// C/C++ headers // #include #include #include #include #include // // ROOT headers // //#include #include //for test only. Vitaly. #include //#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // // RunInfo header // #include #include // // YODA headers // #include #include #include #include #include #include // // This program headers // #include #include #include #include // // Tracker and ToF classes headers and definitions // #include #include #include // new tracking code using namespace std; // // CORE ROUTINE // // int OrbitalInfoCore(UInt_t run, TFile *file, GL_TABLES *glt, Int_t OrbitalInfoargc, char *OrbitalInfoargv[]){ // Int_t i = 0; TString host = glt->CGetHost(); TString user = glt->CGetUser(); TString psw = glt->CGetPsw(); TSQLServer *dbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); // stringstream myquery; myquery.str(""); myquery << "SET time_zone='+0:00';"; delete dbc->Query(myquery.str().c_str()); delete dbc->Query("SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';"); // TString processFolder = Form("OrbitalInfoFolder_%u",run); // // Set these to true to have a very verbose output. // Bool_t debug = false; // Bool_t verbose = false; // Bool_t standalone = false; // if ( OrbitalInfoargc > 0 ){ i = 0; while ( i < OrbitalInfoargc ){ if ( !strcmp(OrbitalInfoargv[i],"-processFolder") ) { if ( OrbitalInfoargc < i+1 ){ throw -3; } processFolder = (TString)OrbitalInfoargv[i+1]; i++; } if ( (!strcmp(OrbitalInfoargv[i],"--debug")) || (!strcmp(OrbitalInfoargv[i],"-g")) ) { verbose = true; debug = true; } if ( (!strcmp(OrbitalInfoargv[i],"--verbose")) || (!strcmp(OrbitalInfoargv[i],"-v")) ) { verbose = true; } if ( (!strcmp(OrbitalInfoargv[i],"--standalone")) ) { standalone = true; } if ( (!strcmp(OrbitalInfoargv[i],"--calculate-pitch")) ) { standalone = false; } i++; } } if ( debug ){ printf("START\n"); gObjectTable->Print(); } // const char* outDir = gSystem->DirName(gSystem->DirName(file->GetPath())); // TTree *OrbitalInfotr = 0; UInt_t nevents = 0; UInt_t neventsm = 0; // // variables needed to reprocess data // Long64_t maxsize = 10000000000LL; TTree::SetMaxTreeSize(maxsize); // TString OrbitalInfoversion; ItoRunInfo *runinfo = 0; TArrayI *runlist = 0; TTree *OrbitalInfotrclone = 0; Bool_t reproc = false; Bool_t reprocall = false; Bool_t igrfloaded = false; UInt_t nobefrun = 0; UInt_t noaftrun = 0; UInt_t numbofrun = 0; stringstream ftmpname; TString fname; UInt_t totfileentries = 0; UInt_t idRun = 0; UInt_t anni5 = 60 * 60 * 24 * 365 * 5 ;//1576800 // // My variables. Vitaly. // // UInt_t oi = 0; Int_t tmpSize = 0; // // variables needed to handle error signals // Int_t code = 0; Int_t sgnl; // // OrbitalInfo classes // OrbitalInfo *orbitalinfo = new OrbitalInfo(); OrbitalInfo *orbitalinfoclone = new OrbitalInfo(); // // define variables for opening and reading level0 file // TFile *l0File = 0; TTree *l0tr = 0; // TTree *l0trm = 0; TChain *ch = 0; // EM: open also header branch TBranch *l0head = 0; pamela::EventHeader *eh = 0; pamela::PscuHeader *ph = 0; pamela::McmdEvent *mcmdev = 0; pamela::McmdRecord *mcmdrc = 0; // end EM // pamela::RunHeaderEvent *reh = new pamela::RunHeaderEvent; // pamela::EventHeader *eH = new pamela::EventHeader; // // Define other basic variables // UInt_t procev = 0; stringstream file2; stringstream file3; stringstream qy; Int_t totevent = 0; UInt_t atime = 0; UInt_t re = 0; UInt_t ik = 0; // Position Float_t lon, lat, alt; // // IGRF stuff // Float_t dimo = 0.0; // dipole moment (computed from dat files) // EM GCC 4.7 Float_t bnorth, beast, bdown, babs; Float_t xl; // L value Int_t icode; // code value for L accuracy (see fortran code) Float_t bab1; // What's the difference with babs? Float_t stps = 0.005; // step size for field line tracing Float_t bdel = 0.01; // required accuracy Float_t bequ; // equatorial b value (also called b_0) Bool_t value = 0; // false if bequ is not the minimum b value Float_t rr0; // equatorial radius normalized to earth radius // // Working filename // TString outputfile; stringstream name; name.str(""); name << outDir << "/"; // // temporary file and folder // TFile *tempfile = 0; TTree *tempOrbitalInfo = 0; stringstream tempname; stringstream OrbitalInfofolder; Bool_t myfold = false; tempname.str(""); tempname << outDir; tempname << "/" << processFolder.Data(); OrbitalInfofolder.str(""); OrbitalInfofolder << tempname.str().c_str(); tempname << "/OrbitalInfotree_run"; tempname << run << ".root"; UInt_t totnorun = 0; // // DB classes // GL_ROOT *glroot = new GL_ROOT(); GL_TIMESYNC *dbtime = 0; GL_TLE *gltle = new GL_TLE(); // //Quaternions classes // Quaternions *L_QQ_Q_l_lower = 0; InclinationInfo *RYPang_lower = 0; Quaternions *L_QQ_Q_l_upper = 0; InclinationInfo *RYPang_upper = 0; cEci eCi; // Initialize fortran routines!!! Int_t ltp1 = 0; Int_t ltp2 = 0; GL_PARAM *glparam0 = new GL_PARAM(); GL_PARAM *glparam = new GL_PARAM(); GL_PARAM *glparam2 = new GL_PARAM(); // // Orientation variables. Vitaly // UInt_t evfrom = 0; UInt_t jumped = 0; Int_t itr = -1; // Double_t A1; // Double_t A2; // Double_t A3; Double_t Px = 0; Double_t Py = 0; Double_t Pz = 0; TTree *ttof = 0; ToFLevel2 *tof = new ToFLevel2(); TTree *ttrke = 0; TrkLevel2 *trke = new TrkLevel2(); OrientationInfo *PO = new OrientationInfo(); Int_t nz = 6; Float_t zin[6]; Int_t nevtofl2 = 0; Int_t nevtrkl2 = 0; if ( verbose ) cout<<"Reading quaternions external file"< recqtime; vector recq0; vector recq1; vector recq2; vector recq3; Float_t Norm = 1; recqtime.reserve(1500000); recq0.reserve(1500000); recq1.reserve(1500000); recq2.reserve(1500000); recq3.reserve(1500000); vector RTtime1; vector RTtime2; vector RTbank1; vector RTbank2; vector RTbpluto1; vector RTbpluto2; vector RTazim; vector RTstart; vector RTpluto2; vector RTpluto1; vector RTerrq; vector RTqual; RTtime1.reserve(200000); RTtime2.reserve(200000); RTbank1.reserve(200000); RTbank2.reserve(200000); RTbpluto1.reserve(200000); RTbpluto2.reserve(200000); RTazim.reserve(200000); RTstart.reserve(200000); RTpluto1.reserve(200000); RTpluto2.reserve(200000); RTerrq.reserve(200000); RTqual.reserve(200000); TClonesArray *tcNucleiTrk = NULL; TClonesArray *tcExtNucleiTrk = NULL; TClonesArray *tcExtTrk = NULL; TClonesArray *tcNucleiTof = NULL; TClonesArray *tcExtNucleiTof = NULL; TClonesArray *tcExtTof = NULL; TClonesArray *torbNucleiTrk = NULL; TClonesArray *torbExtNucleiTrk = NULL; TClonesArray *torbExtTrk = NULL; Bool_t hasNucleiTrk = false; Bool_t hasExtNucleiTrk = false; Bool_t hasExtTrk = false; Bool_t hasNucleiTof = false; Bool_t hasExtNucleiTof = false; Bool_t hasExtTof = false; ifstream in; ifstream an; // ofstream mc; // TString gr; Int_t parerror2=0; Int_t parerror=glparam0->Query_GL_PARAM(1,303,dbc); // parameters stored in DB in GL_PRAM table if ( verbose ) cout<PATH+glparam0->NAME).Data()<PATH+glparam0->NAME).Data(),ios::in); while(!in.eof()){ recqtime.resize(recqtime.size()+1); Int_t sizee = recqtime.size(); recq0.resize(sizee); recq1.resize(sizee); recq2.resize(sizee); recq3.resize(sizee); in>>recqtime[sizee-1]; in>>recq0[sizee-1]; in>>recq1[sizee-1]; in>>recq2[sizee-1]; in>>recq3[sizee-1]; in>>Norm; /* CHECK RECOVERED QUATERNIONS PROBLEM if(recqtime[sizee-1]>=1160987921.75 && recqtime[sizee-1]<=1160987932.00){ cout<<"We found it at start"<<"\t"<Query_GL_PARAM(1,305,dbc); if ( verbose ) cout<PATH+glparam0->NAME).Data()<PATH+glparam0->NAME).Data(),ios::in); while(!an.eof()){ RTtime1.resize(RTtime1.size()+1); Int_t sizee = RTtime1.size(); RTbank1.resize(sizee+1); RTazim.resize(sizee+1); RTerrq.resize(sizee+1); RTstart.resize(sizee+1); RTpluto1.resize(sizee+1); RTbpluto1.resize(sizee+1); RTqual.resize(sizee+1); an>>RTtime1[sizee-1]; an>>RTbank1[sizee-1]; an>>RTstart[sizee-1]; an>>RTpluto1[sizee-1]; an>>RTbpluto1[sizee-1]; an>>RTazim[sizee-1]; an>>RTerrq[sizee-1]; an>>RTqual[sizee-1]; if(sizee>1) { RTtime2.resize(sizee+1); RTbank2.resize(sizee+1); RTpluto2.resize(sizee+1); RTbpluto2.resize(sizee+1); RTtime2[sizee-2]=RTtime1[sizee-1]; RTpluto2[sizee-2]=RTpluto1[sizee-1]; RTbank2[sizee-2]=RTbank1[sizee-1]; RTbpluto2[sizee-2]=RTbpluto1[sizee-1]; } } an.close(); //cout<<"put some number here"<>yupi; if ( verbose ) cout<<"We have read Rotation Table"<GetZTOF(tof->GetToFPlaneID(ip)); }; // if ( !standalone ){ // // Does it contain the Tracker and ToF trees? // ttof = (TTree*)file->Get("ToF"); if ( !ttof ) { if ( verbose ) printf(" OrbitalInfo - ERROR: no tof tree\n"); code = -900; goto closeandexit; } ttof->SetBranchAddress("ToFLevel2",&tof); nevtofl2 = ttof->GetEntries(); // // Look for extended tracking algorithm // if ( verbose ) printf("Look for extended and nuclei tracking algorithms in ToF\n"); // Nuclei tracking algorithm Int_t checkAlgo = 0; tcNucleiTof = new TClonesArray("ToFTrkVar"); checkAlgo = ttof->SetBranchAddress("TrackNuclei",&tcNucleiTof); if ( !checkAlgo ){ if ( verbose ) printf(" Nuclei tracking algorithm ToF branch found! :D \n"); hasNucleiTof = true; } else { if ( verbose ) printf(" Nuclei tracking algorithm ToF branch not found :( !\n"); printf(" ok, this is not a problem (it depends on tracker settings) \n"); delete tcNucleiTof; tcNucleiTof=NULL; // 10RED reprocessing bug } // Nuclei tracking algorithm using calorimeter points tcExtNucleiTof = new TClonesArray("ToFTrkVar"); checkAlgo = ttof->SetBranchAddress("RecoveredTrackNuclei",&tcExtNucleiTof); if ( !checkAlgo ){ if ( verbose ) printf(" Recovered nuclei tracking algorithm ToF branch found! :D \n"); hasExtNucleiTof = true; } else { if ( verbose ) printf(" Recovered nuclei tracking algorithm ToF branch not found :( !\n"); printf(" ok, this is not a problem (it depends on tracker settings) \n"); delete tcExtNucleiTof; tcExtNucleiTof=NULL; // 10RED reprocessing bug } // Tracking algorithm using calorimeter points tcExtTof = new TClonesArray("ToFTrkVar"); checkAlgo = ttof->SetBranchAddress("RecoveredTrack",&tcExtTof); if ( !checkAlgo ){ if ( verbose ) printf(" Recovered track algorithm ToF branch found! :D \n"); hasExtTof = true; } else { if ( verbose ) printf(" Recovered track algorithm ToF branch not found :( !\n"); printf(" ok, this is not a problem (it depends on tracker settings) \n"); delete tcExtTof; tcExtTof=NULL; // 10RED reprocessing bug } ttrke = (TTree*)file->Get("Tracker"); if ( !ttrke ) { if ( verbose ) printf(" OrbitalInfo - ERROR: no trk tree\n"); code = -903; goto closeandexit; } ttrke->SetBranchAddress("TrkLevel2",&trke); nevtrkl2 = ttrke->GetEntries(); // // Look for extended tracking algorithm // if ( verbose ) printf("Look for extended and nuclei tracking algorithms\n"); // Nuclei tracking algorithm checkAlgo = 0; tcNucleiTrk = new TClonesArray("TrkTrack"); checkAlgo = ttrke->SetBranchAddress("TrackNuclei",&tcNucleiTrk); if ( !checkAlgo ){ if ( verbose ) printf(" Nuclei tracking algorithm branch found! :D \n"); hasNucleiTrk = true; } else { if ( verbose ) printf(" Nuclei tracking algorithm branch not found :( !\n"); printf(" ok, this is not a problem (it depends on tracker settings) \n"); delete tcNucleiTrk; tcNucleiTrk=NULL; // 10RED reprocessing bug } // Nuclei tracking algorithm using calorimeter points tcExtNucleiTrk = new TClonesArray("ExtTrack"); checkAlgo = ttrke->SetBranchAddress("RecoveredTrackNuclei",&tcExtNucleiTrk); if ( !checkAlgo ){ if ( verbose ) printf(" Recovered nuclei tracking algorithm branch found! :D \n"); hasExtNucleiTrk = true; } else { if ( verbose ) printf(" Recovered nuclei tracking algorithm branch not found :( !\n"); printf(" ok, this is not a problem (it depends on tracker settings) \n"); delete tcExtNucleiTrk; tcExtNucleiTrk=NULL; // 10RED reprocessing bug } // Tracking algorithm using calorimeter points tcExtTrk = new TClonesArray("ExtTrack"); checkAlgo = ttrke->SetBranchAddress("RecoveredTrack",&tcExtTrk); if ( !checkAlgo ){ if ( verbose ) printf(" Recovered track algorithm branch found! :D \n"); hasExtTrk = true; } else { if ( verbose ) printf(" Recovered track algorithm branch not found :( !