/[PAMELA software]/DarthVader/OrbitalInfo/src/OrbitalInfoCore.cpp
ViewVC logotype

Diff of /DarthVader/OrbitalInfo/src/OrbitalInfoCore.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 1.1 by mocchiut, Fri May 19 13:15:57 2006 UTC revision 1.56 by mocchiut, Thu Apr 12 12:27:02 2012 UTC
# Line 1  Line 1 
 //  
1  // C/C++ headers  // C/C++ headers
2  //  //
3  #include <fstream>  #include <fstream>
# Line 9  Line 8 
8  //  //
9  // ROOT headers  // ROOT headers
10  //  //
11    //#include <TCanvas.h>
12    //#include <TH2F.h> //for test only. Vitaly.
13    //#include <TF1.h>
14    
15  #include <TTree.h>  #include <TTree.h>
16  #include <TClassEdit.h>  #include <TClassEdit.h>
17  #include <TObject.h>  #include <TObject.h>
18  #include <TList.h>  #include <TList.h>
19  #include <TArrayL.h>  #include <TArrayI.h>
20  #include <TSystem.h>  #include <TSystem.h>
21  #include <TSystemDirectory.h>  #include <TSystemDirectory.h>
22  #include <TString.h>  #include <TString.h>
# Line 23  Line 26 
26  #include <TSQLRow.h>  #include <TSQLRow.h>
27  #include <TSQLResult.h>  #include <TSQLResult.h>
28  //  //
29    // RunInfo header
30    //
31    #include <RunInfo.h>
32    #include <GLTables.h>
33    //
34  // YODA headers  // YODA headers
35  //  //
36  #include <PamelaRun.h>  #include <PamelaRun.h>
 #include <RegistryEvent.h>  
37  #include <PscuHeader.h>  #include <PscuHeader.h>
38  #include <PscuEvent.h>  #include <PscuEvent.h>
39  #include <EventHeader.h>  #include <EventHeader.h>
40  #include <RegistryEvent.h>  #include <mcmd/McmdEvent.h>
41  //  #include <mcmd/McmdRecord.h>
 // RunInfo header  
 //  
 #include <RunInfo.h>  
 #include <GLTables.h>  
42  //  //
43  // This program headers  // This program headers
44  //  //
45  #include <OrbitalInfo.h>  #include <OrbitalInfo.h>
 #include <OrbitalInfoCore.h>  
46  #include <OrbitalInfoVerl2.h>  #include <OrbitalInfoVerl2.h>
47    #include <OrbitalInfoCore.h>
48    #include <InclinationInfo.h>
49    
50    
51  using namespace std;  using namespace std;
52    
# Line 49  using namespace std; Line 54  using namespace std;
54  // CORE ROUTINE  // CORE ROUTINE
55  //  //
56  //  //
57    int OrbitalInfoCore(UInt_t run, TFile *file, GL_TABLES *glt, Int_t OrbitalInfoargc, char *OrbitalInfoargv[]){
58  int OrbitalInfoCore(ULong64_t run, TFile *file, TSQLServer *dbc, Int_t OrbitalInfoargc, char *OrbitalInfoargv[]){    //
59    Int_t i = 0;    Int_t i = 0;
60      TString host = glt->CGetHost();
61      TString user = glt->CGetUser();
62      TString psw = glt->CGetPsw();
63      TSQLServer *dbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data());
64      //
65      stringstream myquery;
66      myquery.str("");
67      myquery << "SET time_zone='+0:00'";
68      dbc->Query(myquery.str().c_str());
69    //    //
70    TString processFolder = "OrbitalInfoFolder";    TString processFolder = Form("OrbitalInfoFolder_%u",run);
71    //    //
72    // Set these to true to have a very verbose output.    // Set these to true to have a very verbose output.
73    //    //
74    Bool_t debug = false;    Bool_t debug = false;
75    //    //
76    Bool_t verbose = false;    Bool_t verbose = false;
77      //
78      Bool_t standalone = false;
79      //
80    if ( OrbitalInfoargc > 0 ){    if ( OrbitalInfoargc > 0 ){
81      i = 0;      i = 0;
82      while ( i < OrbitalInfoargc ){      while ( i < OrbitalInfoargc ){
# Line 73  int OrbitalInfoCore(ULong64_t run, TFile Line 89  int OrbitalInfoCore(ULong64_t run, TFile
89        };        };
90        if ( (!strcmp(OrbitalInfoargv[i],"--debug")) || (!strcmp(OrbitalInfoargv[i],"-g")) ) {        if ( (!strcmp(OrbitalInfoargv[i],"--debug")) || (!strcmp(OrbitalInfoargv[i],"-g")) ) {
91          verbose = true;          verbose = true;
92            debug = true;
93        };        };
94        if ( (!strcmp(OrbitalInfoargv[i],"--verbose")) || (!strcmp(OrbitalInfoargv[i],"-v")) ) {        if ( (!strcmp(OrbitalInfoargv[i],"--verbose")) || (!strcmp(OrbitalInfoargv[i],"-v")) ) {
95          verbose = true;          verbose = true;
96        };        };
97          if ( (!strcmp(OrbitalInfoargv[i],"--standalone")) ) {
98            standalone = true;
99          };
100          if ( (!strcmp(OrbitalInfoargv[i],"--calculate-pitch")) ) {
101            standalone = false;
102          };
103        i++;        i++;
104      };      };
105    };    };
# Line 84  int OrbitalInfoCore(ULong64_t run, TFile Line 107  int OrbitalInfoCore(ULong64_t run, TFile
107    const char* outDir = gSystem->DirName(gSystem->DirName(file->GetPath()));    const char* outDir = gSystem->DirName(gSystem->DirName(file->GetPath()));
108    //    //
109    TTree *OrbitalInfotr = 0;    TTree *OrbitalInfotr = 0;
110    Long64_t nevents = 0LL;    UInt_t nevents = 0;
111      UInt_t neventsm = 0;
112    //    //
113    // variables needed to reprocess data    // variables needed to reprocess data
114    //    //
115      Long64_t maxsize = 10000000000LL;  
116      TTree::SetMaxTreeSize(maxsize);
117      //
118    TString OrbitalInfoversion;    TString OrbitalInfoversion;
119    ItoRunInfo *runinfo = 0;    ItoRunInfo *runinfo = 0;
120    TArrayL *runlist = 0;    TArrayI *runlist = 0;
121    TTree *OrbitalInfotrclone = 0;    TTree *OrbitalInfotrclone = 0;
122    Bool_t reproc = false;    Bool_t reproc = false;
123    Bool_t reprocall = false;    Bool_t reprocall = false;
# Line 99  int OrbitalInfoCore(ULong64_t run, TFile Line 126  int OrbitalInfoCore(ULong64_t run, TFile
126    UInt_t numbofrun = 0;    UInt_t numbofrun = 0;
127    stringstream ftmpname;    stringstream ftmpname;
128    TString fname;    TString fname;
129    Long64_t totfileentries = 0ULL;    UInt_t totfileentries = 0;
130    Long64_t idRun = 0LL;    UInt_t idRun = 0;
131      UInt_t anni5 = 60 * 60 * 24 * 365 * 5 ;//1576800
132      //
133      // My variables. Vitaly.
134      //
135    //  UInt_t oi = 0;
136      Int_t tmpSize = 0;
137    //    //
138    // variables needed to handle error signals    // variables needed to handle error signals
139    //    //
# Line 111  int OrbitalInfoCore(ULong64_t run, TFile Line 144  int OrbitalInfoCore(ULong64_t run, TFile
144    //    //
145    OrbitalInfo *orbitalinfo = new OrbitalInfo();    OrbitalInfo *orbitalinfo = new OrbitalInfo();
146    OrbitalInfo *orbitalinfoclone = new OrbitalInfo();    OrbitalInfo *orbitalinfoclone = new OrbitalInfo();
147    
148    //    //
149    // define variables for opening and reading level0 file    // define variables for opening and reading level0 file
150    //    //
151    TFile *l0File = 0;    TFile *l0File = 0;
152    TTree *l0tr = 0;    TTree *l0tr = 0;
153    TBranch *l0registry = 0;    //  TTree *l0trm = 0;
154    pamela::RegistryEvent *l0reg=0;    TChain *ch = 0;
155      // EM: open also header branch
156      TBranch *l0head = 0;
157      pamela::EventHeader *eh = 0;
158      pamela::PscuHeader *ph = 0;
159      pamela::McmdEvent *mcmdev = 0;
160      pamela::McmdRecord *mcmdrc = 0;
161      // end EM
162      
163      //  pamela::RunHeaderEvent *reh = new pamela::RunHeaderEvent;
164      //  pamela::EventHeader    *eH  = new pamela::EventHeader;
165      
166    //    //
167    // Define other basic variables    // Define other basic variables
168    //    //
# Line 126  int OrbitalInfoCore(ULong64_t run, TFile Line 171  int OrbitalInfoCore(ULong64_t run, TFile
171    stringstream file3;    stringstream file3;
172    stringstream qy;    stringstream qy;
173    Int_t totevent = 0;    Int_t totevent = 0;
174    ULong64_t atime = 0ULL;    UInt_t atime = 0;
175    Int_t ei = 0;    UInt_t re = 0;
176    Int_t re = 0;    UInt_t ik = 0;
177    
178      // Position
179      Float_t lon, lat, alt;
180    
181      //
182      // IGRF stuff
183      //
184      Float_t dimo = 0.0; // dipole moment (computed from dat files)
185      Float_t bnorth, beast, bdown, babs;
186      Float_t xl; // L value
187      Float_t icode; // code value for L accuracy (see fortran code)
188      Float_t bab1; // What's  the difference with babs?
189      Float_t stps = 0.005; // step size for field line tracing
190      Float_t bdel = 0.01; // required accuracy
191      Float_t bequ;  // equatorial b value (also called b_0)
192      Bool_t value = 0; // false if bequ is not the minimum b value
193      Float_t rr0; // equatorial radius normalized to earth radius
194    
195    //    //
196    // Working filename    // Working filename
197    //    //
# Line 143  int OrbitalInfoCore(ULong64_t run, TFile Line 206  int OrbitalInfoCore(ULong64_t run, TFile
206    TTree *tempOrbitalInfo = 0;    TTree *tempOrbitalInfo = 0;
207    stringstream tempname;    stringstream tempname;
208    stringstream OrbitalInfofolder;    stringstream OrbitalInfofolder;
209      Bool_t myfold = false;
210    tempname.str("");    tempname.str("");
211    tempname << outDir;    tempname << outDir;
212    tempname << "/" << processFolder.Data();    tempname << "/" << processFolder.Data();
213    OrbitalInfofolder.str("");    OrbitalInfofolder.str("");
214    OrbitalInfofolder << tempname.str().c_str();    OrbitalInfofolder << tempname.str().c_str();
   gSystem->MakeDirectory(OrbitalInfofolder.str().c_str());  
215    tempname << "/OrbitalInfotree_run";    tempname << "/OrbitalInfotree_run";
216    tempname << run << ".root";      tempname << run << ".root";  
217      UInt_t totnorun = 0;
218    //    //
219    // DB classes    // DB classes
220    //    //
221    GL_ROOT *glroot = new GL_ROOT();    GL_ROOT *glroot = new GL_ROOT();
222      GL_TIMESYNC *dbtime = 0;
223      GL_TLE *gltle = new GL_TLE();
224      //
225      //Quaternions classes
226      //
227      Quaternions *L_QQ_Q_l_lower = new Quaternions();
228      InclinationInfo *RYPang_lower = new InclinationInfo();
229      Quaternions *L_QQ_Q_l_upper = new Quaternions();
230      InclinationInfo *RYPang_upper = new InclinationInfo();
231      
232      cEci eCi;
233      
234      // Initialize fortran routines!!!
