// // C/C++ headers // #include #include #include #include #include // // ROOT headers // #include #include #include #include #include #include #include #include #include #include #include #include #include // // RunInfo header // #include #include // // YODA headers // #include #include #include #include #include #include // // This program headers // #include #include #include #include using namespace std; // // CORE ROUTINE // // int OrbitalInfoCore(UInt_t run, TFile *file, TSQLServer *dbc, Int_t OrbitalInfoargc, char *OrbitalInfoargv[]){ // Int_t i = 0; // TString processFolder = Form("OrbitalInfoFolder_%u",run); // // Set these to true to have a very verbose output. // Bool_t debug = false; // Bool_t verbose = false; if ( OrbitalInfoargc > 0 ){ i = 0; while ( i < OrbitalInfoargc ){ if ( !strcmp(OrbitalInfoargv[i],"-processFolder") ) { if ( OrbitalInfoargc < i+1 ){ throw -3; }; processFolder = (TString)OrbitalInfoargv[i+1]; i++; }; if ( (!strcmp(OrbitalInfoargv[i],"--debug")) || (!strcmp(OrbitalInfoargv[i],"-g")) ) { verbose = true; debug = true; }; if ( (!strcmp(OrbitalInfoargv[i],"--verbose")) || (!strcmp(OrbitalInfoargv[i],"-v")) ) { verbose = true; }; i++; }; }; // const char* outDir = gSystem->DirName(gSystem->DirName(file->GetPath())); // TTree *OrbitalInfotr = 0; UInt_t nevents = 0; UInt_t neventsm = 0; // // variables needed to reprocess data // Long64_t maxsize = 10000000000LL; TTree::SetMaxTreeSize(maxsize); // TString OrbitalInfoversion; ItoRunInfo *runinfo = 0; TArrayI *runlist = 0; TTree *OrbitalInfotrclone = 0; Bool_t reproc = false; Bool_t reprocall = false; UInt_t nobefrun = 0; UInt_t noaftrun = 0; UInt_t numbofrun = 0; stringstream ftmpname; TString fname; UInt_t totfileentries = 0; UInt_t idRun = 0; // // My variables. Vitaly. // // UInt_t iev = 0; // UInt_t j3 = 0; UInt_t oi = 0; Int_t tmpSize = 0; // // variables needed to handle error signals // Int_t code = 0; Int_t sgnl; // // OrbitalInfo classes // OrbitalInfo *orbitalinfo = new OrbitalInfo(); OrbitalInfo *orbitalinfoclone = new OrbitalInfo(); // // define variables for opening and reading level0 file // TFile *l0File = 0; TTree *l0tr = 0; TTree *l0trm = 0; // EM: open also header branch TBranch *l0head = 0; pamela::EventHeader *eh = 0; pamela::PscuHeader *ph = 0; pamela::McmdEvent *mcmdev = 0; pamela::McmdRecord *mcmdrc = 0; // end EM // pamela::RunHeaderEvent *reh = new pamela::RunHeaderEvent; // pamela::EventHeader *eH = new pamela::EventHeader; // // Define other basic variables // UInt_t procev = 0; stringstream file2; stringstream file3; stringstream qy; Int_t totevent = 0; UInt_t atime = 0; UInt_t re = 0; UInt_t ik = 0; // Position Float_t lon, lat, alt; // // IGRF stuff // float dimo = 0.0; // dipole moment (computed from dat files) float bnorth, beast, bdown, babs; float xl; // L value float icode; // code value for L accuracy (see fortran code) float bab1; // What's the difference with babs? float stps = 0.005; // step size for field line tracing float bdel = 0.01; // required accuracy float bequ; // equatorial b value (also called b_0) bool value = 0; // false if bequ is not the minimum b value float rr0; // equatorial radius normalized to earth radius // // Working filename // TString outputfile; stringstream name; name.str(""); name << outDir << "/"; // // temporary file and folder // TFile *tempfile = 0; TTree *tempOrbitalInfo = 0; stringstream tempname; stringstream OrbitalInfofolder; tempname.str(""); tempname << outDir; tempname << "/" << processFolder.Data(); OrbitalInfofolder.str(""); OrbitalInfofolder << tempname.str().c_str(); gSystem->MakeDirectory(OrbitalInfofolder.str().c_str()); tempname << "/OrbitalInfotree_run"; tempname << run << ".root"; // // DB classes // GL_ROOT *glroot = new GL_ROOT(); GL_TIMESYNC *dbtime = 0; GL_TLE *gltle = new GL_TLE(); // //Quaternions classes // Quaternions *L_QQ_Q_l_lower = new Quaternions(); InclinationInfo *RYPang_lower = new InclinationInfo(); Quaternions *L_QQ_Q_l_upper = new Quaternions(); InclinationInfo *RYPang_upper = new InclinationInfo(); cEci eCi; // Initialize fortran routines!!! Int_t ltp2 = 0; Int_t ltp3 = 0; Int_t uno = 1; char *niente = " "; GL_PARAM *glparam = new GL_PARAM(); GL_PARAM *glparam2 = new GL_PARAM(); Int_t parerror=glparam->Query_GL_PARAM(1,301,dbc); // parameters