (qtime[munext]-qtime[mulast]>=2000 || qtime[munext]-qtime[mulast]<0)){if(Large_gap){normal_way = false;Large_gap = false;}else{Large_gap = true;normal_way = false;}}else normal_way = true; |
|
|
if(Large_gap || small_gap_on_ridge){ |
|
|
//cout<<"Large gap..."<<endl; |
|
|
//if(small_gap_on_ridge)cout<<"small gap..."<<endl; |
|
|
increase = false; |
|
|
decrease = false; |
|
|
if(nfi>0){ |
|
|
qsine.resize(qsine.size()-1); |
|
|
sinesize = qsine.size(); |
|
|
}else{ |
|
|
if(!Period_is_defined){ |
|
|
if(qsine.size()>1){ |
|
|
qsine[sinesize-1].b = qsine[sinesize-2].b; |
|
|
qsine[sinesize-1].c = qsine[sinesize-2].c; |
|
|
}else{ |
|
|
qsine[sinesize-1].b = TMath::Pi()/1591.54; |
|
|
qsine[sinesize-1].c = qsine[sinesize-1].startPoint; |
|
|
} |
|
|
} |
|
|
if(!Max_is_defined){ |
|
|
if(qsine.size()>1)qsine[sinesize-1].A = qsine[sinesize-2].A;else qsine[sinesize-1].A = limsin; |
|
|
} |
|
|
qsine[sinesize-1].NeedFit = true; |
|
|
} |
|
|
qsine[sinesize-1].finishPoint = qtime[munow]; |
|
|
nfi = 0; |
|
|
Max_is_defined = false; |
|
|
Start_point_is_defined = false; |
|
|
Period_is_defined = false; |
|
|
small_gap_on_ridge = false; |
|
|
} |
|
|
if(munext > munow && munow > mulast && normal_way){ |
|
|
if(!increase && !decrease){ |
|
|
qsine.resize(qsine.size()+1); |
|
|
sinesize = qsine.size(); |
|
|
qsine[sinesize-1].startPoint=qtime[mulast]; |
|
|
if(q[munext]>q[munow] && q[munow]>q[mulast]) increase = true; |
|
|
if(q[munext]<q[munow] && q[munow]<q[mulast]) decrease = true; |
|
|
} |
|
|
//if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && TMath::Abs(q[munow])>limsin && qtime[munow]-qtime[mulast]>=400 || qtime[munext]-qtime[munow]>=400){small_gap_on_ridge = true;mu--;continue;} |
|
|
if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && TMath::Abs(q[munow])>limsin && qtime[munow]-qtime[mulast]<400 && qtime[munext]-qtime[munow]<400){ |
|
|
//cout<<"Max point is qtime = "<<qtime[munow]<<"\tq = "<<q[munow]<<endl; |
|
|
if(q[munow]>q[mulast]){ |
|
|
increase = false; |
|
|
decrease = true; |
|
|
} |
|
|
if(q[munow]<q[mulast]){ |
|
|
increase = true; |
|
|
decrease = false; |
|
| 1919 |
} |
} |
| 1920 |
if(Max_is_defined && !Start_point_is_defined){ |
fscanf(IGRF, "g 1 0 %lf ", &G0->element[0]); |
| 1921 |
Double_t qPer = qtime[munow]-t1A; |
for(i = 1; i <= 22; i++) |
| 1922 |
if(qPer>1000){ |
{ |
| 1923 |
//cout<<"qsine["<<sinesize-1<<"] = "<<qPer<<" = "<<qtime[munow]<<" - "<<t1A<<"\tlim = "<<limsin<<endl; |
fscanf(IGRF ,"%lf ", &G0->element[i]); |
|
qsine[sinesize-1].b=TMath::Pi()/qPer; |
|
|
if(decrease)qsine[sinesize-1].c=-qsine[sinesize-1].b*t1A; |
|
|
if(increase)qsine[sinesize-1].c=-qsine[sinesize-1].b*(t1A-qPer); |
|
|
Period_is_defined = true; |
|
|
} |
|
| 1924 |
} |
} |
| 1925 |
Max_is_defined = true; |
fscanf(IGRF ,"%lf\n", &temp); |
| 1926 |
qsine[sinesize-1].A = TMath::Abs(q[munow]); |
G0->element[23] = temp * 5 + G0->element[22]; |
| 1927 |
if(Start_point_is_defined && Period_is_defined){ |
G0->element[24] = G0->element[23] + 5 * temp; |
| 1928 |
qsine[sinesize-1].finishPoint = qtime[munow]; |