\n"); printf(" ok, this is not a problem (it depends on tracker settings) \n"); delete tcExtTrk; tcExtTrk=NULL; // 10RED reprocessing bug } if ( (hasNucleiTrk && !hasNucleiTof) || (!hasNucleiTrk && hasNucleiTof) || (hasExtNucleiTrk && !hasExtNucleiTof) || (!hasExtNucleiTrk && hasExtNucleiTof) || (hasExtTrk && !hasExtTof) || (!hasExtTrk && hasExtTof) ){ if ( verbose ) printf(" ERROR: Mismatch between tracker and tof tree branches concerning extended tracking algorithm(s)\n"); if ( debug ) printf("hasNucleiTrk %i hasExtNucleiTrk %i hasExtTrk %i \n",hasNucleiTrk,hasExtNucleiTrk,hasExtTrk); if ( debug ) printf("hasNucleiTof %i hasExtNucleiTof %i hasExtTof %i \n",hasNucleiTof,hasExtNucleiTof,hasExtTof); throw -901; } } // // Let's start! // // As a first thing we must check what we have to do: if run = 0 we must process all events in the file has been passed // if run != 0 we must process only that run but first we have to check if the tree MyDetector2 already exist in the file // if it exists we are reprocessing data and we must delete that entries, if not we must create it. // if ( run == 0 ) reproc = true; // // // Output file is "outputfile" // if ( !file->IsOpen() ){ //printf(" OrbitalInfo - ERROR: cannot open file for writing\n"); throw -901; }; // // Retrieve GL_RUN variables from the level2 file // OrbitalInfoversion = OrbitalInfoInfo(false); // we should decide how to handle versioning system // // create an interface to RunInfo called "runinfo" // runinfo = new ItoRunInfo(file); // // open "Run" tree in level2 file, if not existing return an error (sngl != 0) // sgnl = 0; sgnl = runinfo->Update(run, "ORB", OrbitalInfoversion); //sgnl = runinfo->Read(run); if ( sgnl ){ //printf("OrbitalInfo - ERROR: RunInfo exited with non-zero status\n"); code = sgnl; goto closeandexit; } else { sgnl = 0; }; // // number of events in the file BEFORE the first event of our run // nobefrun = runinfo->GetFirstEntry(); // // total number of events in the file // totfileentries = runinfo->GetFileEntries(); // // first file entry AFTER the last event of our run // noaftrun = runinfo->GetLastEntry() + 1; // // number of run to be processed // numbofrun = runinfo->GetNoRun(); totnorun = runinfo->GetRunEntries(); // // Try to access the OrbitalInfo tree in the file, if it exists we are reprocessing data if not we are processing a new run // OrbitalInfotrclone = (TTree*)file->Get("OrbitalInfo"); // if ( !OrbitalInfotrclone ){ // // tree does not exist, we are not reprocessing // reproc = false; if ( run == 0 ){ if (verbose) printf(" OrbitalInfo - WARNING: you are reprocessing data but OrbitalInfo tree does not exist!\n"); } if ( runinfo->IsReprocessing() && run != 0 ) { if (verbose) printf(" OrbitalInfo - WARNING: it seems you are not reprocessing data but OrbitalInfo\n versioning information already exists in RunInfo.\n"); } } else { // // tree exists, we are reprocessing data. Are we reprocessing a single run or all the file? // OrbitalInfotrclone->SetAutoSave(900000000000000LL); reproc = true; // // if (verbose) printf("\n Preparing the pre-processing...\n"); // if ( run == 0 || totnorun == 1 ){ // // we are reprocessing all the file // if we are reprocessing everything we don't need to copy any old event and we can just work with the new tree and delete the old one immediately // reprocall = true; // if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing all runs\n Deleting old tree...\n"); // } else { // // we are reprocessing a single run, we must copy to the new tree the events in the file which preceed the first event of the run // reprocall = false; // if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing run number %u \n",run); // // copying old tree to a new file // gSystem->MakeDirectory(OrbitalInfofolder.str().c_str()); myfold = true; tempfile = new TFile(tempname.str().c_str(),"RECREATE"); tempOrbitalInfo = OrbitalInfotrclone->CloneTree(-1,"fast"); tempOrbitalInfo->SetName("OrbitalInfo-old"); tempfile->Write(); tempOrbitalInfo->Delete(); tempfile->Close(); } // // Delete the old tree from old file and memory // OrbitalInfotrclone->Clear(); OrbitalInfotrclone->Delete("all"); // if (verbose) printf(" ...done!\n"); // }; // // create mydetector tree mydect // file->cd(); OrbitalInfotr = new TTree("OrbitalInfo-new","PAMELA OrbitalInfo data"); OrbitalInfotr->SetAutoSave(900000000000000LL); orbitalinfo->Set();//ELENA **TEMPORANEO?** OrbitalInfotr->Branch("OrbitalInfo","OrbitalInfo",&orbitalinfo); // // create new branches for new tracking algorithms // if ( hasNucleiTrk ){ torbNucleiTrk = new TClonesArray("OrbitalInfoTrkVar",1); OrbitalInfotr->Branch("TrackNuclei",&torbNucleiTrk); } if ( hasExtNucleiTrk ){ torbExtNucleiTrk = new TClonesArray("OrbitalInfoTrkVar",1); OrbitalInfotr->Branch("RecoveredTrackNuclei",&torbExtNucleiTrk); } if ( hasExtTrk ){ torbExtTrk = new TClonesArray("OrbitalInfoTrkVar",1); OrbitalInfotr->Branch("RecoveredTrack",&torbExtTrk); } // if ( reproc && !reprocall ){ // // open new file and retrieve also tree informations // tempfile = new TFile(tempname.str().c_str(),"READ"); OrbitalInfotrclone = (TTree*)tempfile->Get("OrbitalInfo-old"); OrbitalInfotrclone->SetAutoSave(900000000000000LL); OrbitalInfotrclone->SetBranchAddress("OrbitalInfo",&orbitalinfoclone); // if ( nobefrun > 0 ){ if (verbose){ printf("\n Pre-processing: copying events from the old tree before the processed run\n"); printf(" Copying %u events in the file which are before the beginning of the run %u \n",nobefrun,run); printf(" Start copying at event number 0, end copying at event number %u \n",nobefrun); } for (UInt_t j = 0; j < nobefrun; j++){ // if ( OrbitalInfotrclone->GetEntry(j) <= 0 ) throw -36; // // copy orbitalinfoclone to mydec // // orbitalinfo->Clear(); // memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone)); // // Fill entry in the new tree // OrbitalInfotr->Fill(); // }; if (verbose) printf(" Finished successful copying!