235      Int_t ltp1 = 0;
236      Int_t ltp2 = 0;
237      Int_t ltp3 = 0;
238      //  Int_t uno = 1;
239      //  const char *niente = " ";
240      GL_PARAM *glparam = new GL_PARAM();
241      GL_PARAM *glparam2 = new GL_PARAM();
242      GL_PARAM *glparam3 = new GL_PARAM();
243    
244      //
245      // Orientation variables. Vitaly
246      //
247      UInt_t evfrom = 0;
248      UInt_t jumped = 0;
249      Int_t itr = -1;    
250      Double_t A1;
251      Double_t A2;
252      Double_t A3;
253      Double_t Px = 0;
254      Double_t Py = 0;      
255      Double_t Pz = 0;  
256      TTree *ttof = 0;
257      ToFLevel2 *tof = new ToFLevel2();
258      OrientationInfo *PO = new OrientationInfo();
259      Int_t nz = 6;
260      Float_t zin[6];
261      Int_t nevtofl2 = 0;
262      if ( verbose ) cout<<"Reading quaternions external file"<<endl;
263      cout.setf(ios::fixed,ios::floatfield);  
264      /******Reading recovered quaternions...*********/
265      vector<Double_t> recqtime;
266      vector<Float_t> recq0;
267      vector<Float_t> recq1;
268      vector<Float_t> recq2;
269      vector<Float_t> recq3;
270      Float_t Norm = 1;
271      Int_t parerror=glparam->Query_GL_PARAM(1,303,dbc); // parameters stored in DB in GL_PRAM table  
272      ifstream in((glparam->PATH+glparam->NAME).Data(),ios::in);
273      if ( parerror<0 ) {
274        code = parerror;
275        goto closeandexit;
276      }
277      while(!in.eof()){
278        recqtime.resize(recqtime.size()+1);
279        Int_t sizee = recqtime.size();
280        recq0.resize(sizee);
281        recq1.resize(sizee);
282        recq2.resize(sizee);
283        recq3.resize(sizee);
284        in>>recqtime[sizee-1];
285        in>>recq0[sizee-1];
286        in>>recq1[sizee-1];
287        in>>recq2[sizee-1];
288        in>>recq3[sizee-1];
289        in>>Norm;
290      }
291      if ( verbose ) cout<<"We have read recovered data"<<endl;
292    
293    
294      // IGRF stuff moved inside run loop!  
295    
296      for (Int_t ip=0;ip<nz;ip++){
297        zin[ip] = tof->GetZTOF(tof->GetToFPlaneID(ip));
298      };
299      //
300      if ( !standalone ){
301        //
302        // Does it contain the Tracker tree?
303        //
304        ttof = (TTree*)file->Get("ToF");
305        if ( !ttof ) {
306          if ( verbose ) printf(" OrbitalInfo - ERROR: no tof tree\n");
307          code = -900;
308          goto closeandexit;
309        };
310        ttof->SetBranchAddress("ToFLevel2",&tof);  
311        nevtofl2 = ttof->GetEntries();
312      };
313    //    //
314    // Let's start!    // Let's start!
315    //    //
# Line 162  int OrbitalInfoCore(ULong64_t run, TFile Line 317  int OrbitalInfoCore(ULong64_t run, TFile
317    // if run != 0 we must process only that run but first we have to check if the tree MyDetector2 already exist in the file    // if run != 0 we must process only that run but first we have to check if the tree MyDetector2 already exist in the file
318    // if it exists we are reprocessing data and we must delete that entries, if not we must create it.    // if it exists we are reprocessing data and we must delete that entries, if not we must create it.
319    //    //
320    if ( run == 0ULL )  reproc = true;    if ( run == 0 )  reproc = true;
321    //    //
322    //    //
323    // Output file is "outputfile"    // Output file is "outputfile"
# Line 209  int OrbitalInfoCore(ULong64_t run, TFile Line 364  int OrbitalInfoCore(ULong64_t run, TFile
364    // number of run to be processed    // number of run to be processed
365    //    //
366    numbofrun = runinfo->GetNoRun();    numbofrun = runinfo->GetNoRun();
367      totnorun = runinfo->GetRunEntries();
368    //    //
369    // Try to access the OrbitalInfo tree in the file, if it exists we are reprocessing data if not we are processing a new run    // Try to access the OrbitalInfo tree in the file, if it exists we are reprocessing data if not we are processing a new run
370    //    //
# Line 219  int OrbitalInfoCore(ULong64_t run, TFile Line 375  int OrbitalInfoCore(ULong64_t run, TFile
375      // tree does not exist, we are not reprocessing      // tree does not exist, we are not reprocessing
376      //      //
377      reproc = false;      reproc = false;
378      if ( run == 0ULL ){      if ( run == 0 ){
379        if (verbose) printf(" OrbitalInfo - WARNING: you are reprocessing data but OrbitalInfo tree does not exist!\n");        if (verbose) printf(" OrbitalInfo - WARNING: you are reprocessing data but OrbitalInfo tree does not exist!\n");
380      }      }
381      if ( runinfo->IsReprocessing() && run != 0ULL ) {      if ( runinfo->IsReprocessing() && run != 0 ) {
382        if (verbose) printf(" OrbitalInfo - WARNING: it seems you are not reprocessing data but OrbitalInfo\n versioning information already exists in RunInfo.\n");        if (verbose) printf(" OrbitalInfo - WARNING: it seems you are not reprocessing data but OrbitalInfo\n versioning information already exists in RunInfo.\n");
383      }      }
384    } else {    } else {
385      //      //
386      // tree exists, we are reprocessing data. Are we reprocessing a single run or all the file?      // tree exists, we are reprocessing data. Are we reprocessing a single run or all the file?
387      //      //
388        OrbitalInfotrclone->SetAutoSave(900000000000000LL);
389      reproc = true;      reproc = true;
390      //      //
391      //      //
392      if (verbose) printf("\n Preparing the pre-processing...\n");      if (verbose) printf("\n Preparing the pre-processing...\n");
393      //      //
394      if ( run == 0ULL ){      if ( run == 0 || totnorun == 1 ){
395        //        //
396        // we are reprocessing all the file        // we are reprocessing all the file
397        // if we are reprocessing everything we don't need to copy any old event and we can just work with the new tree and delete the old one immediately        // if we are reprocessing everything we don't need to copy any old event and we can just work with the new tree and delete the old one immediately
# Line 249  int OrbitalInfoCore(ULong64_t run, TFile Line 406  int OrbitalInfoCore(ULong64_t run, TFile
406        //        //
407        reprocall = false;        reprocall = false;
408        //        //
409        if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing run number %llu \n",run);        if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing run number %u \n",run);
410        //        //
411        // copying old tree to a new file        // copying old tree to a new file
412        //        //
413          gSystem->MakeDirectory(OrbitalInfofolder.str().c_str());
414          myfold = true;
415        tempfile = new TFile(tempname.str().c_str(),"RECREATE");        tempfile = new TFile(tempname.str().c_str(),"RECREATE");
416        tempOrbitalInfo = OrbitalInfotrclone->CloneTree(-1,"fast");        tempOrbitalInfo = OrbitalInfotrclone->CloneTree(-1,"fast");
417        tempOrbitalInfo->SetName("OrbitalInfo-old");        tempOrbitalInfo->SetName("OrbitalInfo-old");
# Line 272  int OrbitalInfoCore(ULong64_t run, TFile Line 431  int OrbitalInfoCore(ULong64_t run, TFile
431    //    //
432    file->cd();    file->cd();
433    OrbitalInfotr = new TTree("OrbitalInfo-new","PAMELA OrbitalInfo data");    OrbitalInfotr = new TTree("OrbitalInfo-new","PAMELA OrbitalInfo data");
434      OrbitalInfotr->SetAutoSave(900000000000000LL);
435      orbitalinfo->Set();//ELENA **TEMPORANEO?**
436    OrbitalInfotr->Branch("OrbitalInfo","OrbitalInfo",&orbitalinfo);    OrbitalInfotr->Branch("OrbitalInfo","OrbitalInfo",&orbitalinfo);
437    //    //
438    if ( reproc && !reprocall ){    if ( reproc && !reprocall ){
# Line 280  int OrbitalInfoCore(ULong64_t run, TFile Line 441  int OrbitalInfoCore(ULong64_t run, TFile
441      //      //
442      tempfile = new TFile(tempname.str().c_str(),"READ");      tempfile = new TFile(tempname.str().c_str(),"READ");
443      OrbitalInfotrclone = (TTree*)tempfile->Get("OrbitalInfo-old");      OrbitalInfotrclone = (TTree*)tempfile->Get("OrbitalInfo-old");
444        OrbitalInfotrclone->SetAutoSave(900000000000000LL);
445      OrbitalInfotrclone->SetBranchAddress("OrbitalInfo",&orbitalinfoclone);      OrbitalInfotrclone->SetBranchAddress("OrbitalInfo",&orbitalinfoclone);
446      //            //      
447      if ( nobefrun > 0 ){      if ( nobefrun > 0 ){
448        if (verbose){        if (verbose){
449        printf("\n Pre-processing: copying events from the old tree before the processed run\n");            printf("\n Pre-processing: copying events from the old tree before the processed run\n");  
450        printf(" Copying %u events in the file which are before the beginning of the run %llu \n",nobefrun,run);          printf(" Copying %u events in the file which are before the beginning of the run %u \n",nobefrun,run);
451        printf(" Start copying at event number 0, end copying at event number %u \n",nobefrun);          printf(" Start copying at event number 0, end copying at event number %u \n",nobefrun);
452        }        }
453        for (UInt_t j = 0; j < nobefrun; j++){        for (UInt_t j = 0; j < nobefrun; j++){
454          //          //
455          OrbitalInfotrclone->GetEntry(j);                    if ( OrbitalInfotrclone->GetEntry(j) <= 0 ) throw -36;    
456          //          //
457          // copy orbitalinfoclone to mydec          // copy orbitalinfoclone to mydec
458          //          //
459          orbitalinfo = new OrbitalInfo();          orbitalinfo->Clear();
460            //
461          memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone));          memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone));
462          //          //
463          // Fill entry in the new tree          // Fill entry in the new tree
# Line 306  int OrbitalInfoCore(ULong64_t run, TFile Line 469  int OrbitalInfoCore(ULong64_t run, TFile
469      };                };          
470    };    };
471    //    //
472      //
473    // Get the list of run to be processed, if only one run has to be processed the list will contain one entry only.    // Get the list of run to be processed, if only one run has to be processed the list will contain one entry only.