stored in DB in GL_PRAM table if ( parerror<0 ) { code = parerror; goto closeandexit; }; ltp2 = (Int_t)(glparam->PATH+glparam->NAME).Length(); if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam->PATH+glparam->NAME).Data()); // parerror=glparam2->Query_GL_PARAM(1,302,dbc); // parameters stored in DB in GL_PRAM table if ( parerror<0 ) { code = parerror; goto closeandexit; }; ltp3 = (Int_t)(glparam2->PATH+glparam2->NAME).Length(); if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam2->PATH+glparam2->NAME).Data()); // initize_((char *)niente,&uno,(char *)(glparam->PATH+glparam->NAME).Data(),<p2,(char *)(glparam2->PATH+glparam2->NAME).Data(),<p3); // // End IGRF stuff// // // // Let's start! // // As a first thing we must check what we have to do: if run = 0 we must process all events in the file has been passed // if run != 0 we must process only that run but first we have to check if the tree MyDetector2 already exist in the file // if it exists we are reprocessing data and we must delete that entries, if not we must create it. // if ( run == 0 ) reproc = true; // // // Output file is "outputfile" // if ( !file->IsOpen() ){ //printf(" OrbitalInfo - ERROR: cannot open file for writing\n"); throw -901; }; // // Retrieve GL_RUN variables from the level2 file // OrbitalInfoversion = OrbitalInfoInfo(false); // we should decide how to handle versioning system // // create an interface to RunInfo called "runinfo" // runinfo = new ItoRunInfo(file); // // open "Run" tree in level2 file, if not existing return an error (sngl != 0) // sgnl = 0; sgnl = runinfo->Update(run, "ORB", OrbitalInfoversion); //sgnl = runinfo->Read(run); if ( sgnl ){ //printf("OrbitalInfo - ERROR: RunInfo exited with non-zero status\n"); code = sgnl; goto closeandexit; } else { sgnl = 0; }; // // number of events in the file BEFORE the first event of our run // nobefrun = runinfo->GetFirstEntry(); // // total number of events in the file // totfileentries = runinfo->GetFileEntries(); // // first file entry AFTER the last event of our run // noaftrun = runinfo->GetLastEntry() + 1; // // number of run to be processed // numbofrun = runinfo->GetNoRun(); // // Try to access the OrbitalInfo tree in the file, if it exists we are reprocessing data if not we are processing a new run // OrbitalInfotrclone = (TTree*)file->Get("OrbitalInfo"); // if ( !OrbitalInfotrclone ){ // // tree does not exist, we are not reprocessing // reproc = false; if ( run == 0 ){ if (verbose) printf(" OrbitalInfo - WARNING: you are reprocessing data but OrbitalInfo tree does not exist!\n"); } if ( runinfo->IsReprocessing() && run != 0 ) { if (verbose) printf(" OrbitalInfo - WARNING: it seems you are not reprocessing data but OrbitalInfo\n versioning information already exists in RunInfo.\n"); } } else { // // tree exists, we are reprocessing data. Are we reprocessing a single run or all the file? // OrbitalInfotrclone->SetAutoSave(900000000000000LL); reproc = true; // // if (verbose) printf("\n Preparing the pre-processing...\n"); // if ( run == 0 ){ // // we are reprocessing all the file // if we are reprocessing everything we don't need to copy any old event and we can just work with the new tree and delete the old one immediately // reprocall = true; // if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing all runs\n"); // } else { // // we are reprocessing a single run, we must copy to the new tree the events in the file which preceed the first event of the run // reprocall = false; // if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing run number %u \n",run); // // copying old tree to a new file // tempfile = new TFile(tempname.str().c_str(),"RECREATE"); tempOrbitalInfo = OrbitalInfotrclone->CloneTree(-1,"fast"); tempOrbitalInfo->SetName("OrbitalInfo-old"); tempfile->Write(); tempfile->Close(); } // // Delete the old tree from old file and memory // OrbitalInfotrclone->Delete("all"); // if (verbose) printf(" ...done!