\n"); }; }; // // // Get the list of run to be processed, if only one run has to be processed the list will contain one entry only. // runlist = runinfo->GetRunList(); if ( debug ){ printf("BEFORE LOOP ON RUN\n"); gObjectTable->Print(); } // // Loop over the run to be processed // for (UInt_t irun=0; irun < numbofrun; irun++){ //===> L_QQ_Q_l_lower = new Quaternions(); RYPang_lower = new InclinationInfo(); L_QQ_Q_l_upper = new Quaternions(); RYPang_upper = new InclinationInfo(); // // retrieve the first run ID to be processed using the RunInfo list // idRun = runlist->At(irun); if (verbose){ printf("\n\n\n ####################################################################### \n"); printf(" PROCESSING RUN NUMBER %i \n",(int)idRun); printf(" ####################################################################### \n\n\n"); } // runinfo->ID_ROOT_L0 = 0; // // store in the runinfo class the GL_RUN variables for our run // sgnl = 0; sgnl = runinfo->GetRunInfo(idRun); if ( sgnl ){ if ( debug ) printf("\n OrbitalInfo - ERROR: RunInfo exited with non-zero status\n"); code = sgnl; goto closeandexit; } else { sgnl = 0; }; // // now you can access that variables using the RunInfo class this way runinfo->ID_REG_RUN // if ( runinfo->ID_ROOT_L0 == 0 ){ if ( debug ) printf("\n OrbitalInfo - ERROR: no run with ID_RUN = %u \n\n Exiting... \n\n",idRun); code = -5; goto closeandexit; }; // // prepare the timesync for the db // dbtime = new GL_TIMESYNC(runinfo->ID_ROOT_L0,"ID",dbc); // // Search in the DB the path and name of the LEVEL0 file to be processed. // glroot->Query_GL_ROOT(runinfo->ID_ROOT_L0,dbc); // ftmpname.str(""); ftmpname << glroot->PATH.Data() << "/"; ftmpname << glroot->NAME.Data(); fname = ftmpname.str().c_str(); ftmpname.str(""); // // print nout informations // totevent = runinfo->NEVENTS; evfrom = runinfo->EV_FROM; //cout<<"totevents = "<RUNHEADER_TIME); printf(" RUN TRAILER absolute time is: %u \n",runinfo->RUNTRAILER_TIME); printf(" %i events to be processed for run %u: from %i to %i \n\n",totevent,idRun,runinfo->EV_FROM+1,runinfo->EV_FROM+totevent); }// // // if ( !totevent ) goto closeandexit; // Open Level0 file if ( l0File ) l0File->Close(); l0File = new TFile(fname.Data()); if ( !l0File ) { if ( debug ) printf(" OrbitalInfo - ERROR: problems opening Level0 file\n"); code = -6; goto closeandexit; }; l0tr = (TTree*)l0File->Get("Physics"); if ( !l0tr ) { if ( debug ) printf(" OrbitalInfo - ERROR: no Physics tree in Level0 file\n"); l0File->Close(); code = -7; goto closeandexit; }; // EM: open header branch as well l0head = l0tr->GetBranch("Header"); if ( !l0head ) { if ( debug ) printf(" OrbitalInfo - ERROR: no Header branch in Level0 tree\n"); l0File->Close(); code = -8; goto closeandexit; }; l0tr->SetBranchAddress("Header", &eh); // end EM nevents = l0head->GetEntries(); // if ( nevents < 1 && totevent ) { if ( debug ) printf(" OrbitalInfo - ERROR: Level0 file is empty\n\n"); l0File->Close(); code = -11; goto closeandexit; }; // if ( runinfo->EV_TO > nevents-1 && totevent ) { if ( debug ) printf(" OrbitalInfo - ERROR: too few entries in the registry tree\n"); l0File->Close(); code = -12; goto closeandexit; }; ULong_t TimeSync = (ULong_t)dbtime->GetTimesync(); ULong_t ObtSync = (ULong_t)(dbtime->GetObt0()/1000); ULong_t DeltaOBT = TimeSync - ObtSync; if ( debug ) printf(" 2 TimeSync %lu ObtSync %lu DeltaOBT %lu\n",(ULong_t)(dbtime->GetTimesync()/1000),(ULong_t)dbtime->GetObt0(),TimeSync-ObtSync); // // Read MCMDs from up to 11 files, 5 before and 5 after the present one in order to have some kind of inclination information // ch = new TChain("Mcmd","Mcmd"); // // look in the DB to find the closest files to this run // TSQLResult *pResult = 0; TSQLRow *Row = 0; stringstream myquery; UInt_t l0fid[10]; Int_t i = 0; memset(l0fid,0,10*sizeof(Int_t)); // myquery.str(""); myquery << "select ID_ROOT_L0 from GL_RUN where RUNHEADER_TIME<=" << runinfo->RUNHEADER_TIME << " group by ID_ROOT_L0 order by RUNHEADER_TIME desc limit 5;"; // pResult = dbc->Query(myquery.str().c_str()); // i = 9; if( pResult ){ // Row = pResult->Next(); // while ( Row ){ // // store infos and exit // l0fid[i] = (UInt_t)atoll(Row->GetField(0)); i--; if (Row){ // memleak! delete Row; Row = 0; } Row = pResult->Next(); // } if (Row) delete Row; pResult->Delete(); } // myquery.str(""); myquery << "select ID_ROOT_L0 from GL_RUN where RUNHEADER_TIME>" << runinfo->RUNHEADER_TIME << " group by ID_ROOT_L0 order by RUNHEADER_TIME asc limit 5;"; // pResult = dbc->Query(myquery.str().c_str()); // i = 0; if( pResult ){ // Row = pResult->Next(); // while ( Row ){ // // store infos and exit // l0fid[i] = (UInt_t)atoll(Row->GetField(0)); i++; if (Row){ // memleak! delete Row; Row = 0; } Row = pResult->Next(); // } if (Row) delete Row; pResult->Delete(); } // i = 0; UInt_t previd = 0; while ( i < 10 ){ if ( l0fid[i] && previd != l0fid[i] ){ previd = l0fid[i]; myquery.str(""); myquery << "select PATH,NAME from GL_ROOT where ID=" << l0fid[i] << " ;"; // pResult = dbc->Query(myquery.str().c_str()); // if( pResult ){ // Row = pResult->Next(); // if ( debug ) printf(" Using inclination informations from file: %s \n",(((TString)gSystem->ExpandPathName(Row->GetField(0)))+"/"+(TString)Row->GetField(1)).Data()); ch->Add(((TString)gSystem->ExpandPathName(Row->GetField(0)))+"/"+(TString)Row->GetField(1)); // if (Row) delete Row; pResult->Delete(); } } i++; } // ch->SetBranchAddress("Mcmd",&mcmdev); neventsm = ch->GetEntries(); if ( debug ) printf(" entries %u \n", neventsm); // if (neventsm == 0){ if ( debug ) printf("InclinationInfo - WARNING: No quaternions in this File"); code = 900; } // Double_t lowerqtime = 0; // // init quaternions information from mcmd-packets // Bool_t isf = true; vector q0; vector q1; vector q2; vector q3; vector qtime; vector qPitch; vector qRoll; vector qYaw; vector qmode; q0.reserve(4096); q1.reserve(4096); q2.reserve(4096); q3.reserve(4096); qtime.reserve(4096); qPitch.reserve(4096); qRoll.reserve(4096); qYaw.reserve(4096); qmode.reserve(4096); if ( debug ) printf(" q0 capa %i \n",(int)q0.capacity()); Int_t nt = 0; UInt_t must = 0; Int_t currentYear = 0; Int_t previousYear = 0; // // run over all the events of the run // if (verbose) printf("\n Ready to start! \n\n Processed events: \n\n"); if ( debug ){ printf("BEFORE LOOP ON EVENTS\n"); gObjectTable->Print(); } // // for ( re = runinfo->EV_FROM; re < (runinfo->EV_FROM+runinfo->NEVENTS); re++){ //for ( re = runinfo->EV_FROM; re < (runinfo->EV_FROM+10); re++){ // if ( procev%1000 == 0 && procev > 0 && verbose ) printf(" %iK \n",procev/1000); if ( debug ) printf(" %i \n",procev); // if ( l0head->GetEntry(re) <= 0 ) throw -36; // // absolute time of this event // ph = eh->GetPscuHeader(); atime = dbtime->DBabsTime(ph->GetOrbitalTime()); if ( debug ) printf(" %i absolute time \n",procev); // // paranoid check // if ( (atime > (runinfo->RUNTRAILER_TIME+1)) || (atime < (runinfo->RUNHEADER_TIME-1)) ) { if (verbose) printf(" OrbitalInfo - WARNING: event at time outside the run time window, skipping it\n"); jumped++; // debug = true; continue; } // just for testing: // if (re >= 5+runinfo->EV_FROM) atime += anni5; // if (re >= 7+runinfo->EV_FROM) atime += anni5; // if (re >= 9+runinfo->EV_FROM) atime += anni5; // // open IGRF files and do it only once if we are processing a full level2 file // Float_t kkyear; UInt_t kyear, kmonth, kday, khour, kmin, ksec; // TTimeStamp kt = TTimeStamp(atime, kTRUE); kt.GetDate(kTRUE, 0, &kyear, &kmonth, &kday); kt.GetTime(kTRUE, 0, &khour, &kmin, &ksec); kkyear = (float) kyear + (kmonth*31.