474    //    //
475    runlist = runinfo->GetRunList();    runlist = runinfo->GetRunList();
# Line 316  int OrbitalInfoCore(ULong64_t run, TFile Line 480  int OrbitalInfoCore(ULong64_t run, TFile
480      //      //
481      // retrieve the first run ID to be processed using the RunInfo list      // retrieve the first run ID to be processed using the RunInfo list
482      //      //
483        
484      idRun = runlist->At(irun);      idRun = runlist->At(irun);
485      if (verbose){      if (verbose){
486        printf("\n\n\n ####################################################################### \n");        printf("\n\n\n ####################################################################### \n");
# Line 323  int OrbitalInfoCore(ULong64_t run, TFile Line 488  int OrbitalInfoCore(ULong64_t run, TFile
488        printf(" ####################################################################### \n\n\n");        printf(" ####################################################################### \n\n\n");
489      }      }
490      //      //
491      runinfo->ID_REG_RUN = 0ULL;      runinfo->ID_ROOT_L0 = 0;
492      //      //
493      // store in the runinfo class the GL_RUN variables for our run      // store in the runinfo class the GL_RUN variables for our run
494      //      //
495      sgnl = 0;      sgnl = 0;
496      sgnl = runinfo->GetRunInfo(idRun);      sgnl = runinfo->GetRunInfo(idRun);
497      if ( sgnl ){      if ( sgnl ){
498        //printf("\n OrbitalInfo - ERROR: RunInfo exited with non-zero status\n");        if ( debug ) printf("\n OrbitalInfo - ERROR: RunInfo exited with non-zero status\n");
499        code = sgnl;        code = sgnl;
500        goto closeandexit;        goto closeandexit;
501      } else {      } else {
# Line 339  int OrbitalInfoCore(ULong64_t run, TFile Line 504  int OrbitalInfoCore(ULong64_t run, TFile
504      //      //
505      // now you can access that variables using the RunInfo class this way runinfo->ID_REG_RUN      // now you can access that variables using the RunInfo class this way runinfo->ID_REG_RUN
506      //      //
507      if ( runinfo->ID_REG_RUN == 0 ){      if ( runinfo->ID_ROOT_L0 == 0 ){
508        //printf("\n OrbitalInfo - ERROR: no run with ID_RUN = %i \n\n Exiting... \n\n",(int)idRun);        if ( debug ) printf("\n OrbitalInfo - ERROR: no run with ID_RUN = %u \n\n Exiting... \n\n",idRun);
509        code = -5;        code = -5;
510        goto closeandexit;            goto closeandexit;    
511      };      };
512      //      //
513        // prepare the timesync for the db
514        //
515        dbtime = new GL_TIMESYNC(runinfo->ID_ROOT_L0,"ID",dbc);
516      
517        //
518      // Search in the DB the path and name of the LEVEL0 file to be processed.      // Search in the DB the path and name of the LEVEL0 file to be processed.
519      //      //
520      glroot->Query_GL_ROOT(runinfo->ID_REG_RUN,dbc);      glroot->Query_GL_ROOT(runinfo->ID_ROOT_L0,dbc);
521      //      //
522      ftmpname.str("");      ftmpname.str("");
523      ftmpname << glroot->PATH.Data() << "/";      ftmpname << glroot->PATH.Data() << "/";
524      ftmpname << glroot->NAME.Data();      ftmpname << glroot->NAME.Data();
525      fname = ftmpname.str().c_str();      fname = ftmpname.str().c_str();
526        ftmpname.str("");
527      //      //
528      // print out informations      // print nout informations
529      //      //
530      totevent = runinfo->EV_REG_PHYS_TO - runinfo->EV_REG_PHYS_FROM + 1;      totevent = runinfo->NEVENTS;
531        evfrom = runinfo->EV_FROM;
532        //cout<<"totevents = "<<totevent<<"\n";
533      if (verbose){      if (verbose){
534        printf("\n LEVEL0 data file: %s \n",fname.Data());        printf("\n LEVEL0 data file: %s \n",fname.Data());
535        printf(" RUN HEADER absolute time is:  %llu \n",runinfo->RUNHEADER_TIME);        printf(" RUN HEADER absolute time is:  %u \n",runinfo->RUNHEADER_TIME);
536        printf(" RUN TRAILER absolute time is: %llu \n",runinfo->RUNTRAILER_TIME);        printf(" RUN TRAILER absolute time is: %u \n",runinfo->RUNTRAILER_TIME);
537        printf(" %i events to be processed for run %llu: from %i to %i (reg entries)\n\n",totevent,idRun,runinfo->EV_REG_PHYS_FROM,runinfo->EV_REG_PHYS_TO);        printf(" %i events to be processed for run %u: from %i to %i \n\n",totevent,idRun,runinfo->EV_FROM+1,runinfo->EV_FROM+totevent);
538      }//      }//
539        //
540        //    if ( !totevent ) goto closeandexit;
541      // Open Level0 file      // Open Level0 file
542      l0File = new TFile(fname.Data());      l0File = new TFile(fname.Data());
543      if ( !l0File ) {      if ( !l0File ) {
544        //printf(" OrbitalInfo - ERROR: problems opening Level0 file\n");        if ( debug ) printf(" OrbitalInfo - ERROR: problems opening Level0 file\n");
545        code = -6;        code = -6;
546        goto closeandexit;        goto closeandexit;
547      };      };
548      l0tr = (TTree*)l0File->Get("Physics");      l0tr = (TTree*)l0File->Get("Physics");
549      if ( !l0tr ) {      if ( !l0tr ) {
550        //printf(" OrbitalInfo - ERROR: no Physics tree in Level0 file\n");        if ( debug ) printf(" OrbitalInfo - ERROR: no Physics tree in Level0 file\n");
551        l0File->Close();        l0File->Close();
552        code = -7;        code = -7;
553        goto closeandexit;        goto closeandexit;
554      };      };
555      l0registry = l0tr->GetBranch("Registry");      // EM: open header branch as well
556      if ( !l0registry ) {      l0head = l0tr->GetBranch("Header");
557        //printf(" OrbitalInfo - ERROR: no Registry branch in Level0 tree\n");      if ( !l0head ) {
558          if ( debug ) printf(" OrbitalInfo - ERROR: no Header branch in Level0 tree\n");
559        l0File->Close();        l0File->Close();
560        code = -9;        code = -8;
561        goto closeandexit;            goto closeandexit;    
562      };      };
563        l0tr->SetBranchAddress("Header", &eh);
564        // end EM
565        nevents = l0head->GetEntries();
566      //      //
567      l0tr->SetBranchAddress("Registry", &l0reg);      if ( nevents < 1 && totevent ) {
568      //        if ( debug ) printf(" OrbitalInfo - ERROR: Level0 file is empty\n\n");
     nevents = l0registry->GetEntries();  
     //  
     if ( nevents < 1 ) {  
       //printf(" OrbitalInfo - ERROR: Level0 file is empty\n\n");  
569        l0File->Close();        l0File->Close();
570        code = -11;        code = -11;
571        goto closeandexit;        goto closeandexit;
572      };      };
573      //      //
574      if ( runinfo->EV_REG_PHYS_TO > nevents-1 ) {      if ( runinfo->EV_TO > nevents-1 && totevent ) {
575        //printf(" OrbitalInfo - ERROR: too few entries in the registry tree\n");        if ( debug ) printf(" OrbitalInfo - ERROR: too few entries in the registry tree\n");
576        l0File->Close();        l0File->Close();
577        code = -12;        code = -12;
578        goto closeandexit;        goto closeandexit;
579      };      };
580    
581        //
582        // open IGRF files and do it only once if we are processing a full level2 file
583        //
584        if ( irun == 0 ){
585          if ( l0head->GetEntry(runinfo->EV_FROM) <= 0 ) throw -36;
586          //
587          // absolute time of first event of the run (it should not matter a lot)
588          //
589          ph = eh->GetPscuHeader();
590          atime = dbtime->DBabsTime(ph->GetOrbitalTime());
591          
592          parerror=glparam->Query_GL_PARAM(atime-anni5,301,dbc); // parameters stored in DB in GL_PRAM table  
593          if ( parerror<0 ) {
594            code = parerror;
595            goto closeandexit;
596        };
597          ltp1 = (Int_t)(glparam->PATH+glparam->NAME).Length();
598          if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam->PATH+glparam->NAME).Data());
599          //
600          parerror=glparam2->Query_GL_PARAM(atime,301,dbc); // parameters stored in DB in GL_PRAM table  
601          if ( parerror<0 ) {
602            code = parerror;
603            goto closeandexit;
604          };
605          ltp2 = (Int_t)(glparam2->PATH+glparam->NAME).Length();
606          if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam2->PATH+glparam2->NAME).Data());
607          //
608          parerror=glparam3->Query_GL_PARAM(atime,302,dbc); // parameters stored in DB in GL_PRAM table
609          if ( parerror<0 ) {
610            code = parerror;
611            goto closeandexit;
612          };
613          ltp3 = (Int_t)(glparam3->PATH+glparam2->NAME).Length();
614          if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam3->PATH+glparam3->NAME).Data());
615          //
616          initize_((char *)(glparam->PATH+glparam->NAME).Data(),&ltp1,(char *)(glparam2->PATH+glparam2->NAME).Data(),&ltp2,(char *)(glparam3->PATH+glparam3->NAME).Data(),&ltp3);
617          //
618        }
619        //
620        // End IGRF stuff//
621        //
622    
623        //
624        //     TTree *tp = (TTree*)l0File->Get("RunHeader");
625        //     tp->SetBranchAddress("Header", &eH);
626        //     tp->SetBranchAddress("RunHeader", &reh);
627        //     tp->GetEntry(0);
628        //     ph = eH->GetPscuHeader();
629        //     ULong_t TimeSync = reh->LAST_TIME_SYNC_INFO;
630        //     ULong_t ObtSync = reh->OBT_TIME_SYNC;    
631        //     if ( debug ) printf(" 1 TimeSync %lu ObtSync %lu DeltaOBT %lu\n",TimeSync,ObtSync,TimeSync-ObtSync);
632        //
633        ULong_t TimeSync = (ULong_t)dbtime->GetTimesync();
634        ULong_t ObtSync = (ULong_t)(dbtime->GetObt0()/1000);
635        ULong_t DeltaOBT = TimeSync - ObtSync;
636    