fscanf(IGRF, "g 1 1 %lf ", &G1->element[0]); |
| 1929 |
nfi++; |
for(i = 1; i <= 22; i++) |
| 1930 |
qsine[sinesize-1].NeedFit = false; |
{ |
| 1931 |
Max_is_defined = false; |
fscanf( IGRF, "%lf ", &G1->element[i]); |
|
Start_point_is_defined = false; |
|
|
Period_is_defined = false; |
|
|
qsine.resize(qsine.size()+1); |
|
|
sinesize = qsine.size(); |
|
|
qsine[sinesize-1].startPoint = qtime[munow]; |
|
| 1932 |
} |
} |
| 1933 |
if(!Start_point_is_defined) t1A=qtime[munow]; |
fscanf(IGRF, "%lf\n", &temp); |
| 1934 |
} |
G1->element[23] = temp * 5 + G1->element[22]; |
| 1935 |
//if((q[munow]>=0 && q[mulast]<=0) || (q[munow]<=0 && q[mulast]>=0))cout<<"cross zero point diference = "<<qtime[munext] - qtime[mulast]<<"\tqlast = "<<qtime[mulast]<<"\tqnow = "<<qtime[munow]<<"\tqnext = "<<qtime[munext]<<endl; |
G1->element[24] = temp * 5 + G1->element[23]; |
| 1936 |
if(((q[munow]>=0 && q[mulast]<=0) || (q[munow]<=0 && q[mulast]>=0)) && qtime[munow]-qtime[mulast]<2000 && qtime[munext]-qtime[munow]<2000){ |
fscanf(IGRF, "h 1 1 %lf ", &H1->element[0]); |
| 1937 |
Double_t tcrosszero = 0; |
for(i = 1; i <= 22; i++) |
| 1938 |
//cout<<"cross zero point...qtime = "<<qtime[munow]<<endl; |
{ |
| 1939 |
if(q[munow]==0.) tcrosszero = qtime[munow];else |
fscanf( IGRF, "%lf ", &H1->element[i]); |
|
if(q[mulast]==0.)tcrosszero = qtime[mulast];else{ |
|
|
Double_t k_ = (q[munow]-q[mulast])/(qtime[munow]-qtime[mulast]); |
|
|
Double_t b_ = q[munow]-k_*qtime[munow]; |
|
|
tcrosszero = -b_/k_; |
|
|
} |
|
|
if(Start_point_is_defined){ |
|
|
//cout<<"Start Point allready defined"<<endl; |
|
|
Double_t qPer = tcrosszero - t1; |
|
|
qsine[sinesize-1].b = TMath::Pi()/qPer; |
|
|
//cout<<"qsine["<<sinesize-1<<"].b = "<<TMath::Pi()/qPer<<endl; |
|
|
Period_is_defined = true; |
|
|
Float_t x0 = 0; |
|
|
if(decrease)x0 = t1; |
|
|
if(increase)x0 = tcrosszero; |
|
|
qsine[sinesize-1].c = -qsine[sinesize-1].b*x0; |
|
|
if(Max_is_defined){ |
|
|
//cout<<"Max was previous defined"<<endl; |
|
|
qsine[sinesize-1].finishPoint = qtime[munow]; |
|
|
nfi++; |
|
|
qsine[sinesize-1].NeedFit = false; |
|
|
Max_is_defined = false; |
|
|
t1 = tcrosszero; |
|
|
Start_point_is_defined = true; |
|
|
Period_is_defined = false; |
|
|
qsine.resize(qsine.size()+1); |
|
|
sinesize = qsine.size(); |
|
|
qsine[sinesize-1].startPoint = qtime[munow]; |
|
|
} |
|
|
}else{ |
|
|
t1 = tcrosszero; |
|
|
Start_point_is_defined = true; |
|
| 1940 |
} |
} |
| 1941 |
} |
fscanf(IGRF, "%lf\n", &temp); |
| 1942 |
} |
H1->element[23] = temp * 5 + H1->element[22]; |
| 1943 |
} |
H1->element[24] = temp * 5 + H1->element[23]; |
| 1944 |
} |
if ( glp ) delete glp; |
| 1945 |
|
} /*GM_ScanIGRF*/ |
| 1946 |
|
|
| 1947 |
//cout<<"FINISH SINE INTERPOLATION FUNCTION..."<<endl<<endl; |
void GM_SetEllipsoid(GMtype_Ellipsoid *Ellip) |
| 1948 |
} |
{ |
| 1949 |
|
/*This function sets the WGS84 reference ellipsoid to its default values*/ |
| 1950 |
|
Ellip->a = 6378.137; /*semi-major axis of the ellipsoid in */ |
| 1951 |
|
Ellip->b = 6356.7523142;/*semi-minor axis of the ellipsoid in */ |