+ (float) kday)/365. + (khour*3600.+kmin*60.+(float)ksec)/(24.*3600.*365.); currentYear = int(kkyear/5.) * 5; if ( debug ) printf(" prevy %i curry %i igrfloaded %i \n",previousYear,currentYear,igrfloaded); if ( currentYear != previousYear ) igrfloaded = false; previousYear = currentYear; if ( debug ) printf(" prevy %i curry %i igrfloaded %i \n",previousYear,currentYear,igrfloaded); // if ( !igrfloaded ){ igrfloaded = true; parerror=glparam->Query_GL_PARAM(atime,302,dbc); // parameters stored in DB in GL_PRAM table if ( parerror<0 ) { code = parerror; goto closeandexit; } ltp1 = (Int_t)(glparam->PATH+glparam->NAME).Length(); if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam->PATH+glparam->NAME).Data()); // if ( glparam->NAME.EndsWith("s.txt") || glparam->NAME.EndsWith("s.dat") ){ if ( verbose ) printf("ERROR: Current date is beyond the latest secular variation file time span. Please update IGRF files to process data\n"); throw -906; } // int isSecular = false; // parerror=glparam2->Query_GL_PARAM(atime+anni5,302,dbc); // parameters stored in DB in GL_PRAM table if ( parerror<0 ) { code = parerror; goto closeandexit; } ltp2 = (Int_t)(glparam2->PATH+glparam2->NAME).Length(); if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam2->PATH+glparam2->NAME).Data()); if ( glparam2->NAME.EndsWith("s.txt") || glparam2->NAME.EndsWith("s.dat") ){ isSecular = true; if ( verbose ) printf(" Using secular variation file and hence fortran subroutine 'extrapolation'\n"); } else { if ( verbose ) printf(" Using two field measurement files and hence fortran subroutine 'interpolation'\n"); } // initize_(&isSecular,(char *)(glparam->PATH+glparam->NAME).Data(),<p1,(char *)(glparam2->PATH+glparam2->NAME).Data(),<p2); // if (debug) cout<<"initize: "<<(char *)(glparam->PATH+glparam->NAME).Data()<<"\t"<<(char *)(glparam2->PATH+glparam2->NAME).Data()<<"\t isSecular? "<PATH+glparam->NAME; TString igrfFile2 = glparam2->PATH+glparam2->NAME; GM_SetIGRF(isSecular,igrfFile1,igrfFile2, &G0, &G1, &H1); } // // End IGRF stuff// // // // retrieve tof informations // if ( !reprocall ){ itr = nobefrun + (re - evfrom - jumped); //itr = re-(46438+200241); } else { itr = runinfo->GetFirstEntry() + (re - evfrom - jumped); }; // if ( !standalone ){ if ( itr > nevtofl2 ){ if ( verbose ) printf(" OrbitalInfo - ERROR: no tof events with entry = %i in Level2 file\n",itr); if ( debug ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall); l0File->Close(); code = -904; goto closeandexit; }; // tof->Clear(); // // Clones array must be cleared before going on // if ( hasNucleiTof ){ tcNucleiTof->Delete(); } if ( hasExtNucleiTof ){ tcExtNucleiTof->Delete(); } if ( hasExtTof ){ tcExtTof->Delete(); } // if ( verbose ) printf(" get tof tree entries... entry = %i in Level2 file\n",itr); if ( ttof->GetEntry(itr) <= 0 ){ if ( verbose ) printf(" problems with tof tree entries... entry = %i in Level2 file\n",itr); if ( verbose ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall); throw -36; } if ( verbose ) printf(" gat0\n"); // } // // retrieve tracker informations // if ( !standalone ){ if ( itr > nevtrkl2 ){ if ( verbose ) printf(" OrbitalInfo - ERROR: no trk events with entry = %i in Level2 file\n",itr); if ( debug ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall); l0File->Close(); code = -905; goto closeandexit; } // if ( verbose ) printf(" gat1\n"); trke->Clear(); // // Clones array must be cleared before going on // if ( hasNucleiTrk ){ if ( verbose ) printf(" gat2\n"); tcNucleiTrk->Delete(); if ( verbose ) printf(" gat3\n"); torbNucleiTrk->Delete(); } if ( hasExtNucleiTrk ){ if ( verbose ) printf(" gat4\n"); tcExtNucleiTrk->Delete(); if ( verbose ) printf(" gat5\n"); torbExtNucleiTrk->Delete(); } if ( hasExtTrk ){ if ( verbose ) printf(" gat6\n"); tcExtTrk->Delete(); if ( verbose ) printf(" gat7\n"); torbExtTrk->Delete(); } // if ( verbose ) printf(" get trk tree entries... entry = %i in Level2 file\n",itr); if ( ttrke->GetEntry(itr) <= 0 ) throw -36; // } // procev++; // // start processing // if ( debug ) printf(" %i start processing \n",procev); orbitalinfo->Clear(); // OrbitalInfoTrkVar *t_orb = new OrbitalInfoTrkVar(); if( !(orbitalinfo->OrbitalInfoTrk) ) orbitalinfo->OrbitalInfoTrk = new TClonesArray("OrbitalInfoTrkVar",2); TClonesArray &tor = *orbitalinfo->OrbitalInfoTrk; // Geomagnetic coordinates calculation variables GMtype_CoordSpherical CoordSpherical, DipoleSpherical; GMtype_CoordCartesian CoordCartesian, DipoleCartesian; GMtype_Model Model; GMtype_Pole Pole; // // Fill OBT, pkt_num and absTime // orbitalinfo->pkt_num = ph->GetCounter(); orbitalinfo->OBT = ph->GetOrbitalTime(); orbitalinfo->absTime = atime; if ( debug ) printf(" %i pktnum obt abstime \n",procev); // // Propagate the orbit from the tle time to atime, using SGP(D)4. // if ( debug ) printf(" %i sgp4 \n",procev); cCoordGeo coo; Float_t jyear=0.; // if(atime >= gltle->GetToTime() || atime < gltle->GetFromTime() ) { // AGH! bug when reprocessing?? if ( !gltle->Query(atime, dbc) ){ // // Compute the magnetic dipole moment. // if ( debug ) printf(" %i compute magnetic dipole moment \n",procev); UInt_t year, month, day, hour, min, sec; // TTimeStamp t = TTimeStamp(atime, kTRUE); t.GetDate(kTRUE, 0, &year, &month, &day); t.GetTime(kTRUE, 0, &hour, &min, &sec); jyear = (float) year + (month*31.+ (float) day)/365. + (hour*3600.+min*60.+(float)sec)/(24.*3600.