\n"); // }; // // create mydetector tree mydect // file->cd(); OrbitalInfotr = new TTree("OrbitalInfo-new","PAMELA OrbitalInfo data"); OrbitalInfotr->SetAutoSave(900000000000000LL); OrbitalInfotr->Branch("OrbitalInfo","OrbitalInfo",&orbitalinfo); // if ( reproc && !reprocall ){ // // open new file and retrieve also tree informations // tempfile = new TFile(tempname.str().c_str(),"READ"); OrbitalInfotrclone = (TTree*)tempfile->Get("OrbitalInfo-old"); OrbitalInfotrclone->SetAutoSave(900000000000000LL); OrbitalInfotrclone->SetBranchAddress("OrbitalInfo",&orbitalinfoclone); // if ( nobefrun > 0 ){ if (verbose){ printf("\n Pre-processing: copying events from the old tree before the processed run\n"); printf(" Copying %u events in the file which are before the beginning of the run %u \n",nobefrun,run); printf(" Start copying at event number 0, end copying at event number %u \n",nobefrun); } for (UInt_t j = 0; j < nobefrun; j++){ // OrbitalInfotrclone->GetEntry(j); // // copy orbitalinfoclone to mydec // orbitalinfo->Clear(); // memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone)); // // Fill entry in the new tree // OrbitalInfotr->Fill(); // }; if (verbose) printf(" Finished successful copying!\n"); }; }; // // Get the list of run to be processed, if only one run has to be processed the list will contain one entry only. // runlist = runinfo->GetRunList(); // // Loop over the run to be processed // for (UInt_t irun=0; irun < numbofrun; irun++){ // // retrieve the first run ID to be processed using the RunInfo list // idRun = runlist->At(irun); if (verbose){ printf("\n\n\n ####################################################################### \n"); printf(" PROCESSING RUN NUMBER %i \n",(int)idRun); printf(" ####################################################################### \n\n\n"); } // runinfo->ID_ROOT_L0 = 0; // // store in the runinfo class the GL_RUN variables for our run // sgnl = 0; sgnl = runinfo->GetRunInfo(idRun); if ( sgnl ){ if ( debug ) printf("\n OrbitalInfo - ERROR: RunInfo exited with non-zero status\n"); code = sgnl; goto closeandexit; } else { sgnl = 0; }; // // now you can access that variables using the RunInfo class this way runinfo->ID_REG_RUN // if ( runinfo->ID_ROOT_L0 == 0 ){ if ( debug ) printf("\n OrbitalInfo - ERROR: no run with ID_RUN = %u \n\n Exiting... \n\n",idRun); code = -5; goto closeandexit; }; // // prepare the timesync for the db // dbtime = new GL_TIMESYNC(runinfo->ID_ROOT_L0,"ID",dbc); // // Search in the DB the path and name of the LEVEL0 file to be processed. // glroot->Query_GL_ROOT(runinfo->ID_ROOT_L0,dbc); // ftmpname.str(""); ftmpname << glroot->PATH.Data() << "/"; ftmpname << glroot->NAME.Data(); fname = ftmpname.str().c_str(); ftmpname.str(""); // // print out informations // totevent = runinfo->NEVENTS; //cout<<"totevents = "<RUNHEADER_TIME); printf(" RUN TRAILER absolute time is: %u \n",runinfo->RUNTRAILER_TIME); printf(" %i events to be processed for run %u: from %i to %i \n\n",totevent,idRun,runinfo->EV_FROM+1,runinfo->EV_FROM+totevent); }// // Open Level0 file l0File = new TFile(fname.Data()); if ( !l0File ) { if ( debug ) printf(" OrbitalInfo - ERROR: problems opening Level0 file\n"); code = -6; goto closeandexit; }; l0tr = (TTree*)l0File->Get("Physics"); if ( !l0tr ) { if ( debug ) printf(" OrbitalInfo - ERROR: no Physics tree in Level0 file\n"); l0File->Close(); code = -7; goto closeandexit; }; // EM: open header branch as well l0head = l0tr->GetBranch("Header"); if ( !l0head ) { if ( debug ) printf(" OrbitalInfo - ERROR: no Header branch in Level0 tree\n"); l0File->Close(); code = -8; goto closeandexit; }; l0tr->SetBranchAddress("Header", &eh); // end EM nevents = l0head->GetEntries(); // if ( nevents < 1 ) { if ( debug ) printf(" OrbitalInfo - ERROR: Level0 file is empty\n\n"); l0File->Close(); code = -11; goto closeandexit; }; // if ( runinfo->EV_TO > nevents-1 ) { if ( debug ) printf(" OrbitalInfo - ERROR: too few entries in the registry tree\n"); l0File->Close(); code = -12; goto closeandexit; }; // // TTree *tp = (TTree*)l0File->Get("RunHeader"); // tp->SetBranchAddress("Header", &eH); // tp->SetBranchAddress("RunHeader", &reh); // tp->GetEntry(0); // ph = eH->GetPscuHeader(); // ULong_t TimeSync = reh->LAST_TIME_SYNC_INFO; // ULong_t ObtSync = reh->OBT_TIME_SYNC; // if ( debug ) printf(" 1 TimeSync %lu ObtSync %lu DeltaOBT %lu\n",TimeSync,ObtSync,TimeSync-ObtSync); // ULong_t TimeSync = (ULong_t)dbtime->GetTimesync(); ULong_t ObtSync = (ULong_t)(dbtime->GetObt0()/1000); ULong_t DeltaOBT = TimeSync - ObtSync; if ( debug ) printf(" 2 TimeSync %lu ObtSync %lu DeltaOBT %lu\n",(ULong_t)(dbtime->GetTimesync()/1000),(ULong_t)dbtime->GetObt0(),TimeSync-ObtSync); l0trm = (TTree*)l0File->Get("Mcmd"); neventsm = l0trm->GetEntries(); // if (neventsm == 0){ if ( debug ) printf("InclinationInfo - ERROR: No quaternions in this File"); l0File->Close(); code = -13; goto closeandexit; } // l0trm->SetBranchAddress("Mcmd", &mcmdev); l0trm->SetBranchAddress("Header", &eh); // // // UInt_t mctren = 0; UInt_t mcreen = 0; UInt_t numrec = 0; // Double_t upperqtime = 0; Double_t lowerqtime = 0; Double_t incli = 0; oi = 0; UInt_t ooi = 0; // // init quaternions sync // Bool_t isf = true; Int_t fgh = 0; // // run over all the events of the run // if (verbose) printf("\n Ready to start! \n\n Processed events: \n\n"); // for ( re = runinfo->EV_FROM; re < (runinfo->EV_FROM+runinfo->NEVENTS); re++){ // if ( procev%1000 == 0 && procev > 0 && verbose ) printf(" %iK \n",procev/1000); if ( debug ) printf(" %i \n",procev); // l0head->GetEntry(re); // // absolute time of this event // ph = eh->GetPscuHeader(); atime = dbtime->DBabsTime(ph->GetOrbitalTime()); // // paranoid check // if ( (atime > runinfo->RUNTRAILER_TIME) || (atime < runinfo->RUNHEADER_TIME) ) { if (verbose) printf(" OrbitalInfo - WARNING: event at time outside the run time window, skipping it\n"); debug = true; continue; } // procev++; // // start processing // orbitalinfo->Clear(); // // Fill OBT, pkt_num and absTime // ph = eh->GetPscuHeader(); orbitalinfo->pkt_num = ph->GetCounter(); orbitalinfo->OBT = ph->GetOrbitalTime(); orbitalinfo->absTime = atime; // // Propagate the orbit from the tle time to atime, using SGP(D)4. // cCoordGeo coo; float jyear=0; // if(atime >= gltle->GetToTime()) { if ( !gltle->Query(atime, dbc) ){ // // Compute the magnetic dipole moment. // UInt_t year, month, day, hour, min, sec; // TTimeStamp t = TTimeStamp(atime, kTRUE); t.GetDate(kTRUE, 0, &year, &month, &day); t.GetTime(kTRUE, 0, &hour, &min, &sec); jyear = (float) year + (month*31.+ (float) day)/365. + (hour*3600.+min*60.+(float)sec)/(24*3600*365.); // feldcof_(&jyear, &dimo); // get dipole moment for year } else { code = -56; goto closeandexit; }; } coo = getCoo(atime, gltle->GetFromTime(), gltle->GetTle()); // cOrbit orbits(*gltle->GetTle()); // // synchronize with quaternions data // if ( isf ){ // // First event // isf = false; upperqtime = atime; lowerqtime = runinfo->RUNHEADER_TIME; for ( ik = 0; ik < neventsm; ik++){ l0trm->GetEntry(ik); tmpSize = mcmdev->Records->GetEntries(); numrec = tmpSize; for (Int_t j3 = 0;j3Records->At(j3); if ((int)mcmdrc->ID1 == 226){ L_QQ_Q_l_upper->fill(mcmdrc->McmdData); for (UInt_t ui = 0; ui < 6; ui++){ if (ui>0){ if (L_QQ_Q_l_upper->time[ui]>L_QQ_Q_l_upper->time[0]){ if (dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[ui]*1000-DeltaOBT*1000))DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[ui]*1000-DeltaOBT*1000)); orbits.getPosition((double) (upperqtime - gltle->GetFromTime())/60., &eCi); RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[ui][0],L_QQ_Q_l_upper->quat[ui][1],L_QQ_Q_l_upper->quat[ui][2],L_QQ_Q_l_upper->quat[ui][3]); }else { lowerqtime = upperqtime; upperqtime = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[ui]*1000-DeltaOBT*1000)); orbits.getPosition((double) (upperqtime - gltle->GetFromTime())/60., &eCi); RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[ui][0],L_QQ_Q_l_upper->quat[ui][1],L_QQ_Q_l_upper->quat[ui][2],L_QQ_Q_l_upper->quat[ui][3]); mcreen = j3; mctren = ik; if(fgh==0){ CopyQ(L_QQ_Q_l_lower,L_QQ_Q_l_upper); CopyAng(RYPang_lower,RYPang_upper); } oi=ui; goto closethisloop; } fgh++; CopyQ(L_QQ_Q_l_lower,L_QQ_Q_l_upper); CopyAng(RYPang_lower,RYPang_upper); } }else{ if (dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000))DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); orbits.getPosition((double) (upperqtime - gltle->GetFromTime())/60., &eCi); RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]); } else { lowerqtime = upperqtime; upperqtime = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); orbits.getPosition((double) (upperqtime - gltle->GetFromTime())/60., &eCi); RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]); mcreen = j3; mctren = ik; if(fgh==0){ CopyQ(L_QQ_Q_l_lower,L_QQ_Q_l_upper); CopyAng(RYPang_lower,RYPang_upper); lowerqtime = atime-1; } oi=ui; goto closethisloop; //_0 = true; } fgh++; CopyQ(L_QQ_Q_l_lower,L_QQ_Q_l_upper); CopyAng(RYPang_lower,RYPang_upper); //_0 = true; }; //cin>>grib; }; }; }; }; }; closethisloop: // if ((atime>(UInt_t)upperqtime)||(atime<(UInt_t)lowerqtime)){ // lowerqtime = upperqtime; UInt_t maxloop = 100000000; UInt_t mn = 0; bool gh=false; ooi=oi; if ( verbose ) printf(" OrbitalInfoCore: sync with quaternions data upperqtime %u lowerqtime %u atime %u \n",(UInt_t)upperqtime,(UInt_t)lowerqtime,atime); while (!gh){ if ( mn > maxloop ){ if ( verbose ) printf(" OrbitalInfoCore: quaternions sync out of range! exiting\n"); gh = true; }; mn++; if (oi<5) oi++; else oi=0; if (oi==0){ mcreen++; if (mcreen == numrec){ mctren++; mcreen = 0; l0trm->GetEntry(mctren); numrec = mcmdev->Records->GetEntries(); } CopyQ(L_QQ_Q_l_lower,L_QQ_Q_l_upper); CopyAng(RYPang_lower,RYPang_upper); mcmdrc = (pamela::McmdRecord*)mcmdev->Records->At(mcreen); if ((int)mcmdrc->ID1 == 226){ L_QQ_Q_l_upper->fill(mcmdrc->McmdData); upperqtime = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); if (upperqtimeRUNTRAILER_TIME; CopyQ(L_QQ_Q_l_upper,L_QQ_Q_l_lower); CopyAng(RYPang_upper,RYPang_lower); }else{ orbits.getPosition((double) (upperqtime - gltle->GetFromTime())/60., &eCi); RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]); } // re--; gh=true; } }else{ if ((Int_t)L_QQ_Q_l_upper->time[oi]>(Int_t)L_QQ_Q_l_upper->time[0]){ upperqtime = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); orbits.getPosition((double) (upperqtime - gltle->GetFromTime())/60., &eCi); RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[oi][0],L_QQ_Q_l_upper->quat[oi][1],L_QQ_Q_l_upper->quat[oi][2],L_QQ_Q_l_upper->quat[oi][3]); orbits.getPosition((double) (lowerqtime - gltle->GetFromTime())/60., &eCi); RYPang_lower->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[oi-1][0],L_QQ_Q_l_upper->quat[oi-1][1],L_QQ_Q_l_upper->quat[oi-1][2],L_QQ_Q_l_upper->quat[oi-1][3]); // re--; gh=true; }; }; }; if ( verbose ) printf(" OrbitalInfoCore: sync with quaternions data now we have upperqtime %u lowerqtime %u atime %u \n",(UInt_t)upperqtime,(UInt_t)lowerqtime,atime); }; // // Fill in quaternions and angles // if ((atime<=(UInt_t)upperqtime)&&(atime>=(UInt_t)lowerqtime)){ UInt_t tut = holeq(lowerqtime, upperqtime, L_QQ_Q_l_lower, L_QQ_Q_l_upper, oi); if (oi == 0){ if ((tut!=5)||(tut!=6)){ incli = (L_QQ_Q_l_upper->quat[0][0]-L_QQ_Q_l_lower->quat[ooi][0])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_lower->time[ooi]*1000-DeltaOBT*1000))); orbitalinfo->q0 = incli*atime+L_QQ_Q_l_upper->quat[0][0]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); incli = (L_QQ_Q_l_upper->quat[0][1]-L_QQ_Q_l_lower->quat[ooi][1])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_lower->time[ooi]*1000-DeltaOBT*1000))); orbitalinfo->q1 = incli*atime+L_QQ_Q_l_upper->quat[0][1]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); incli = (L_QQ_Q_l_upper->quat[0][2]-L_QQ_Q_l_lower->quat[ooi][2])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_lower->time[ooi]*1000-DeltaOBT*1000))); orbitalinfo->q2 = incli*atime+L_QQ_Q_l_upper->quat[0][2]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); incli = (L_QQ_Q_l_upper->quat[0][3]-L_QQ_Q_l_lower->quat[ooi][3])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_lower->time[ooi]*1000-DeltaOBT*1000))); orbitalinfo->q3 = incli*atime+L_QQ_Q_l_upper->quat[0][3]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); incli = (RYPang_upper->Tangazh-RYPang_lower->Tangazh)/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_lower->time[ooi]*1000-DeltaOBT*1000))); orbitalinfo->theta = incli*atime+RYPang_upper->Tangazh-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); incli = (RYPang_upper->Ryskanie-RYPang_lower->Ryskanie)/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_lower->time[ooi]*1000-DeltaOBT*1000))); orbitalinfo->phi = incli*atime+RYPang_upper->Ryskanie-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); incli = (RYPang_upper->Kren-RYPang_lower->Kren)/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_lower->time[ooi]*1000))); orbitalinfo->etha = incli*atime+RYPang_upper->Kren-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); } if (tut==6){ if (fabs(RYPang_lower->Kren-RYPang_upper->Kren)<0.1){ incli = (L_QQ_Q_l_upper->quat[0][0]-L_QQ_Q_l_lower->quat[ooi][0])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_lower->time[ooi]*1000-DeltaOBT*1000))); orbitalinfo->q0 = incli*atime+L_QQ_Q_l_upper->quat[0][0]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); incli = (L_QQ_Q_l_upper->quat[0][1]-L_QQ_Q_l_lower->quat[ooi][1])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_lower->time[ooi]*1000-DeltaOBT*1000))); orbitalinfo->q1 = incli*atime+L_QQ_Q_l_upper->quat[0][1]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); incli = (L_QQ_Q_l_upper->quat[0][2]-L_QQ_Q_l_lower->quat[ooi][2])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_lower->time[ooi]*1000-DeltaOBT*1000))); orbitalinfo->q2 = incli*atime+L_QQ_Q_l_upper->quat[0][2]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); incli = (L_QQ_Q_l_upper->quat[0][3]-L_QQ_Q_l_lower->quat[ooi][3])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_lower->time[ooi]*1000-DeltaOBT*1000))); orbitalinfo->q3 = incli*atime+L_QQ_Q_l_upper->quat[0][3]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); incli = (RYPang_upper->Tangazh-RYPang_lower->Tangazh)/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_lower->time[ooi]*1000-DeltaOBT*1000))); orbitalinfo->theta = incli*atime+RYPang_upper->Tangazh-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); incli = (RYPang_upper->Ryskanie-RYPang_lower->Ryskanie)/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_lower->time[ooi]*1000-DeltaOBT*1000))); orbitalinfo->phi = incli*atime+RYPang_upper->Ryskanie-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); //cout<<"upper = "<Ryskanie<<" lower = "<Ryskanie<<" timeupper[0] = "<time[0]-5500000<<" timelower["<time[ooi]-5500000<<" Ryscanie = "<phi<<" incli = "<DBabsTime((UInt_t)L_QQ_Q_l_lower->time[ooi]*1000-DeltaOBT*1000)<<" atime = "<>grib; incli = (RYPang_upper->Kren-RYPang_lower->Kren)/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_lower->time[ooi]*1000-DeltaOBT*1000))); orbitalinfo->etha = incli*atime+RYPang_upper->Kren-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); } } } else { if((tut!=6)||(tut!=7)||(tut!=9)){ incli = (L_QQ_Q_l_upper->quat[oi][0]-L_QQ_Q_l_upper->quat[oi-1][0])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi-1]*1000-DeltaOBT*1000))); orbitalinfo->q0 = incli*atime+L_QQ_Q_l_upper->quat[oi][0]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); incli = (L_QQ_Q_l_upper->quat[oi][1]-L_QQ_Q_l_upper->quat[oi-1][1])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi-1]*1000-DeltaOBT*1000))); orbitalinfo->q1 = incli*atime+L_QQ_Q_l_upper->quat[oi][1]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); incli = (L_QQ_Q_l_upper->quat[oi][2]-L_QQ_Q_l_upper->quat[oi-1][2])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi-1]*1000-DeltaOBT*1000))); orbitalinfo->q2 = incli*atime+L_QQ_Q_l_upper->quat[oi][2]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); incli = (L_QQ_Q_l_upper->quat[oi][3]-L_QQ_Q_l_upper->quat[oi-1][3])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi-1]*1000-DeltaOBT*1000))); orbitalinfo->q3 = incli*atime+L_QQ_Q_l_upper->quat[oi][3]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); incli = (RYPang_upper->Tangazh-RYPang_lower->Tangazh)/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi-1]*1000-DeltaOBT*1000))); orbitalinfo->theta = incli*atime+RYPang_upper->Tangazh-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); incli = (RYPang_upper->Ryskanie-RYPang_lower->Ryskanie)/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi-1]*1000-DeltaOBT*1000))); orbitalinfo->phi = incli*atime+RYPang_upper->Ryskanie-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); //cout<<"upper = "<Ryskanie<<" lower = "<Ryskanie<<" timeupper["<time[oi]-5500000<<" timelower["<time[oi-1]-5500000<<" Ryscanie = "<phi<<" incli = "<DBabsTime((UInt_t)L_QQ_Q_l_lower->time[oi-1]*1000-DeltaOBT*1000)<<" atime = "<>grib; incli = (RYPang_upper->Kren-RYPang_lower->Kren)/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi-1]*1000-DeltaOBT*1000))); orbitalinfo->etha = incli*atime+RYPang_upper->Kren-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); } if (tut==6){ if (fabs(RYPang_lower->Kren-RYPang_upper->Kren)<0.1){ incli = (L_QQ_Q_l_upper->quat[oi][0]-L_QQ_Q_l_upper->quat[oi-1][0])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi-1]*1000-DeltaOBT*1000))); orbitalinfo->q0 = incli*atime+L_QQ_Q_l_upper->quat[oi][0]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); incli = (L_QQ_Q_l_upper->quat[oi][1]-L_QQ_Q_l_upper->quat[oi-1][1])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi-1]*1000-DeltaOBT*1000))); orbitalinfo->q1 = incli*atime+L_QQ_Q_l_upper->quat[oi][1]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); incli = (L_QQ_Q_l_upper->quat[oi][2]-L_QQ_Q_l_upper->quat[oi-1][2])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi-1]*1000-DeltaOBT*1000))); orbitalinfo->q2 = incli*atime+L_QQ_Q_l_upper->quat[oi][2]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); incli = (L_QQ_Q_l_upper->quat[oi][3]-L_QQ_Q_l_upper->quat[oi-1][3])/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi-1]*1000-DeltaOBT*1000))); orbitalinfo->q3 = incli*atime+L_QQ_Q_l_upper->quat[oi][3]-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); incli = (RYPang_upper->Tangazh-RYPang_lower->Tangazh)/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi-1]*1000-DeltaOBT*1000))); orbitalinfo->theta = incli*atime+RYPang_upper->Tangazh-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); incli = (RYPang_upper->Ryskanie-RYPang_lower->Ryskanie)/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi-1]*1000-DeltaOBT*1000))); orbitalinfo->phi = incli*atime+RYPang_upper->Ryskanie-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); //cout<<"upper = "<Ryskanie<<" lower = "<Ryskanie<<" timeupper["<time[oi]-5500000<<" timelower["<time[oi-1]-5500000<<" Ryscanie = "<phi<<" incli = "<DBabsTime((UInt_t)L_QQ_Q_l_lower->time[oi-1]*1000-DeltaOBT*1000)<<" atime = "<>grib; incli = (RYPang_upper->Kren-RYPang_lower->Kren)/(dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000))-dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi-1]*1000-DeltaOBT*1000))); orbitalinfo->etha = incli*atime+RYPang_upper->Kren-incli*dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[oi]*1000-DeltaOBT*1000)); } } } orbitalinfo->mode = holeq(lowerqtime, upperqtime, L_QQ_Q_l_lower, L_QQ_Q_l_upper, oi); } else { orbitalinfo->mode = -1; }; // // fill orbital positions // // Build coordinates in the right range. We want to convert, // longitude from (0, 2*pi) to (-180deg, 180deg). Altitude is // in meters. lon = (coo.m_Lon > M_PI) ? rad2deg(coo.m_Lon - 2*M_PI) : rad2deg(coo.m_Lon); lat = rad2deg(coo.m_Lat); alt = coo.m_Alt; // if( lon<180 && lon>-180 && lat<90 && lat>-90 && alt>0 ){ // orbitalinfo->lon = lon; orbitalinfo->lat = lat; orbitalinfo->alt = alt ; // // compute mag field components and L shell. // feldg_(&lat, &lon, &alt, &bnorth, &beast, &bdown, &babs); shellg_(&lat, &lon, &alt, &dimo, &xl, &icode, &bab1); findb0_(&stps, &bdel, &value, &bequ, &rr0); // orbitalinfo->Bnorth = bnorth; orbitalinfo->Beast = beast; orbitalinfo->Bdown = bdown; orbitalinfo->Babs = babs; orbitalinfo->BB0 = babs/bequ; orbitalinfo->L = xl; // Set Stormer vertical cutoff using L shell. orbitalinfo->cutoff[0] = 14.9/(xl*xl); // }; // // Fill the class // OrbitalInfotr->Fill(); // }; // loop over the events in the run // // Here you may want to clear some variables before processing another run // delete dbtime; delete L_QQ_Q_l_upper; delete L_QQ_Q_l_lower; delete RYPang_upper; delete RYPang_lower; }; // process all the runs if (verbose) printf("\n Finished processing data \n"); // closeandexit: // // we have finished processing the run(s). If we processed a single run now we must copy all the events after our run from the old tree to the new one and delete the old tree. // if ( !reprocall && reproc && code >= 0 ){ if ( totfileentries > noaftrun ){ if (verbose){ printf("\n Post-processing: copying events from the old tree after the processed run\n"); printf(" Copying %i events in the file which are after the end of the run %i \n",(int)(totfileentries-noaftrun),(int)run); printf(" Start copying at event number %i end copying at event number %i \n",(int)noaftrun,(int)totfileentries); } for (UInt_t j = noaftrun; j < totfileentries; j++ ){ // // Get entry from old tree // OrbitalInfotrclone->GetEntry(j); // // copy orbitalinfoclone to OrbitalInfo // orbitalinfo->Clear(); // memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone)); // // Fill entry in the new tree // OrbitalInfotr->Fill(); }; if (verbose) printf(" Finished successful copying!