637        if ( debug ) printf(" 2 TimeSync %lu ObtSync %lu DeltaOBT %lu\n",(ULong_t)(dbtime->GetTimesync()/1000),(ULong_t)dbtime->GetObt0(),TimeSync-ObtSync);
638        //
639        // Read MCMDs from up to 11 files, 5 before and 5 after the present one in order to have some kind of inclination information
640        //
641        ch = new TChain("Mcmd","Mcmd");
642        //
643        // look in the DB to find the closest files to this run
644        //
645        TSQLResult *pResult = 0;
646        TSQLRow *Row = 0;
647        stringstream myquery;
648        UInt_t l0fid[10];
649        Int_t i = 0;
650        memset(l0fid,0,10*sizeof(Int_t));
651        //
652        myquery.str("");
653        myquery << "select ID_ROOT_L0 from GL_RUN where RUNHEADER_TIME<=" << runinfo->RUNHEADER_TIME << " group by ID_ROOT_L0 order by RUNHEADER_TIME desc limit 5;";
654        //
655        pResult = dbc->Query(myquery.str().c_str());
656        //
657        i = 9;
658        if( pResult ){
659          //
660          Row = pResult->Next();
661          //
662          while ( Row ){
663            //
664            // store infos and exit
665            //
666            l0fid[i] = (UInt_t)atoll(Row->GetField(0));
667            i--;
668            Row = pResult->Next();  
669            //
670          };
671          pResult->Delete();
672        };
673        //
674        myquery.str("");
675        myquery << "select ID_ROOT_L0 from GL_RUN where RUNHEADER_TIME>" << runinfo->RUNHEADER_TIME << " group by ID_ROOT_L0 order by RUNHEADER_TIME asc limit 5;";
676        //
677        pResult = dbc->Query(myquery.str().c_str());
678        //
679        i = 0;
680        if( pResult ){
681          //
682          Row = pResult->Next();
683          //
684          while ( Row ){
685            //
686            // store infos and exit
687            //
688            l0fid[i] = (UInt_t)atoll(Row->GetField(0));
689            i++;
690            Row = pResult->Next();  
691            //
692          };
693          pResult->Delete();
694        };
695        //
696        i = 0;
697        UInt_t previd = 0;
698        while ( i < 10 ){
699          if ( l0fid[i] && previd != l0fid[i] ){
700            previd = l0fid[i];
701            myquery.str("");
702            myquery << "select PATH,NAME from GL_ROOT where ID=" << l0fid[i] << " ;";
703            //
704            pResult = dbc->Query(myquery.str().c_str());
705            //
706            if( pResult ){
707              //
708              Row = pResult->Next();
709              //
710              if ( debug ) printf(" Using inclination informations from file: %s \n",(((TString)gSystem->ExpandPathName(Row->GetField(0)))+"/"+(TString)Row->GetField(1)).Data());
711              ch->Add(((TString)gSystem->ExpandPathName(Row->GetField(0)))+"/"+(TString)Row->GetField(1));
712              //
713              pResult->Delete();
714            };
715          };
716          i++;
717        };
718        //
719        //    l0trm = (TTree*)l0File->Get("Mcmd");
720        //    ch->ls();
721        ch->SetBranchAddress("Mcmd",&mcmdev);
722        //    printf(" entries %llu \n", ch->GetEntries());
723        //    l0trm = ch->GetTree();
724        //    neventsm = l0trm->GetEntries();
725        neventsm = ch->GetEntries();
726        if ( debug ) printf(" entries %u \n", neventsm);
727        //    neventsm = 0;
728        //
729        if (neventsm == 0){
730          if ( debug ) printf("InclinationInfo - WARNING: No quaternions in this File");
731          //      l0File->Close();
732          code = 900;
733          //      goto closeandexit;
734        }
735        //
736        
737        //    l0trm->SetBranchAddress("Mcmd", &mcmdev);
738        //    l0trm->SetBranchAddress("Header", &eh);
739        //
740        //
741        //
742    
743    //    UInt_t mctren = 0;    
744    //    UInt_t mcreen = 0;        
745        UInt_t numrec = 0;
746        //
747        Double_t upperqtime = 0;
748        Double_t lowerqtime = 0;
749        
750    //    Double_t incli = 0;
751    //    oi = 0;
752    //    UInt_t ooi = 0;
753        //
754        // init quaternions information from mcmd-packets
755        //
756        Bool_t isf = true;
757    //    Int_t fgh = 0;
758    
759        vector<Float_t> q0;
760        vector<Float_t> q1;
761        vector<Float_t> q2;
762        vector<Float_t> q3;
763        vector<Double_t> qtime;
764        vector<Float_t> qPitch;
765        vector<Float_t> qRoll;
766        vector<Float_t> qYaw;
767        vector<Int_t> qmode;
768    
769        Int_t nt = 0;
770        
771        //init sine-function interpolation
772        
773        //cout<<"Sine coeficient initialisation..."<<endl;
774        vector<Sine> q0sine;
775        vector<Sine> q1sine;
776        vector<Sine> q2sine;
777        vector<Sine> q3sine;
778        vector<Sine> Yawsine;
779    
780        /*TH2F* q0testing = new TH2F();
781          TH2F* q1testing = new TH2F();
782          TH2F* q2testing = new TH2F();
783          TH2F* q3testing = new TH2F();
784          TH2F* Pitchtesting = new TH2F();
785        */
786        UInt_t must = 0;
787    
788      //      //
789      // run over all the events of the run      // run over all the events of the run
790      //      //
791      if (verbose) printf("\n Ready to start! \n\n Processed events: \n\n");      if (verbose) printf("\n Ready to start! \n\n Processed events: \n\n");
792      //      //
793      for ( re = runinfo->EV_REG_PHYS_FROM; re <= runinfo->EV_REG_PHYS_TO; re++){      //
794        for ( re = runinfo->EV_FROM; re < (runinfo->EV_FROM+runinfo->NEVENTS); re++){
795        //        //
796        if ( procev%1000 == 0 && procev > 0 && verbose) printf(" %iK \n",procev/1000);            if ( procev%1000 == 0 && procev > 0 && verbose ) printf(" %iK \n",procev/1000);  
797          if ( debug ) printf(" %i \n",procev);      
798        //        //
799        l0registry->GetEntry(re);        if ( l0head->GetEntry(re) <= 0 ) throw -36;
800        //        //
801        // absolute time of this event        // absolute time of this event
802        //        //
803        atime = l0reg->absTime;        ph = eh->GetPscuHeader();
804        //        atime = dbtime->DBabsTime(ph->GetOrbitalTime());
805        // physics events is at entry number ei where        if ( debug ) printf(" %i absolute time \n",procev);      
       //  
       ei = l0reg->event;  
806        //        //
807        // paranoid check        // paranoid check
808        //        //
809        if ( (atime > runinfo->RUNTRAILER_TIME) || (atime < runinfo->RUNHEADER_TIME)  ) {        if ( (atime > (runinfo->RUNTRAILER_TIME+1)) || (atime < (runinfo->RUNHEADER_TIME-1))  ) {
810          if (verbose) printf(" OrbitalInfo - WARNING: event at time outside the run time window, skipping it\n");          if (verbose) printf(" OrbitalInfo - WARNING: event at time outside the run time window, skipping it\n");
811          goto jumpev;          jumped++;
812            //      debug = true;
813            continue;
814          }
815    
816          //
817          // retrieve tof informations
818          //
819          if ( !reprocall ){
820            itr = nobefrun + (re - evfrom - jumped);
821            //itr = re-(46438+200241);
822          } else {
823            itr = runinfo->GetFirstEntry() + (re - evfrom - jumped);
824          };
825          //
826          if ( !standalone ){
827            if ( itr > nevtofl2 ){  
828              if ( verbose ) printf(" OrbitalInfo - ERROR: no tof events with entry = %i in Level2 file\n",itr);
829              if ( debug ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall);
830              l0File->Close();
831              code = -901;
832              goto closeandexit;
833            };
834            //
835            tof->Clear();
836            //
837            if ( ttof->GetEntry(itr) <= 0 ) throw -36;
838            //
839        };        };
840        //        //
841        procev++;        procev++;
842        //        //
843        // start processing        // start processing
844        //        //
845        orbitalinfo = new OrbitalInfo();        if ( debug ) printf(" %i start processing \n",procev);      
846        orbitalinfo->absTime = l0reg->absTime;        orbitalinfo->Clear();
847          //
848          OrbitalInfoTrkVar *t_orb = new OrbitalInfoTrkVar();
849          if( !(orbitalinfo->OrbitalInfoTrk) ) orbitalinfo->OrbitalInfoTrk = new TClonesArray("OrbitalInfoTrkVar",2);
850          TClonesArray &tor = *orbitalinfo->OrbitalInfoTrk;
851          //
852          // Fill OBT, pkt_num and absTime
853          //      
854          orbitalinfo->pkt_num = ph->GetCounter();
855          orbitalinfo->OBT = ph->GetOrbitalTime();
856          orbitalinfo->absTime = atime;
857          if ( debug ) printf(" %i pktnum obt abstime \n",procev);      
858          //
859          // Propagate the orbit from the tle time to atime, using SGP(D)4.
860          //
861          if ( debug ) printf(" %i sgp4 \n",procev);      
862          cCoordGeo coo;
863          Float_t jyear=0.;    
864          //
865          if(atime >= gltle->GetToTime()) {
866            if ( !gltle->Query(atime, dbc) ){
867              //      
868              // Compute the magnetic dipole moment.
869              //
870              if ( debug ) printf(" %i compute magnetic dipole moment \n",procev);      
871              UInt_t year, month, day, hour, min, sec;
872              //
873              TTimeStamp t = TTimeStamp(atime, kTRUE);
874              t.GetDate(kTRUE, 0, &year, &month, &day);
875              t.GetTime(kTRUE, 0, &hour, &min, &sec);
876              jyear = (float) year
877                + (month*31.+ (float) day)/365.