| 1952 |
|
Ellip->fla = 1/298.257223563;/* flattening */ |
| 1953 |
|
Ellip->eps = sqrt(1- ( Ellip->b * Ellip->b) / (Ellip->a * Ellip->a )); /*first eccentricity */ |
| 1954 |
|
Ellip->epssq = (Ellip->eps * Ellip->eps); /*first eccentricity squared */ |
| 1955 |
|
Ellip->re = 6371.2;/* Earth's radius */ |
| 1956 |
|
} /*GM_SetEllipsoid*/ |
| 1957 |
|
|
| 1958 |
|
|
| 1959 |
|
void GM_EarthCartToDipoleCartCD(GMtype_Pole Pole, GMtype_CoordCartesian EarthCoord, GMtype_CoordCartesian *DipoleCoords) |
| 1960 |
|
{ |
| 1961 |
|
/*This function converts from Earth centered cartesian coordinates to dipole centered cartesian coordinates*/ |
| 1962 |
|
double X, Y, Z, CosPhi, SinPhi, CosLambda, SinLambda; |
| 1963 |
|
CosPhi = cos(TMath::DegToRad()*Pole.phi); |
| 1964 |
|
SinPhi = sin(TMath::DegToRad()*Pole.phi); |
| 1965 |
|
CosLambda = cos(TMath::DegToRad()*Pole.lambda); |
| 1966 |
|
SinLambda = sin(TMath::DegToRad()*Pole.lambda); |
| 1967 |
|
X = EarthCoord.x; |
| 1968 |
|
Y = EarthCoord.y; |
| 1969 |
|
Z = EarthCoord.z; |
| 1970 |
|
|
| 1971 |
|
/*These equations are taken from a document by Wallace H. Campbell*/ |
| 1972 |
|
DipoleCoords->x = X * CosPhi * CosLambda + Y * CosPhi * SinLambda - Z * SinPhi; |
| 1973 |
|
DipoleCoords->y = -X * SinLambda + Y * CosLambda; |
| 1974 |
|
DipoleCoords->z = X * SinPhi * CosLambda + Y * SinPhi * SinLambda + Z * CosPhi; |
| 1975 |
|
} /*GM_EarthCartToDipoleCartCD*/ |
| 1976 |
|
|
| 1977 |
|
void GM_GeodeticToSpherical(GMtype_Ellipsoid Ellip, GMtype_CoordGeodetic CoordGeodetic, GMtype_CoordSpherical *CoordSpherical) |
| 1978 |
|
{ |
| 1979 |
|
double CosLat, SinLat, rc, xp, zp; /*all local variables */ |
| 1980 |
|
/* |
| 1981 |
|
** Convert geodetic coordinates, (defined by the WGS-84 |
| 1982 |
|
** reference ellipsoid), to Earth Centered Earth Fixed Cartesian |
| 1983 |
|
** coordinates, and then to spherical coordinates. |
| 1984 |
|
*/ |
| 1985 |
|
|
| 1986 |
|
CosLat = cos(TMath::DegToRad()*CoordGeodetic.phi); |
| 1987 |
|
SinLat = sin(TMath::DegToRad()*CoordGeodetic.phi); |
| 1988 |
|
|
| 1989 |
|
/* compute the local radius of curvature on the WGS-84 reference ellipsoid */ |
| 1990 |
|
|
| 1991 |
|
rc = Ellip.a / sqrt(1.0 - Ellip.epssq * SinLat * SinLat); |
| 1992 |
|
|
| 1993 |
|
/* compute ECEF Cartesian coordinates of specified point (for longitude=0) */ |
| 1994 |
|
|
| 1995 |
|
xp = (rc + CoordGeodetic.HeightAboveEllipsoid) * CosLat; |
| 1996 |
|
zp = (rc*(1.0 - Ellip.epssq) + CoordGeodetic.HeightAboveEllipsoid) * SinLat; |
| 1997 |
|
|
| 1998 |
|
/* compute spherical radius and angle lambda and phi of specified point */ |
| 1999 |
|
|
| 2000 |
|
CoordSpherical->r = sqrt(xp * xp + zp * zp); |
| 2001 |
|
CoordSpherical->phig = TMath::RadToDeg()*asin(zp / CoordSpherical->r); /* geocentric latitude */ |
| 2002 |
|
CoordSpherical->lambda = CoordGeodetic.lambda; /* longitude */ |
| 2003 |
|
} /*GM_GeodeticToSpherical*/ |
| 2004 |
|
|
| 2005 |
|
void GM_PoleLocation(GMtype_Model Model, GMtype_Pole *Pole) |
| 2006 |
|
{ |
| 2007 |
|