\n"); }; }; // // Close files, delete old tree(s), write and close level2 file // if ( l0File ) l0File->Close(); if ( tempfile ) tempfile->Close(); gSystem->Unlink(tempname.str().c_str()); // if ( runinfo ) runinfo->Close(); if ( OrbitalInfotr ) OrbitalInfotr->SetName("OrbitalInfo"); if ( file ){ file->cd(); file->Write(); }; // gSystem->Unlink(OrbitalInfofolder.str().c_str()); // // the end // if (verbose) printf("\n Exiting...\n"); if(OrbitalInfotr)OrbitalInfotr->Delete(); // if ( orbitalinfo ) delete orbitalinfo; if ( orbitalinfoclone ) delete orbitalinfoclone; if ( glroot ) delete glroot; if ( runinfo ) delete runinfo; // if(code < 0) throw code; return(code); } // // Returns the cCoordGeo structure holding the geographical // coordinates for the event (see sgp4.h). // // atime is the abstime of the event in UTC unix time. // tletime is the time of the tle in UTC unix time. // tle is the previous and nearest tle (compared to atime). cCoordGeo getCoo(UInt_t atime, UInt_t tletime, cTle *tle) { cEci eci; cOrbit orbit(*tle); orbit.getPosition((double) (atime - tletime)/60., &eci); return eci.toGeo(); } // function of copyng of quatrnions classes void CopyQ(Quaternions *Q1, Quaternions *Q2){ for(UInt_t i = 0; i < 6; i++){ Q1->time[i]=Q2->time[i]; for (UInt_t j = 0; j < 4; j++)Q1->quat[i][j]=Q2->quat[i][j]; } return; } // functions of copyng InclinationInfo classes void CopyAng(InclinationInfo *A1, InclinationInfo *A2){ A1->Tangazh = A2->Tangazh; A1->Ryskanie = A2->Ryskanie; A1->Kren = A2->Kren; return; } UInt_t holeq(Double_t lower,Double_t upper,Quaternions *Qlower, Quaternions *Qupper, UInt_t f){ UInt_t hole = 10; bool R10l = false; // Sign of R10 mode in lower quaternions array bool R10u = false; // Sign of R10 mode in upper quaternions array bool insm = false; // Sign that we inside quaternions array bool mxtml = false; // Sign of mixt mode in lower quaternions array bool mxtmu = false; // Sign of mixt mode in upper quaternions array bool npasm = false; // Sign of normall pass between R10 and non R10 or between non R10 and R10 UInt_t NCQl = 6; // Number of correct quaternions in lower array UInt_t NCQu = 6; // Number of correct quaternions in upper array if (f>0){ insm = true; if(Qupper->time[f]-Qupper->time[f-1]==30) R10u = false; if(Qupper->time[f]-Qupper->time[f-1]<1) R10u = true; }else{ insm = false; if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]<2)) R10l = true; if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]<2)) R10u = true; if((Qlower->time[5]-Qlower->time[0]==150)&&(Qlower->time[1]-Qlower->time[0]==30)) R10l = false; if((Qupper->time[5]-Qupper->time[0]==150)&&(Qupper->time[1]-Qupper->time[0]==30)) R10u = false; if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]==30)){ mxtml = true; for(UInt_t i = 1; i < 6; i++){ if(Qlower->time[i]-Qlower->time[0]==30*i) NCQl=i; } } if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]==30)){ mxtmu = true; for(UInt_t i = 1; i < 6; i++){ if(Qupper->time[i]-Qupper->time[0]==30*i) NCQu=i; } } } if(((upper-lower==1.5)||(upper-lower==3.)||(upper-lower==30.)||(upper-lower==31.5)||(upper-lower==33.)||(upper-lower==181.5)||(upper-lower==210.)||(upper-lower==211.5))&&!insm) npasm = true; if (R10u&&insm) hole=0; // best event R10 if ((upper-lower<=5)&&(!insm)&&R10l&&R10u) hole = 1; // when first of 6 quaternions in array is correct if (((!R10u)&&insm)||((!insm)&&(!R10u)&&(!R10l)&&((upper-lower==210+(6-NCQl)*30)||(upper-lower==30)))) hole = 2; //non R10 if (npasm&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 3; //normall pass from R10 to non R10 or from non R10 to R10 if ((!npasm)&&(upper-lower<=300)&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 4; // eliminable hole between R10 and non R10 or between non R10 and R10 if ((upper-lower>=300)&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 5; //uneliminable hole between R10 and non R10 or between non R10 and R10 if ((upper-lower>5)&&(upper-lower<=300)&&R10u&&R10l) hole = 6; // eliminable hole inside R10 if ((upper-lower>300)&&R10u&&R10l) hole = 7; //uneliminable hole inside R10 if ((upper-lower>210)&&(upper-lower<=1200)&&(!R10u)&&(!R10l)) hole = 8; //eliminable hole inside non R10 if ((upper-lower>1200)&&!R10u&&!R10l) hole = 9; // uneliminable hole inside non R10 return hole; }