878                + (hour*3600.+min*60.+(float)sec)/(24.*3600.*365.);
879              //
880              if ( debug ) printf(" %i compute magnetic dipole moment get dipole moment for year\n",procev);      
881              feldcof_(&jyear, &dimo); // get dipole moment for year
882              if ( debug ) printf(" %i compute magnetic dipole moment end\n",procev);      
883            } else {
884              code = -56;
885              goto closeandexit;
886            };
887          }
888          coo = getCoo(atime, gltle->GetFromTime(), gltle->GetTle());
889          //
890          cOrbit orbits(*gltle->GetTle());
891          //
892          if ( debug ) printf(" I am Here \n");
893          //
894          // synchronize with quaternions data
895          //
896          if ( isf && neventsm>0 ){
897            //
898            // First event
899            //
900            isf = false;
901            upperqtime = atime;
902            lowerqtime = runinfo->RUNHEADER_TIME;
903            for ( ik = 0; ik < neventsm; ik++){  //number of macrocommad packets
904              if ( ch->GetEntry(ik) <= 0 ) throw -36;
905              tmpSize = mcmdev->Records->GetEntries();
906              numrec = tmpSize;
907              for (Int_t j3 = 0;j3<tmpSize;j3++){  //number of subpackets
908                if ( debug ) printf(" ik %i j3 %i eh eh eh \n",ik,j3);
909                mcmdrc = (pamela::McmdRecord*)mcmdev->Records->At(j3);
910                if ( mcmdrc ){ // missing inclination bug [8RED 090116]
911                  if ( debug ) printf(" pluto \n");
912                  if ((int)mcmdrc->ID1 == 226 && mcmdrc->Mcmd_Block_crc_ok == 1){ //Check that it is Inclination Packet
913                    L_QQ_Q_l_upper->fill(mcmdrc->McmdData);
914                    for (UInt_t ui = 0; ui < 6; ui++){
915                      if (ui>0){
916                        if (L_QQ_Q_l_upper->time[ui]>L_QQ_Q_l_upper->time[0]){
917                            if ( debug ) printf(" here1 %i \n",ui);
918                          Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[ui]*1000-DeltaOBT*1000));
919                          Int_t recSize = recqtime.size();
920                          if(lowerqtime > recqtime[recSize-1]){
921                              Int_t sizeqmcmd = qtime.size();
922                              inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
923                              qtime[sizeqmcmd]=u_time;
924                              q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][0];
925                              q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][1];
926                              q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][2];
927                              q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][3];
928                              qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui);
929                              lowerqtime = u_time;
930                              orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi);
931                              RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[ui][0],L_QQ_Q_l_upper->quat[ui][1],L_QQ_Q_l_upper->quat[ui][2],L_QQ_Q_l_upper->quat[ui][3]);
932                              qRoll[sizeqmcmd]=RYPang_upper->Kren;
933                              qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
934                              qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
935                          }
936                          for(Int_t mu = nt;mu<recSize;mu++){
937                            if(recqtime[mu]>lowerqtime && recqtime[mu]<u_time){
938                              nt=mu;
939                              Int_t sizeqmcmd = qtime.size();
940                              inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
941                              qtime[sizeqmcmd]=recqtime[mu];
942                              q0[sizeqmcmd]=recq0[mu];
943                              q1[sizeqmcmd]=recq1[mu];
944                              q2[sizeqmcmd]=recq2[mu];
945                              q3[sizeqmcmd]=recq3[mu];
946                              qmode[sizeqmcmd]=-10;
947                              orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi);
948                              RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]);
949                              qRoll[sizeqmcmd]=RYPang_upper->Kren;
950                              qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
951                              qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
952                            }
953                            if(recqtime[mu]>=u_time){
954                              Int_t sizeqmcmd = qtime.size();
955                              inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
956                              qtime[sizeqmcmd]=u_time;
957                              q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][0];
958                              q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][1];
959                              q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][2];
960                              q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][3];
961                              qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui);
962                              lowerqtime = u_time;
963                              orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi);
964                              RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[ui][0],L_QQ_Q_l_upper->quat[ui][1],L_QQ_Q_l_upper->quat[ui][2],L_QQ_Q_l_upper->quat[ui][3]);
965                              qRoll[sizeqmcmd]=RYPang_upper->Kren;
966                              qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
967                              qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
968                              break;
969                            }
970                          }
971                        }
972                      }else{
973                            if ( debug ) printf(" here2 %i \n",ui);
974                        Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000));
975                        if(lowerqtime>u_time)nt=0;
976                        Int_t recSize = recqtime.size();
977                        if(lowerqtime > recqtime[recSize-1]){
978                            Int_t sizeqmcmd = qtime.size();
979                            inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
980                            qtime[sizeqmcmd]=u_time;
981                            q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][0];
982                            q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][1];
983                            q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][2];
984                            q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][3];
985                            qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui);
986                            lowerqtime = u_time;
987                            orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi);
988                            RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]);
989                            qRoll[sizeqmcmd]=RYPang_upper->Kren;
990                            qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
991                            qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
992                        }
993                        for(Int_t mu = nt;mu<recSize;mu++){
994                          if(recqtime[mu]>lowerqtime && recqtime[mu]<u_time){
995                            nt=mu;
996                            Int_t sizeqmcmd = qtime.size();
997                            inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
998                            qtime[sizeqmcmd]=recqtime[mu];
999                            q0[sizeqmcmd]=recq0[mu];
1000                            q1[sizeqmcmd]=recq1[mu];
1001                            q2[sizeqmcmd]=recq2[mu];
1002                            q3[sizeqmcmd]=recq3[mu];
1003                            qmode[sizeqmcmd]=-10;
1004                            orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi);
1005                            RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]);
1006                            qRoll[sizeqmcmd]=RYPang_upper->Kren;
1007                            qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
1008                            qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
1009                          }
1010                          if(recqtime[mu]>=u_time){
1011                            Int_t sizeqmcmd = qtime.size();
1012                            inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
1013                            qtime[sizeqmcmd]=u_time;
1014                            q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][0];
1015                            q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][1];
1016                            q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][2];
1017                            q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][3];
1018                            qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui);
1019                            lowerqtime = u_time;
1020                            orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi);
1021                            RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]);
1022                            qRoll[sizeqmcmd]=RYPang_upper->Kren;
1023                            qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
1024                            qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
1025                            CopyQ(L_QQ_Q_l_lower,L_QQ_Q_l_upper);
1026                            break;
1027                          }
1028                        }
1029                      }
1030                    }
1031                  }
1032                }
1033                if ( debug ) printf(" ciccio \n");
1034              }
1035            }
1036            
1037            if(qtime.size()==0){
1038                for(UInt_t my=0;my<recqtime.size();my++){
1039                    Int_t sizeqmcmd = qtime.size();
1040                    inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw);
1041                    qtime[sizeqmcmd]=recqtime[my];
1042                    q0[sizeqmcmd]=recq0[my];
1043                    q1[sizeqmcmd]=recq1[my];
1044                    q2[sizeqmcmd]=recq2[my];
1045                    q3[sizeqmcmd]=recq3[my];
1046                    qmode[sizeqmcmd]=-10;
1047                    orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi);
1048                    RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[my],recq1[my],recq2[my],recq3[my]);
1049                    qRoll[sizeqmcmd]=RYPang_upper->Kren;
1050                    qYaw[sizeqmcmd]=RYPang_upper->Ryskanie;
1051                    qPitch[sizeqmcmd]=RYPang_upper->Tangazh;
1052                }
1053            }
1054            
1055            if ( debug ) printf(" fuffi \n");
1056    
1057            //sineparam(q0sine,qtime,q0,qRoll,qPitch,0.60);
1058            //sineparam(q1sine,qtime,q1,qRoll,qPitch,0.82);
1059            //sineparam(q2sine,qtime,q2,qRoll,qPitch,0.82);
1060            //sineparam(q3sine,qtime,q3,qRoll,qPitch,0.60);
1061            //sineparam(Yawsine,qtime,qYaw,qRoll,qPitch,4);
1062    
1063            if ( debug ) printf(" puffi \n");
1064            Double_t tmin = 9999999999.;
1065            Double_t tmax = 0.;
1066            for(UInt_t tre = 0;tre<qtime.size();tre++){
1067              if(qtime[tre]>tmax)tmax = qtime[tre];
1068              if(qtime[tre]<tmin)tmin = qtime[tre];
1069            }
1070            if ( debug ) printf(" gnfuffi \n");
1071    
1072            //q0testing->SetName("q0testing");
1073            //q1testing->SetName("q1testing");
1074            //q2testing->SetName("q2testing");
1075            //q3testing->SetName("q3testing");
1076            
1077    //      Int_t ss=10.*(tmax-tmin);
1078            //q0testing->SetBins(ss,tmin,tmax,1000,-1.,1.);
1079            //Pitchtesting->SetBins(ss,tmin,tmax,1000,-40.,40.);
1080    
1081    //      for(Int_t tre = 0;tre<qtime.size();tre++){
1082              //cout<<"q0["<<tre<<" = "<<q0[tre]<<endl;
1083              //q0testing->Fill(qtime[tre],q0[tre]);
1084              //q1testing->Fill(qtime[tre],q1[tre]);
1085              //Pitchtesting->Fill(qtime[tre],qPitch[tre],100);
1086              //if(qmode[tre] == -10)Pitchtesting->Fill(qtime[tre],10,100);
1087              //q2testing->Fill(qtime[tre],q2[tre],100);
1088              //q3testing->Fill(qtime[tre],q3[tre],100);
1089    //      }
1090            
1091            //for(Int_t tre=0;tre<q0sine.size();tre++)cout<<q1sine[tre].A<<"*sin("<<q1sine[tre].b<<"x+"<<q1sine[tre].c<<")\t time start: "<<q1sine[tre].startPoint<<"\ttime end: "<<q1sine[tre].finishPoint<<endl;
1092            //for(Int_t tre=0;tre<q0sine.size();tre++)cout<<q1sine[tre].A<<"*sin("<<q1sine[tre].b<<"x+"<<q1sine[tre].c<<")\t time start: "<<q0sine[tre].startPoint<<"\ttime end: "<<q0sine[tre].finishPoint<<endl;
1093          } // if we processed first event
1094          
1095          //Filling Inclination information
1096          Double_t incli = 0;
1097          if ( qtime.size() > 1 ){
1098          for(UInt_t mu = must;mu<qtime.size()-1;mu++){
1099            if ( debug ) printf(" ??grfuffi %i sixe %i must %i \n",mu,qtime.size()-1,must);
1100            if(qtime[mu+1]>qtime[mu]){
1101              if ( debug ) printf(" grfuffi2 %i \n",mu);
1102              if(atime<=qtime[mu+1] && atime>=qtime[mu]){
1103                must = mu;
1104                incli = (qPitch[mu+1]-qPitch[mu])/(qtime[mu+1]-qtime[mu]);
1105                orbitalinfo->theta =  incli*atime+qPitch[mu+1]-incli*qtime[mu+1];
1106                incli = (qRoll[mu+1]-qRoll[mu])/(qtime[mu+1]-qtime[mu]);
1107                orbitalinfo->etha =  incli*atime+qRoll[mu+1]-incli*qtime[mu+1];
1108                incli = (qYaw[mu+1]-qYaw[mu])/(qtime[mu+1]-qtime[mu]);
1109                orbitalinfo->phi =  incli*atime+qYaw[mu+1]-incli*qtime[mu+1];
1110                
1111                incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]);
1112                orbitalinfo->q0 =  incli*atime+q0[mu+1]-incli*qtime[mu+1];
1113                incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]);
1114                orbitalinfo->q1 =  incli*atime+q1[mu+1]-incli*qtime[mu+1];
1115                incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]);
1116                orbitalinfo->q2 =  incli*atime+q2[mu+1]-incli*qtime[mu+1];
1117                incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]);
1118                orbitalinfo->q3 =  incli*atime+q3[mu+1]-incli*qtime[mu+1];
1119                
1120                orbitalinfo->TimeGap = qtime[mu+1]-qtime[mu];
1121                orbitalinfo->mode = qmode[mu+1];
1122                //if(qmode[mu+1]==-10) orbitalinfo->R10r = true;else orbitalinfo->R10r = false;
1123                //reserved for next versions Vitaly.