/*This function finds the location of the north magnetic pole in spherical coordinates. The equations are |
| 2008 |
|
**from Wallace H. Campbell's Introduction to Geomagnetic Fields*/ |
| 2009 |
|
|
| 2010 |
|
Pole->phi = TMath::RadToDeg()*-atan(sqrt(Model.h1 * Model.h1 + Model.g1 * Model.g1)/Model.g0); |
| 2011 |
|
Pole->lambda = TMath::RadToDeg()*atan(Model.h1/Model.g1); |
| 2012 |
|
} /*GM_PoleLocation*/ |
| 2013 |
|
|
| 2014 |
|
void GM_SphericalToCartesian(GMtype_CoordSpherical CoordSpherical, GMtype_CoordCartesian *CoordCartesian) |
| 2015 |
|
{ |
| 2016 |
|
/*This function converts spherical coordinates into Cartesian coordinates*/ |
| 2017 |
|
double CosPhi = cos(TMath::DegToRad()*CoordSpherical.phig); |
| 2018 |
|
double SinPhi = sin(TMath::DegToRad()*CoordSpherical.phig); |
| 2019 |
|
double CosLambda = cos(TMath::DegToRad()*CoordSpherical.lambda); |
| 2020 |
|
double SinLambda = sin(TMath::DegToRad()*CoordSpherical.lambda); |
| 2021 |
|
|
| 2022 |
|
CoordCartesian->x = CoordSpherical.r * CosPhi * CosLambda; |
| 2023 |
|
CoordCartesian->y = CoordSpherical.r * CosPhi * SinLambda; |
| 2024 |
|
CoordCartesian->z = CoordSpherical.r * SinPhi; |
| 2025 |
|
} /*GM_SphericalToCartesian*/ |
| 2026 |
|
|
| 2027 |
|
void GM_TimeAdjustCoefs(Float_t year, Float_t jyear, GMtype_Data g0d, GMtype_Data g1d, GMtype_Data h1d, GMtype_Model *Model) |
| 2028 |
|
{ |
| 2029 |
|
/*This function calls GM_LinearInterpolation for the coefficients to estimate the value of the |
| 2030 |
|
**coefficient for the given date*/ |
| 2031 |
|
int index; |
| 2032 |
|
double x; |
| 2033 |
|
index = (year - GM_STARTYEAR) / 5; |
| 2034 |
|
x = (jyear - GM_STARTYEAR) / 5; |
| 2035 |
|
Model->g0 = GM_LinearInterpolation(index, index+1, g0d.element[index], g0d.element[index+1], x); |
| 2036 |
|
Model->g1 = GM_LinearInterpolation(index, index+1, g1d.element[index], g1d.element[index+1], x); |
| 2037 |
|
Model->h1 = GM_LinearInterpolation(index, index+1, h1d.element[index], h1d.element[index+1], x); |
| 2038 |
|
} /*GM_TimeAdjustCoefs*/ |
| 2039 |
|
|
| 2040 |
|
double GM_LinearInterpolation(double x1, double x2, double y1, double y2, double x) |
| 2041 |
|
{ |
| 2042 |
|
/*This function takes a linear interpolation between two given points for x*/ |
| 2043 |
|
double weight, y; |
| 2044 |
|
weight = (x - x1) / (x2 - x1); |
| 2045 |
|
y = y1 * (1 - weight) + y2 * weight; |
| 2046 |
|
return y; |
| 2047 |
|
}/*GM_LinearInterpolation*/ |
| 2048 |
|
|
| 2049 |
|
void GM_CartesianToSpherical(GMtype_CoordCartesian CoordCartesian, GMtype_CoordSpherical *CoordSpherical) |
| 2050 |
|
{ |
| 2051 |
|
/*This function converts a point from Cartesian coordinates into spherical coordinates*/ |
| 2052 |
|
double X, Y, Z; |
| 2053 |
|
|
| 2054 |
|
X = CoordCartesian.x; |
| 2055 |
|
Y = CoordCartesian.y; |
| 2056 |
|
Z = CoordCartesian.z; |
| 2057 |
|
|
| 2058 |
|
CoordSpherical->r = sqrt(X * X + Y * Y + Z * Z); |
| 2059 |
|
CoordSpherical->phig = TMath::RadToDeg()*asin(Z / (CoordSpherical->r)); |
| 2060 |
|
CoordSpherical->lambda = TMath::RadToDeg()*atan2(Y, X); |
| 2061 |
|
} /*GM_CartesianToSpherical*/ |