1124                /*if(qmode[mu+1]==-10 || qmode[mu+1]==0 || qmode[mu+1]==1 || qmode[mu+1]==3 || qmode[mu+1]==4 || qmode[mu+1]==6){
1125                  //linear interpolation
1126                  incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]);
1127                  orbitalinfo->q0 =  incli*atime+q0[mu+1]-incli*qtime[mu+1];
1128                  incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]);
1129                  orbitalinfo->q1 =  incli*atime+q1[mu+1]-incli*qtime[mu+1];
1130                  incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]);
1131                  orbitalinfo->q2 =  incli*atime+q2[mu+1]-incli*qtime[mu+1];
1132                  incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]);
1133                  orbitalinfo->q3 =  incli*atime+q3[mu+1]-incli*qtime[mu+1];
1134                }else{
1135                  //sine interpolation
1136                  for(UInt_t mt=0;mt<q0sine.size();mt++){
1137                    if(atime<=q0sine[mt].finishPoint && atime>=q0sine[mt].startPoint){
1138                      if(!q0sine[mt].NeedFit)orbitalinfo->q0=q0sine[mt].A*sin(q0sine[mt].b*atime+q0sine[mt].c);else{
1139                        incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]);
1140                        orbitalinfo->q0 =  incli*atime+q0[mu+1]-incli*qtime[mu+1];
1141                      }
1142                    }
1143                    if(atime<=q1sine[mt].finishPoint && atime>=q1sine[mt].startPoint){
1144                      if(!q1sine[mt].NeedFit)orbitalinfo->q1=q1sine[mt].A*sin(q1sine[mt].b*atime+q1sine[mt].c);else{
1145                        incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]);
1146                        orbitalinfo->q1 =  incli*atime+q1[mu+1]-incli*qtime[mu+1];
1147                      }
1148                    }
1149                    if(atime<=q2sine[mt].finishPoint && atime>=q2sine[mt].startPoint){
1150                      if(!q2sine[mt].NeedFit)orbitalinfo->q2=q0sine[mt].A*sin(q2sine[mt].b*atime+q2sine[mt].c);else{
1151                        incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]);
1152                        orbitalinfo->q2 =  incli*atime+q2[mu+1]-incli*qtime[mu+1];
1153                      }
1154                    }
1155                    if(atime<=q3sine[mt].finishPoint && atime>=q3sine[mt].startPoint){
1156                      if(!q3sine[mt].NeedFit)orbitalinfo->q3=q0sine[mt].A*sin(q3sine[mt].b*atime+q3sine[mt].c);else{
1157                        incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]);
1158                        orbitalinfo->q3 =  incli*atime+q3[mu+1]-incli*qtime[mu+1];
1159                      }
1160                    }
1161                    if(atime<=Yawsine[mt].finishPoint && atime>=Yawsine[mt].startPoint){
1162                      if(!Yawsine[mt].NeedFit)orbitalinfo->phi=Yawsine[mt].A*sin(Yawsine[mt].b*atime+Yawsine[mt].c);else{
1163                        incli = (qYaw[mu+1]-qYaw[mu])/(qtime[mu+1]-qtime[mu]);
1164                        orbitalinfo->phi =  incli*atime+qYaw[mu+1]-incli*qtime[mu+1];
1165                      }
1166                    }
1167                  }
1168                }*/
1169                //q0testing->Fill(atime,orbitalinfo->q0,100);
1170                //q1testing->Fill(atime,orbitalinfo->q1,100);
1171                //Pitchtesting->Fill(atime,orbitalinfo->etha);
1172                //q2testing->Fill(atime,orbitalinfo->q2);
1173                //q3testing->Fill(atime,orbitalinfo->q3);
1174                break;
1175              }
1176            }
1177          }
1178          }
1179          //
1180          // ops no inclination information
1181          //
1182    
1183          if ( orbitalinfo->q0< -999 || orbitalinfo->q1 < -999 || orbitalinfo->q2 < -999 || orbitalinfo->q3 < -999 || orbitalinfo->q0 != orbitalinfo->q0 || orbitalinfo->q1 != orbitalinfo->q1 || orbitalinfo->q2 != orbitalinfo->q2 || orbitalinfo->q3 != orbitalinfo->q3 ){
1184            orbitalinfo->mode = 10;
1185            orbitalinfo->q0 = -1000.;
1186            orbitalinfo->q1 = -1000.;
1187            orbitalinfo->q2 = -1000.;
1188            orbitalinfo->q3 = -1000.;
1189            orbitalinfo->etha = -1000.;
1190            orbitalinfo->phi = -1000.;
1191            orbitalinfo->theta = -1000.;
1192          };
1193          //
1194          // #########################################################################################################################  
1195          //
1196          // fill orbital positions
1197          //        
1198          // Build coordinates in the right range.  We want to convert,
1199          // longitude from (0, 2*pi) to (-180deg, 180deg).  Altitude is
1200          // in meters.
1201          lon = (coo.m_Lon > M_PI) ? rad2deg(coo.m_Lon - 2*M_PI) : rad2deg(coo.m_Lon);
1202          lat = rad2deg(coo.m_Lat);
1203          alt = coo.m_Alt;
1204          //
1205          if( lon<180 && lon>-180 && lat<90 && lat>-90 && alt>0 ){  
1206            //      
1207            orbitalinfo->lon = lon;
1208            orbitalinfo->lat = lat;
1209            orbitalinfo->alt = alt ;
1210            //
1211            // compute mag field components and L shell.
1212            //
1213            feldg_(&lat, &lon, &alt, &bnorth, &beast, &bdown, &babs);
1214            shellg_(&lat, &lon, &alt, &dimo, &xl, &icode, &bab1);
1215            findb0_(&stps, &bdel, &value, &bequ, &rr0);
1216            //
1217            orbitalinfo->Bnorth = bnorth;
1218            orbitalinfo->Beast = beast;
1219            orbitalinfo->Bdown = bdown;
1220            orbitalinfo->Babs = babs;
1221            orbitalinfo->BB0 = babs/bequ;
1222            orbitalinfo->L = xl;      
1223            // Set Stormer vertical cutoff using L shell.
1224            orbitalinfo->cutoffsvl = 14.9/(xl*xl);
1225            orbitalinfo->igrf_icode = icode;
1226            //
1227          };      
1228          //
1229          if ( debug ) printf(" pitch angle \n");
1230          //
1231          // pitch angles
1232          //
1233          //if ( orbitalinfo->mode != 10 && orbitalinfo->mode != 5 && orbitalinfo->mode !=7 && orbitalinfo->mode != 9 ){
1234          if( orbitalinfo->TimeGap>0 && orbitalinfo->TimeGap<2000000){
1235            //
1236            Float_t Bx = -orbitalinfo->Bdown;
1237            Float_t By = orbitalinfo->Beast;
1238            Float_t Bz = orbitalinfo->Bnorth;
1239            //
1240            TMatrixD Fij = PO->ECItoGreenwich(PO->QuatoECI(orbitalinfo->q0,orbitalinfo->q1,orbitalinfo->q2,orbitalinfo->q3),orbitalinfo->absTime);
1241            TMatrixD Gij = PO->ColPermutation(Fij);
1242            TMatrixD Dij = PO->GreenwichtoGEO(orbitalinfo->lat,orbitalinfo->lon,Fij);
1243            TMatrixD Iij = PO->ColPermutation(Dij);
1244            //
1245            orbitalinfo->Iij.ResizeTo(Iij);
1246            orbitalinfo->Iij = Iij;
1247            //
1248            A1 = Iij(0,2);
1249            A2 = Iij(1,2);
1250            A3 = Iij(2,2);
1251            //
1252            //      orbitalinfo->pamzenitangle = (Float_t)PO->GetPitchAngle(1,0,0,A1,A2,A3);                        // Angle between zenit and Pamela's main axiz
1253            //      orbitalinfo->pamBangle = (Float_t)PO->GetPitchAngle(A1,A2,A3,Bx,By,Bz);                 // Angle between Pamela's main axiz and B
1254            //
1255            if ( !standalone && tof->ntrk() > 0 ){
1256              //
1257              Int_t nn = 0;
1258              for(Int_t nt=0; nt < tof->ntrk(); nt++){  
1259                //
1260                ToFTrkVar *ptt = tof->GetToFTrkVar(nt);
1261                Double_t E11x = ptt->xtr_tof[0]; // tr->x[0];
1262                Double_t E11y = ptt->ytr_tof[0]; //tr->y[0];
1263                Double_t E11z = zin[0];
1264                Double_t E22x = ptt->xtr_tof[3];//tr->x[3];
1265                Double_t E22y = ptt->ytr_tof[3];//tr->y[3];
1266                Double_t E22z = zin[3];
1267                if ( (E11x < 100. && E11y < 100. && E22x < 100. && E22y < 100.) || ptt->trkseqno != -1  ){
1268                  Double_t norm = sqrt(pow(E22x-E11x,2)+pow(E22y-E11y,2)+pow(E22z-E11z,2));
1269                  //              Double_t MyAzim = TMath::RadToDeg()*atan(TMath::Abs(E22y-E11y)/TMath::Abs(E22x-E11x));
1270                  //              if(E22x-E11x>=0 && E22y-E11y <0) MyAzim =  360. - MyAzim;
1271                  //              if(E22x-E11x>=0 && E22y-E11y >=0) MyAzim = MyAzim;
1272                  //              if(E22x-E11x<0 && E22y-E11y >0) MyAzim = 180. - MyAzim;
1273                  //              if(E22x-E11x<0 && E22y-E11y <0) MyAzim = 180. + MyAzim;
1274                  Px = (E22x-E11x)/norm;
1275                  Py = (E22y-E11y)/norm;
1276                  Pz = (E22z-E11z)/norm;
1277                  //
1278                  t_orb->trkseqno = ptt->trkseqno;
1279                  //
1280                  TMatrixD Eij = PO->PamelatoGEO(Iij,Px,Py,Pz);
1281                  t_orb->Eij.ResizeTo(Eij);
1282                  t_orb->Eij = Eij;
1283                  //
1284                  TMatrixD Sij = PO->PamelatoGEO(Gij,Px,Py,Pz);
1285                  t_orb->Sij.ResizeTo(Sij);
1286                  t_orb->Sij = Sij;
1287                  //            
1288                  t_orb->pitch = (Float_t)PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),Bx,By,Bz);
1289                  //
1290                  //
1291                  Double_t omega = PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),cos(orbitalinfo->lon+TMath::Pi()/2)-sin(orbitalinfo->lon+TMath::Pi()/2),cos(orbitalinfo->lon+TMath::Pi()/2)+sin(orbitalinfo->lon+TMath::Pi()/2),1);
1292                  //
1293                  t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow((1+sqrt(1-pow(orbitalinfo->L,-3/2)*cos(omega))),2));
1294                  //
1295                  if ( t_orb->pitch != t_orb->pitch ) t_orb->pitch = -1000.;
1296                  if ( t_orb->cutoff != t_orb->cutoff ) t_orb->cutoff = -1000.;
1297                  //
1298                  if ( debug ) printf(" orbitalinfo->cutoffsvl %f vitaly %f \n",orbitalinfo->cutoffsvl,t_orb->cutoff);
1299                  //
1300                  new(tor[nn]) OrbitalInfoTrkVar(*t_orb);
1301                  nn++;
1302                  //
1303                  t_orb->Clear();
1304                  //
1305                };
1306                //
1307              };
1308            } else {
1309              if ( debug ) printf(" mmm... mode %u standalone %i ntrk %i \n",orbitalinfo->mode,standalone,tof->ntrk());
1310            };
1311            //
1312          } else {
1313            if ( !standalone && tof->ntrk() > 0 ){
1314              //
1315              Int_t nn = 0;
1316              for(Int_t nt=0; nt < tof->ntrk(); nt++){  
1317                //
1318                ToFTrkVar *ptt = tof->GetToFTrkVar(nt);
1319                if ( ptt->trkseqno != -1  ){
1320                  //
1321                  t_orb->trkseqno = ptt->trkseqno;
1322                  //
1323                  t_orb->Eij = 0;  
1324                  //
1325                  t_orb->Sij = 0;
1326                  //            
1327                  t_orb->pitch = -1000.;
1328                  //
1329                  t_orb->cutoff = -1000.;
1330                  //
1331                  new(tor[nn]) OrbitalInfoTrkVar(*t_orb);
1332                  nn++;
1333                  //
1334                  t_orb->Clear();
1335                  //
1336                };
1337                //
1338              };    
1339            };
1340          };
1341          //
1342          // Fill the class
1343          //
1344        OrbitalInfotr->Fill();        OrbitalInfotr->Fill();
       //      
1345        //        //
1346      jumpev:        delete t_orb;
       debug = false;  
1347        //        //
1348      };      }; // loop over the events in the run
1349      //      //
1350      // Here you may want to clear some variables before processing another run        // Here you may want to clear some variables before processing another run  
1351      //      //
1352      ei = 0;  
1353        //gStyle->SetOptStat(000000);
1354        //gStyle->SetPalette(1);
1355        
1356        /*TCanvas* c1 = new TCanvas("c1","",1200,800);
1357        //c1->Divide(1,4);
1358        c1->cd(1);
1359        //q0testing->Draw("colz");
1360        //c1->cd(2);
1361        //q1testing->Draw("colz");
1362        //c1->cd(3);
1363        Pitchtesting->Draw("colz");
1364        //c1->cd(4);
1365        //q3testing->Draw("colz");
1366        c1->SaveAs("9.Rollhyst.png");
1367        delete c1;*/
1368    
1369        delete dbtime;
1370        if ( L_QQ_Q_l_upper ) delete L_QQ_Q_l_upper;
1371        if ( L_QQ_Q_l_lower ) delete L_QQ_Q_l_lower;
1372        if ( RYPang_upper ) delete RYPang_upper;
1373        if ( RYPang_lower ) delete RYPang_lower;
1374    }; // process all the runs    }; // process all the runs
1375    //    
1376    if (verbose) printf("\n Finished processing data \n");    if (verbose) printf("\n Finished processing data \n");
1377    //    //
1378   closeandexit:   closeandexit:
# Line 464  int OrbitalInfoCore(ULong64_t run, TFile Line 1390  int OrbitalInfoCore(ULong64_t run, TFile
1390          //          //
1391          // Get entry from old tree          // Get entry from old tree
1392          //          //
1393          OrbitalInfotrclone->GetEntry(j);                    if ( OrbitalInfotrclone->GetEntry(j) <= 0 ) throw -36;    
1394          //          //
1395          // copy orbitalinfoclone to OrbitalInfo          // copy orbitalinfoclone to OrbitalInfo
1396          //          //
1397          orbitalinfo = new OrbitalInfo();          orbitalinfo->Clear();
1398            //
1399          memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone));          memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone));
1400          //          //
1401          // Fill entry in the new tree          // Fill entry in the new tree
# Line 483  int OrbitalInfoCore(ULong64_t run, TFile Line 1410  int OrbitalInfoCore(ULong64_t run, TFile
1410    //    //
1411    if ( l0File ) l0File->Close();    if ( l0File ) l0File->Close();
1412    if ( tempfile ) tempfile->Close();                if ( tempfile ) tempfile->Close();            
1413    gSystem->Unlink(tempname.str().c_str());    if ( myfold ) gSystem->Unlink(tempname.str().c_str());
1414      //
   //if ( code < 0 ) printf("\n OrbitalInfo - ERROR: an error occurred, try to save anyway...\n");  
   //printf("\n Writing and closing rootple\n");  
1415    if ( runinfo ) runinfo->Close();        if ( runinfo ) runinfo->Close();    
1416    if ( OrbitalInfotr ) OrbitalInfotr->SetName("OrbitalInfo");        if ( OrbitalInfotr ) OrbitalInfotr->SetName("OrbitalInfo");    
1417      if ( tof ) tof->Delete();
1418      if ( ttof ) ttof->Delete();
1419      //
1420    if ( file ){    if ( file ){
1421      file->cd();      file->cd();
1422      file->Write();      file->Write();
1423    };    };
1424    //    //
1425    gSystem->Unlink(OrbitalInfofolder.str().c_str());    if ( myfold ) gSystem->Unlink(OrbitalInfofolder.str().c_str());
1426    //    //
1427    // the end    // the end
1428    //    //
1429      if ( dbc ){
1430        dbc->Close();
1431        delete dbc;
1432      };
1433    if (verbose) printf("\n Exiting...\n");    if (verbose) printf("\n Exiting...\n");
1434    if(OrbitalInfotr)OrbitalInfotr->Delete();    if(OrbitalInfotr)OrbitalInfotr->Delete();
1435      //
1436      if ( PO ) delete PO;
1437      if ( orbitalinfo ) delete orbitalinfo;
1438      if ( orbitalinfoclone ) delete orbitalinfoclone;
1439      if ( glroot ) delete glroot;
1440      if ( runinfo ) delete runinfo;
1441      //
1442    if(code < 0)  throw code;    if(code < 0)  throw code;
1443    return(code);    return(code);
1444  }  }
1445    
1446    
1447    //
1448    // Returns the cCoordGeo structure holding the geographical
1449    // coordinates for the event (see sgp4.h).
1450    //
1451    // atime is the abstime of the event in UTC unix time.
1452    // tletime is the time of the tle in UTC unix time.
1453    // tle is the previous and nearest tle (compared to atime).
1454    cCoordGeo getCoo(UInt_t atime, UInt_t tletime, cTle *tle)
1455    {
1456      cEci eci;
1457      cOrbit orbit(*tle);
1458      orbit.getPosition((double) (atime - tletime)/60., &eci);
1459      
1460      return eci.toGeo();
1461    }
1462    
1463    // function of copyng of quatrnions classes
1464    
1465    void CopyQ(Quaternions *Q1, Quaternions *Q2){
1466      for(UInt_t i = 0; i < 6; i++){
1467        Q1->time[i]=Q2->time[i];
1468        for (UInt_t j = 0; j < 4; j++)Q1->quat[i][j]=Q2->quat[i][j];
1469      }
1470      return;
1471    }
1472    
1473    // functions of copyng InclinationInfo classes
1474    
1475    void CopyAng(InclinationInfo *A1, InclinationInfo *A2){
1476      A1->Tangazh = A2->Tangazh;
1477      A1->Ryskanie = A2->Ryskanie;
1478      A1->Kren = A2->Kren;
1479      return;
1480    }
1481    
1482    UInt_t holeq(Double_t lower,Double_t upper,Quaternions *Qlower, Quaternions *Qupper, UInt_t f){
1483      
1484      UInt_t hole = 10;
1485      Bool_t R10l = false;     // Sign of R10 mode in lower quaternions array
1486      Bool_t R10u = false;     // Sign of R10 mode in upper quaternions array
1487      Bool_t insm = false;     // Sign that we inside quaternions array
1488      Bool_t mxtml = false;    // Sign of mixt mode in lower quaternions array
1489      Bool_t mxtmu = false;    // Sign of mixt mode in upper quaternions array
1490      Bool_t npasm = false;     // Sign of normall pass between R10 and non R10 or between non R10 and R10
1491      UInt_t NCQl = 6;       // Number of correct quaternions in lower array
1492      UInt_t NCQu = 6;       // Number of correct quaternions in upper array
1493      if (f>0){
1494        insm = true;
1495        if(Qupper->time[f]-Qupper->time[f-1]==30) R10u = false;
1496        if(Qupper->time[f]-Qupper->time[f-1]<1) R10u = true;
1497      }else{
1498        insm = false;
1499        if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]<2)) R10l = true;
1500        if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]<2)) R10u = true;
1501        if((Qlower->time[5]-Qlower->time[0]==150)&&(Qlower->time[1]-Qlower->time[0]==30)) R10l = false;
1502        if((Qupper->time[5]-Qupper->time[0]==150)&&(Qupper->time[1]-Qupper->time[0]==30)) R10u = false;
1503        if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]==30)){
1504          mxtml = true;
1505          for(UInt_t i = 1; i < 6; i++){
1506            if(Qlower->time[i]-Qlower->time[0]==30*i) NCQl=i;
1507          }
1508        }
1509        if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]==30)){
1510          mxtmu = true;
1511          for(UInt_t i = 1; i < 6; i++){
1512            if(Qupper->time[i]-Qupper->time[0]==30*i) NCQu=i;
1513          }
1514        }
1515      }
1516      
1517      if(((upper-lower==1.5)||(upper-lower==3.)||(upper-lower==30.)||(upper-lower==31.5)||(upper-lower==33.)||(upper-lower==181.5)||(upper-lower==210.)||(upper-lower==211.5))&&!insm) npasm = true;
1518      
1519      
1520      if (R10u&&insm) hole=0; // best event R10
1521      if ((upper-lower<=5)&&(!insm)&&R10l&&R10u) hole = 1; // when first of 6 quaternions in array is correct
1522      if (((!R10u)&&insm)||((!insm)&&(!R10u)&&(!R10l)&&((upper-lower==210+(6-NCQl)*30)||(upper-lower==30)))) hole = 2; //non R10
1523      if (npasm&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 3; //normall pass from R10 to non R10 or from non R10 to R10
1524      if ((!npasm)&&(upper-lower<=300)&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 4; // eliminable hole between R10 and non R10 or between non R10 and R10
1525      if ((upper-lower>=300)&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 5; //uneliminable hole between R10 and non R10 or between non R10 and R10
1526      if ((upper-lower>5)&&(upper-lower<=300)&&R10u&&R10l) hole = 6; // eliminable hole inside R10
1527      if ((upper-lower>300)&&R10u&&R10l) hole = 7; //uneliminable hole inside R10
1528      if ((upper-lower>210)&&(upper-lower<=1200)&&(!R10u)&&(!R10l)) hole = 8; //eliminable hole inside non R10
1529      if ((upper-lower>1200)&&!R10u&&!R10l) hole = 9; // uneliminable hole inside non R10
1530      return hole;
1531    }
1532    
1533    void inclresize(vector<Double_t>& t,vector<Float_t>& q0,vector<Float_t>& q1,vector<Float_t>& q2,vector<Float_t>& q3,vector<Int_t>& mode,vector<Float_t>& Roll,vector<Float_t>& Pitch,vector<Float_t>& Yaw){
1534      Int_t sizee = t.size()+1;
1535      t.resize(sizee);
1536      q0.resize(sizee);
1537      q1.resize(sizee);
1538      q2.resize(sizee);
1539      q3.resize(sizee);
1540      mode.resize(sizee);
1541      Roll.resize(sizee);
1542      Pitch.resize(sizee);
1543      Yaw.resize(sizee);
1544    }
1545    
1546    //Find fitting sine functions for q0,q1,q2,q3 and Yaw-angle;
1547    void sineparam(vector<Sine>& qsine, vector<Double_t>& qtime, vector<Float_t>& q, vector<Float_t>& Roll, vector<Float_t>& Pitch, Float_t limsin){
1548      UInt_t mulast = 0;
1549      UInt_t munow = 0;
1550      UInt_t munext = 0;
1551      Bool_t increase = false;
1552      Bool_t decrease = false;
1553      Bool_t Max_is_defined = false;
1554      Bool_t Start_point_is_defined = false;
1555      Bool_t Period_is_defined = false;
1556      Bool_t Large_gap = false;
1557      Bool_t normal_way = true;
1558      Bool_t small_gap_on_ridge = false;
1559      Double_t t1 = 0;
1560      Double_t t1A = 0;
1561      Int_t sinesize = 0;
1562      Int_t nfi = 0;
1563      for(UInt_t mu = 0;mu<qtime.size();mu++){
1564        //cout<<"Roll["<<mu<<"] = "<<Roll[mu]<<endl;
1565        if(TMath::Abs(Roll[mu])<1. && TMath::Abs(Pitch[mu])<1. && TMath::Abs(q[mu])<limsin){
1566        //cout<<"q["<<mu<<endl<<"] = "<<q[mu]<<endl;
1567        if(mulast!=0 && munow!=0 && munext!=0){mulast=munow;munow=munext;munext=mu;}
1568        if(munext==0 && munow!=0)munext=mu;
1569        if(munow==0 && mulast!=0)munow=mu;
1570        if(mulast==0)mulast=mu;
1571        
1572        //cout<<"mulast = "<<mulast<<"\tmunow = "<<munow<<"\tmunext = "<<munext<<endl;
1573        //Int_t ref;
1574        //cin>>ref;
1575        if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && q[mulast]*q[munext]>0 && qtime[munext]-qtime[mulast]>400)small_gap_on_ridge = true;
1576        if(munext>mulast && (qtime[munext]-qtime[mulast]>=2000 || qtime[munext]-qtime[mulast]<0)){if(Large_gap){normal_way = false;Large_gap = false;}else{Large_gap = true;normal_way = false;}}else normal_way = true;
1577        //if(normal_way)cout<<"Normal_Way"<<endl;
1578        if(Large_gap || small_gap_on_ridge){
1579          //cout<<"Large gap..."<<endl;
1580          //if(small_gap_on_ridge)cout<<"small gap..."<<endl;
1581          //cout<<"q["<<mulast<<"] = "<<q[mulast]<<"\tq["<<munow<<"] = "<<q[munow]<<"\tq["<<munext<<"] = "<<q[munext]<<endl;
1582          //cout<<"qtime["<<mulast<<"] = "<<qtime[mulast]<<"\tqtime["<<munow<<"] = "<<qtime[munow]<<"\tqtime["<<munext<<"] = "<<qtime[munext]<<endl;
1583          increase = false;
1584          decrease = false;
1585          if(nfi>0){
1586            qsine.resize(qsine.size()-1);
1587            sinesize = qsine.size();
1588            //cout<<"nfi was larger then zero"<<endl;
1589          }else{
1590            //cout<<"nfi was not larger then zero :( nfi = "<<nfi<<endl;
1591            //cout<<"qsine.size = "<<qsine.size()<<endl;
1592            if(!Period_is_defined){
1593              //cout<<"Period was defined"<<endl;
1594              if(qsine.size()>1){
1595                qsine[sinesize-1].b = qsine[sinesize-2].b;
1596                qsine[sinesize-1].c = qsine[sinesize-2].c;
1597              }else{
1598                qsine[sinesize-1].b = TMath::Pi()/1591.54;
1599                qsine[sinesize-1].c = qsine[sinesize-1].startPoint;
1600              }
1601            }
1602            if(!Max_is_defined){
1603              //cout<<"Max was already defined"<<endl;
1604              if(qsine.size()>1)qsine[sinesize-1].A = qsine[sinesize-2].A;else qsine[sinesize-1].A = limsin;
1605            }
1606            qsine[sinesize-1].NeedFit = true;
1607          }
1608          qsine[sinesize-1].finishPoint = qtime[munow];
1609          //cout<<"finish point before large gap = "<<qtime[munow]<<endl;
1610          nfi = 0;
1611          Max_is_defined = false;
1612          Start_point_is_defined = false;
1613          Period_is_defined = false;
1614          small_gap_on_ridge = false;
1615        }
1616        //cout<<"Slope "<<increase<<"\t"<<decrease<<endl;
1617        //cout<<"mulast = "<<mulast<<"\tmunow = "<<munow<<"\tmunext = "<<munext<<endl;
1618        if((munext>munow) && (munow>mulast) && normal_way){
1619          if(!increase && !decrease){
1620            //cout<<"Normal way have started"<<endl;
1621            qsine.resize(qsine.size()+1);
1622            sinesize = qsine.size();
1623            qsine[sinesize-1].startPoint=qtime[mulast];
1624            if(q[munext]>q[munow] && q[munow]>q[mulast]) increase = true;
1625            if(q[munext]<q[munow] && q[munow]<q[mulast]) decrease = true;
1626          }
1627          //if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && TMath::Abs(q[munow])>limsin && qtime[munow]-qtime[mulast]>=400 || qtime[munext]-qtime[munow]>=400){small_gap_on_ridge = true;mu--;continue;}
1628          if(TMath::Abs(q[munow])>TMath::Abs(q[mulast]) && TMath::Abs(q[munow])>TMath::Abs(q[munext]) && TMath::Abs(q[munow])>0.9*limsin && qtime[munow]-qtime[mulast]<400 && qtime[munext]-qtime[munow]<400){
1629            //cout<<"Max point is qtime = "<<qtime[munow]<<"\tq = "<<q[munow]<<endl;
1630            if(q[munow]>q[mulast]){
1631              increase = false;
1632              decrease = true;
1633            }
1634            if(q[munow]<q[mulast]){
1635              increase = true;
1636              decrease = false;
1637            }
1638            if(Max_is_defined && !Start_point_is_defined){
1639              Double_t qPer = qtime[munow]-t1A;
1640              if(qPer>1000){
1641                //cout<<"qsine["<<sinesize-1<<"] = "<<qPer<<" = "<<qtime[munow]<<" - "<<t1A<<"\tlim = "<<limsin<<endl;
1642                qsine[sinesize-1].b=TMath::Pi()/qPer;
1643                if(decrease)qsine[sinesize-1].c=-qsine[sinesize-1].b*t1A;
1644                if(increase)qsine[sinesize-1].c=-qsine[sinesize-1].b*(t1A-qPer);
1645                Period_is_defined = true;
1646              }
1647            }
1648            Max_is_defined = true;
1649            qsine[sinesize-1].A = TMath::Abs(q[munow]);
1650            if(Start_point_is_defined && Period_is_defined){
1651              qsine[sinesize-1].finishPoint = qtime[munow];
1652              nfi++;
1653              qsine[sinesize-1].NeedFit = false;
1654              Max_is_defined = false;
1655              Start_point_is_defined = false;
1656              Period_is_defined = false;
1657              qsine.resize(qsine.size()+1);
1658              sinesize = qsine.size();
1659              qsine[sinesize-1].startPoint = qtime[munow];
1660            }
1661            if(!Start_point_is_defined) t1A=qtime[munow];
1662          }
1663          //if((q[munow]>=0 && q[mulast]<=0) || (q[munow]<=0 && q[mulast]>=0))cout<<"cross zero point diference = "<<qtime[munext] - qtime[mulast]<<"\tqlast = "<<qtime[mulast]<<"\tqnow = "<<qtime[munow]<<"\tqnext = "<<qtime[munext]<<endl;
1664          if(((q[munow]>=0 && q[mulast]<=0) || (q[munow]<=0 && q[mulast]>=0)) && qtime[munow]-qtime[mulast]<2000 && qtime[munext]-qtime[munow]<2000){
1665            Double_t tcrosszero = 0;
1666            //cout<<"cross zero point...qtime = "<<qtime[munow]<<endl;
1667            if(q[munow]==0.) tcrosszero = qtime[munow];else
1668              if(q[mulast]==0.)tcrosszero = qtime[mulast];else{
1669                Double_t k_ = (q[munow]-q[mulast])/(qtime[munow]-qtime[mulast]);
1670                Double_t b_ = q[munow]-k_*qtime[munow];
1671                tcrosszero = -b_/k_;
1672              }
1673            if(Start_point_is_defined){
1674              //cout<<"Start Point allready defined"<<endl;
1675              Double_t qPer = tcrosszero - t1;
1676              qsine[sinesize-1].b = TMath::Pi()/qPer;
1677              //cout<<"qsine["<<sinesize-1<<"].b = "<<TMath::Pi()/qPer<<endl;
1678              Period_is_defined = true;
1679              Float_t x0 = 0;
1680              if(decrease)x0 = t1;
1681              if(increase)x0 = tcrosszero;
1682              qsine[sinesize-1].c = -qsine[sinesize-1].b*x0;
1683              if(Max_is_defined){
1684                //cout<<"Max was previous defined"<<endl;
1685                qsine[sinesize-1].finishPoint = qtime[munow];
1686                nfi++;
1687                qsine[sinesize-1].NeedFit = false;
1688                Max_is_defined = false;
1689                t1 = tcrosszero;
1690                Start_point_is_defined = true;
1691                Period_is_defined = false;
1692                qsine.resize(qsine.size()+1);
1693                sinesize = qsine.size();
1694                qsine[sinesize-1].startPoint = qtime[munow];
1695              }
1696            }else{
1697              t1 = tcrosszero;
1698              Start_point_is_defined = true;
1699            }
1700          }
1701        }
1702        }
1703      }
1704    
1705      //cout<<"FINISH SINE INTERPOLATION FUNCTION..."<<endl<<endl;
1706    }

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.56

  ViewVC Help
Powered by ViewVC 1.1.23