*365.); // if ( debug ) printf(" %i compute magnetic dipole moment get dipole moment for year\n",procev); if ( debug ) printf(" %i jyear %f dimo %f \n",procev,jyear,dimo); feldcof_(&jyear, &dimo); // get dipole moment for year if ( debug ) printf(" %i compute magnetic dipole moment end\n",procev); // GM_TimeAdjustCoefs(year, jyear, G0, G1, H1, &Model); GM_TimeAdjustCoefs(GM_STARTYEAR, (jyear-currentYear+GM_STARTYEAR), G0, G1, H1, &Model); // EM: input this way due to the new way of storing data into Gn,H1 and to avoid changing GM_Time... GM_PoleLocation(Model, &Pole); } else { code = -56; goto closeandexit; }; } coo = getCoo(atime, gltle->GetFromTime(), gltle->GetTle()); // cOrbit orbits(*gltle->GetTle()); // // synchronize with quaternions data // if ( isf && neventsm>0 ){ // // First event // isf = false; // upperqtime = atime; lowerqtime = runinfo->RUNHEADER_TIME; for ( ik = 0; ik < neventsm; ik++){ //number of macrocommad packets if ( ch->GetEntry(ik) <= 0 ) throw -36; tmpSize = mcmdev->Records->GetEntries(); // numrec = tmpSize; if ( debug ) cout << "packet number " << ik <<"\tnumber of subpackets is " << tmpSize << endl; for (Int_t j3 = 0;j3Records->At(j3); if ( mcmdrc ){ // missing inclination bug [8RED 090116] if ( debug ) printf(" pluto \n"); if ((int)mcmdrc->ID1 == 226 && mcmdrc->Mcmd_Block_crc_ok == 1){ //Check that it is Inclination Packet L_QQ_Q_l_upper->fill(mcmdrc->McmdData); for (UInt_t ui = 0; ui < 6; ui++){ if (ui>0){ if (L_QQ_Q_l_upper->time[ui]>L_QQ_Q_l_upper->time[0]){ Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[ui]*1000-DeltaOBT*1000)); Int_t recSize = recqtime.size(); if(lowerqtime > recqtime[recSize-1]){ // to avoid interpolation between bad quaternions arrays if(sqrt(pow(L_QQ_Q_l_upper->quat[ui][0],2)+pow(L_QQ_Q_l_upper->quat[ui][1],2)+pow(L_QQ_Q_l_upper->quat[ui][2],2)+pow(L_QQ_Q_l_upper->quat[ui][3],2))>0.99999){ Int_t sizeqmcmd = qtime.size(); inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); qtime[sizeqmcmd]=u_time; q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][0]; q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][1]; q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][2]; q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][3]; qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui); lowerqtime = u_time; orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi); RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[ui][0],L_QQ_Q_l_upper->quat[ui][1],L_QQ_Q_l_upper->quat[ui][2],L_QQ_Q_l_upper->quat[ui][3]); qRoll[sizeqmcmd]=RYPang_upper->Kren; qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; qPitch[sizeqmcmd]=RYPang_upper->Tangazh; } } for(Int_t mu = nt;mulowerqtime && recqtime[mu]0.99999){ nt=mu; Int_t sizeqmcmd = qtime.size(); inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); qtime[sizeqmcmd]=recqtime[mu]; q0[sizeqmcmd]=recq0[mu]; q1[sizeqmcmd]=recq1[mu]; q2[sizeqmcmd]=recq2[mu]; q3[sizeqmcmd]=recq3[mu]; qmode[sizeqmcmd]=-10; orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi); RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]); qRoll[sizeqmcmd]=RYPang_upper->Kren; qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; qPitch[sizeqmcmd]=RYPang_upper->Tangazh; } } if(recqtime[mu]>=u_time){ if(sqrt(pow(L_QQ_Q_l_upper->quat[ui][0],2)+pow(L_QQ_Q_l_upper->quat[ui][1],2)+pow(L_QQ_Q_l_upper->quat[ui][2],2)+pow(L_QQ_Q_l_upper->quat[ui][3],2))>0.99999){ Int_t sizeqmcmd = qtime.size(); inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); qtime[sizeqmcmd]=u_time; q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][0]; q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][1]; q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][2]; q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][3]; qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui); lowerqtime = u_time; orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi); RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[ui][0],L_QQ_Q_l_upper->quat[ui][1],L_QQ_Q_l_upper->quat[ui][2],L_QQ_Q_l_upper->quat[ui][3]); qRoll[sizeqmcmd]=RYPang_upper->Kren; qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; qPitch[sizeqmcmd]=RYPang_upper->Tangazh; break; } } } } }else{ //if ( debug ) printf(" here2 %i \n",ui); Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); if(lowerqtime>u_time)nt=0; Int_t recSize = recqtime.size(); if(lowerqtime > recqtime[recSize-1]){ if(sqrt(pow(L_QQ_Q_l_upper->quat[ui][0],2)+pow(L_QQ_Q_l_upper->quat[ui][1],2)+pow(L_QQ_Q_l_upper->quat[ui][2],2)+pow(L_QQ_Q_l_upper->quat[ui][3],2))>0.99999){ Int_t sizeqmcmd = qtime.size(); inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); qtime[sizeqmcmd]=u_time; q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][0]; q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][1]; q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][2]; q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][3]; qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui); lowerqtime = u_time; orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi); RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]); qRoll[sizeqmcmd]=RYPang_upper->Kren; qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; qPitch[sizeqmcmd]=RYPang_upper->Tangazh; } } for(Int_t mu = nt;mulowerqtime && recqtime[mu]0.99999){ Int_t sizeqmcmd = qtime.size(); inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); qtime[sizeqmcmd]=recqtime[mu]; q0[sizeqmcmd]=recq0[mu]; q1[sizeqmcmd]=recq1[mu]; q2[sizeqmcmd]=recq2[mu]; q3[sizeqmcmd]=recq3[mu]; qmode[sizeqmcmd]=-10; orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi); RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]); qRoll[sizeqmcmd]=RYPang_upper->Kren; qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; qPitch[sizeqmcmd]=RYPang_upper->Tangazh; } } if(recqtime[mu]>=u_time){ if(sqrt(pow(L_QQ_Q_l_upper->quat[0][0],2)+pow(L_QQ_Q_l_upper->quat[0][1],2)+pow(L_QQ_Q_l_upper->quat[0][2],2)+pow(L_QQ_Q_l_upper->quat[0][3],2))>0.99999){ Int_t sizeqmcmd = qtime.size(); inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); qtime[sizeqmcmd]=u_time; q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][0]; q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][1]; q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][2]; q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][3]; qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui); lowerqtime = u_time; orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi); RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]); qRoll[sizeqmcmd]=RYPang_upper->Kren; qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; qPitch[sizeqmcmd]=RYPang_upper->Tangazh; CopyQ(L_QQ_Q_l_lower,L_QQ_Q_l_upper); break; } } } } } } } } } if(qtime.size()==0){ // in case if no orientation information in data if ( debug ) cout << "qtime.size() = 0" << endl; for(UInt_t my=0;my0.99999){ Int_t sizeqmcmd = qtime.size(); inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); qtime[sizeqmcmd]=recqtime[my]; q0[sizeqmcmd]=recq0[my]; q1[sizeqmcmd]=recq1[my]; q2[sizeqmcmd]=recq2[my]; q3[sizeqmcmd]=recq3[my]; qmode[sizeqmcmd]=-10; orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi); RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[my],recq1[my],recq2[my],recq3[my]); qRoll[sizeqmcmd]=RYPang_upper->Kren; qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; qPitch[sizeqmcmd]=RYPang_upper->Tangazh; } } } //if ( debug ) printf(" puffi \n"); Double_t tmin = 9999999999.; Double_t tmax = 0.; for(UInt_t tre = 0;tretmax)tmax = qtime[tre]; if(qtime[tre]qtime[i+1]){ Double_t tmpr = qtime[i]; qtime[i]=qtime[i+1]; qtime[i+1] = tmpr; tmpr = q0[i]; q0[i]=q0[i+1]; q0[i+1] = tmpr; tmpr = q1[i]; q1[i]=q1[i+1]; q1[i+1] = tmpr; tmpr = q2[i]; q2[i]=q2[i+1]; q2[i+1] = tmpr; tmpr = q3[i]; q3[i]=q3[i+1]; q3[i+1] = tmpr; tmpr = qRoll[i]; qRoll[i]=qRoll[i+1]; qRoll[i+1] = tmpr; tmpr = qYaw[i]; qYaw[i]=qYaw[i+1]; qYaw[i+1] = tmpr; tmpr = qPitch[i]; qPitch[i]=qPitch[i+1]; qPitch[i+1] = tmpr; t=true; } } } if ( debug ){ cout << "we have loaded quaternions: size of quaternions set is "<< qtime.size() << endl; for(UInt_t i=0;i> lopu; } } // if we processed first event //Filling Inclination information Double_t incli = 0; if ( qtime.size() > 1 ){ if(atimeqtime[0]){ incli = (qPitch[mu]-qPitch[0])/(qtime[mu]-qtime[0]); orbitalinfo->theta = incli*atime+qPitch[mu]-incli*qtime[mu]; incli = (qRoll[mu]-qRoll[0])/(qtime[mu]-qtime[0]); orbitalinfo->etha = incli*atime+qRoll[mu]-incli*qtime[mu]; incli = (qYaw[mu]-qYaw[0])/(qtime[mu]-qtime[0]); orbitalinfo->phi = incli*atime+qYaw[mu]-incli*qtime[mu]; incli = (q0[mu]-q0[0])/(qtime[mu]-qtime[0]); orbitalinfo->q0 = incli*atime+q0[mu]-incli*qtime[mu]; incli = (q1[mu]-q1[0])/(qtime[mu]-qtime[0]); orbitalinfo->q1 = incli*atime+q1[mu]-incli*qtime[mu]; incli = (q2[mu]-q2[0])/(qtime[mu]-qtime[0]); orbitalinfo->q2 = incli*atime+q2[mu]-incli*qtime[mu]; incli = (q3[mu]-q3[0])/(qtime[mu]-qtime[0]); orbitalinfo->q3 = incli*atime+q3[mu]-incli*qtime[mu]; orbitalinfo->TimeGap=qtime[0]-atime; break; } } } Float_t eend=qtime.size()-1; if(atime>qtime[eend]){ for(UInt_t mu=eend-1;mu>=0;mu--){ if(qtime[mu]theta = incli*atime+qPitch[eend]-incli*qtime[eend]; incli = (qRoll[eend]-qRoll[mu])/(qtime[eend]-qtime[mu]); orbitalinfo->etha = incli*atime+qRoll[eend]-incli*qtime[eend]; incli = (qYaw[eend]-qYaw[mu])/(qtime[eend]-qtime[mu]); orbitalinfo->phi = incli*atime+qYaw[eend]-incli*qtime[eend]; incli = (q0[eend]-q0[mu])/(qtime[eend]-qtime[mu]); orbitalinfo->q0 = incli*atime+q0[eend]-incli*qtime[eend]; incli = (q1[eend]-q1[mu])/(qtime[eend]-qtime[mu]); orbitalinfo->q1 = incli*atime+q1[eend]-incli*qtime[eend]; incli = (q2[eend]-q2[mu])/(qtime[eend]-qtime[mu]); orbitalinfo->q2 = incli*atime+q2[eend]-incli*qtime[eend]; incli = (q3[eend]-q3[mu])/(qtime[eend]-qtime[mu]); orbitalinfo->q3 = incli*atime+q3[eend]-incli*qtime[eend]; break; } } } for(UInt_t mu = must;muqtime[mu]){ if ( debug ) cout << "qtime[" << mu << "] = " << qtime[mu] << "\tqtime[" << mu+1 << "] = " << qtime[mu+1] << "\tatime = " << atime << endl; if(atime<=qtime[mu+1] && atime>=qtime[mu]){ if ( debug ) cout << "here we have found proper quaternions for interpolation: mu = "<theta = incli*atime+qPitch[mu+1]-incli*qtime[mu+1]; incli = (qRoll[mu+1]-qRoll[mu])/(qtime[mu+1]-qtime[mu]); orbitalinfo->etha = incli*atime+qRoll[mu+1]-incli*qtime[mu+1]; incli = (qYaw[mu+1]-qYaw[mu])/(qtime[mu+1]-qtime[mu]); orbitalinfo->phi = incli*atime+qYaw[mu+1]-incli*qtime[mu+1]; incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]); orbitalinfo->q0 = incli*atime+q0[mu+1]-incli*qtime[mu+1]; incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]); orbitalinfo->q1 = incli*atime+q1[mu+1]-incli*qtime[mu+1]; incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]); orbitalinfo->q2 = incli*atime+q2[mu+1]-incli*qtime[mu+1]; incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]); orbitalinfo->q3 = incli*atime+q3[mu+1]-incli*qtime[mu+1]; Float_t tg = (qtime[mu+1]-qtime[mu])/1000.0; if(tg>=1) tg=0.00; orbitalinfo->TimeGap = TMath::Min(TMath::Abs(qtime[mu+1]-atime),TMath::Abs(atime-qtime[mu]))+tg;//qtime[mu+1]-qtime[mu]; orbitalinfo->mode = qmode[mu+1]; //if(atime==qtime[mu] || atime==qtime[mu+1]) orbitalinfo->qkind = 0; else orbitalinfo->qkind=1; //if(qmode[mu+1]==-10) orbitalinfo->R10r = true;else orbitalinfo->R10r = false; if ( debug ) printf(" grfuffi4 %i \n",mu); break; } } } } if ( debug ) printf(" grfuffi5 \n"); // // ops no inclination information // if ( orbitalinfo->q0< -999 || orbitalinfo->q1 < -999 || orbitalinfo->q2 < -999 || orbitalinfo->q3 < -999 || orbitalinfo->q0 != orbitalinfo->q0 || orbitalinfo->q1 != orbitalinfo->q1 || orbitalinfo->q2 != orbitalinfo->q2 || orbitalinfo->q3 != orbitalinfo->q3 ){ if (debug) cout << "Warning: no iclination information "<< endl; orbitalinfo->mode = 10; orbitalinfo->q0 = -1000.; orbitalinfo->q1 = -1000.; orbitalinfo->q2 = -1000.; orbitalinfo->q3 = -1000.; orbitalinfo->etha = -1000.; orbitalinfo->phi = -1000.; orbitalinfo->theta = -1000.; orbitalinfo->TimeGap = -1000.; TMatrixD Iij(3,3); Iij(0,0)=0; Iij(0,1)=0; Iij(0,2)=0; Iij(1,0)=0; Iij(1,1)=0; Iij(1,2)=0; Iij(2,0)=0; Iij(2,1)=0; Iij(2,2)=0; Iij.Zero(); orbitalinfo->Iij.ResizeTo(Iij); orbitalinfo->Iij = Iij; //orbitalinfo->qkind = -1000; // if ( debug ){ // Int_t lopu; // cin >> lopu; // } if ( debug ) printf(" grfuffi6 \n"); } // if ( debug ) printf(" filling \n"); // ######################################################################################################################### // // fill orbital positions // // Build coordinates in the right range. We want to convert, // longitude from (0, 2*pi) to (-180deg, 180deg). Altitude is // in meters. lon = (coo.m_Lon > M_PI) ? rad2deg(coo.m_Lon - 2*M_PI) : rad2deg(coo.m_Lon); lat = rad2deg(coo.m_Lat); alt = coo.m_Alt; cOrbit orbits2(*gltle->GetTle()); orbits2.getPosition((double) (atime - gltle->GetFromTime())/60., &eCi); // Float_t x=eCi.getPos().m_x; // Float_t y=eCi.getPos().m_y; // Float_t z=eCi.getPos().m_z; TVector3 V(eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z); TVector3 Pos(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z); Float_t dlon=Pos.Phi()*TMath::RadToDeg()-lon; Pos.RotateZ(-dlon*TMath::DegToRad()); V.RotateZ(-dlon*TMath::DegToRad()); Float_t diro; if(V.Z()>0) diro=1; else diro=-1; // 10REDNEW Int_t errq=0; Int_t azim=0; Int_t qual=0; Int_t MU=0; for(UInt_t mu = 0;mu=RTstart[mu]){ errq=RTerrq[mu]; azim=RTazim[mu]; qual=RTqual[mu]; MU=mu; break; } } orbitalinfo->errq = errq; orbitalinfo->azim = azim; orbitalinfo->rtqual=qual; orbitalinfo->qkind = 0; if ( debug ) printf(" coord done \n"); if( lon<180 && lon>-180 && lat<90 && lat>-90 && alt>0 ){ orbitalinfo->lon = lon; orbitalinfo->lat = lat; orbitalinfo->alt = alt; orbitalinfo->V = V; // GMtype_CoordGeodetic location; location.lambda = lon; location.phi = lat; location.HeightAboveEllipsoid = alt; GM_GeodeticToSpherical(Ellip, location, &CoordSpherical); GM_SphericalToCartesian(CoordSpherical, &CoordCartesian); GM_EarthCartToDipoleCartCD(Pole, CoordCartesian, &DipoleCartesian); GM_CartesianToSpherical(DipoleCartesian, &DipoleSpherical); orbitalinfo->londip = DipoleSpherical.lambda; orbitalinfo->latdip = DipoleSpherical.phig; if(debug)cout<<"geodetic:\t"<londip<<"\t"<latdip<Bnorth = bnorth; orbitalinfo->Beast = beast; orbitalinfo->Bdown = bdown; orbitalinfo->Babs = babs; orbitalinfo->M = dimo; orbitalinfo->BB0 = babs/bequ; orbitalinfo->L = xl; // Set Stormer vertical cutoff using L shell. orbitalinfo->cutoffsvl = 14.295 / (xl*xl); // if(debug)cout << "L = " << xl << "\tM = " << dimo << "\tvertical cutoff: "<< orbitalinfo->cutoffsvl << endl; // ---------- Forwarded message ---------- // Date: Wed, 09 May 2012 12:16:47 +0200 // From: Alessandro Bruno // To: Mirko Boezio // Cc: Francesco S. Cafagna // Subject: Störmer vertical cutoff // Ciao Mirko, // volevo segnalarti che il valore dello Störmer vertical cutoff nel Level2 č // sovrastimato di circa il 4%. // Dopo un'approfondita analisi con l'IGRF-05 abbiamo ricavano un valore pari // a: 14.295 / L^2 anzichč 14.9 / L^2, valore obsoleto in quanto riferito agli // anni '50. // // 14.9/(xl*xl); orbitalinfo->igrf_icode = (Float_t)icode; // } //check lon lat alt // if ( debug ) printf(" pitch angle \n"); // // pitch angles // if( orbitalinfo->TimeGap>=0){ // if ( debug ) printf(" timegap %f \n",orbitalinfo->TimeGap); Float_t Bx = -orbitalinfo->Bdown; Float_t By = orbitalinfo->Beast; Float_t Bz = orbitalinfo->Bnorth; // TMatrixD Qiji(3,3); TMatrixD Qij = PO->QuatoECI(orbitalinfo->q0,orbitalinfo->q1,orbitalinfo->q2,orbitalinfo->q3); TMatrixD Dij = PO->ECItoGEO(Qij,orbitalinfo->absTime,orbitalinfo->lat,orbitalinfo->lon); //10REDNEW // If initial orientation data have reason to be inaccurate Float_t tg = 0.00; Float_t tmptg; Bool_t tgpar=false; Bool_t tgpar0=false; if (orbitalinfo->TimeGap>10.0 || ((modf(orbitalinfo->TimeGap,&tmptg)*1000>10 || modf(orbitalinfo->TimeGap,&tmptg)*1000==0.0) && orbitalinfo->TimeGap>2.0)) tgpar=true; if (orbitalinfo->TimeGap>180.0) tgpar0=true; if(MU!=0){ // if(orbitalinfo->TimeGap>0 && errq==0 && azim==0){ // 10RED CHECK (comparison between three metod of recovering orientation) if((atime>=RTstart[MU] && atimeetha)>0.1 || tgpar0)) || ((RTbank1[MU]!=0 || RTbank2[MU]!=0) && atime>=RTstart[MU] && atimeazim = 5; //means that RotationTable no started yet else{ // search for angle betwean velosity and direction to north in tangential to Earth surfase plane in satellite position Double_t bank=RTstart[MU]; Double_t tlat=orbitalinfo->lat; tg=modf(orbitalinfo->TimeGap,&tg)*1000; if(atime>=RTpluto1[MU] && atime<=RTpluto2[MU]){ Double_t kar=(RTbank2[MU]-RTbank1[MU])/(RTtime2[MU]-RTtime1[MU]); Double_t bak=RTbank1[MU]-kar*RTtime1[MU]; bank=kar*atime+bak; } if(atime>=RTstart[MU] && atimeRTpluto2[MU] && atime<=RTstart[MU+1]){ Double_t s_dBdt2=(RTbpluto2[MU] - RTbank2[MU])/(Int_t)(RTpluto2[MU]-RTstart[MU+1]); Double_t s_t2=((Double_t)RTpluto2[MU]+(Double_t)RTstart[MU+1])/2. - RTstart[MU]; Double_t s_t1=RTstart[MU+1]-RTstart[MU]; Double_t s_k=s_dBdt2/(s_t2-s_t1); Double_t s_b=-s_k*s_t1; Double_t s_t3=RTpluto2[MU]-RTstart[MU]; Double_t s_b3=RTbpluto2[MU]; Double_t s_c=s_b3-0.5*s_k*s_t3*s_t3 -s_b*s_t3; bank=0.5*s_k*(atime-RTstart[MU])*(atime-RTstart[MU]) + s_b*(atime-RTstart[MU]) + s_c; } if(TMath::Abs(orbitalinfo->etha-bank)>0.1){ orbitalinfo->etha=bank; Double_t spitch = 0.00001; // temprary not zero to avoid problem with tranzition from Euler angles to orientation matrix //Estimations of pitch angle of satellite if(TMath::Abs(bank)>0.7){ Float_t spitch1=TMath::DegToRad()*0.7*diro;//RTdir1[MU]; Float_t spitch2=TMath::DegToRad()*0.7*diro;//RTdir2[MU]; Float_t kva=(spitch2-spitch1)/(RTtime2[MU]-RTtime1[MU]); Float_t bva=spitch1-kva*RTtime1[MU]; spitch=kva*atime+bva; } //Calculate Yaw angle accordingly with fit, see picture FitYaw.jpg Double_t yaw=0.00001; // temprary not zero to avoid problem with tranzition from Euler angles to orientation matrix if(TMath::Abs(tlat)<70) yaw = -3.7e-8*tlat*tlat*tlat*tlat + 1.4e-7*tlat*tlat*tlat - 0.0005*tlat*tlat - 0.00025*tlat + 3.6; yaw = diro*yaw; //because should be different sign for ascending and descending orbits! orbitalinfo->phi=yaw; if(TMath::Abs(bank)>0.5 && TMath::Abs(yaw-orbitalinfo->phi)<3.0) yaw=orbitalinfo->phi; //Qiji = PO->EulertoEci(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,bank,yaw,spitch); // 10RED CHECK Qij = PO->EulertoEci(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,bank,yaw,spitch); // STANDARD orbitalinfo->qkind = 1; } //Qij = PO->GEOtoECI(Dij,orbitalinfo->absTime,orbitalinfo->lat,orbitalinfo->lon); // to convert from Dij to Qij } // end of if(atimeTimeGap>60.0 && TMath... } // end of MU~=0 TMatrixD qij = PO->ColPermutation(Qij); TMatrixD Fij = PO->ECItoGreenwich(Qij,orbitalinfo->absTime); TMatrixD Gij = PO->ColPermutation(Fij); Dij = PO->ECItoGEO(Qij,orbitalinfo->absTime,orbitalinfo->lat,orbitalinfo->lon); TMatrixD Iij = PO->ColPermutation(Dij); TVector3 SP = PO->GetSunPosition(orbitalinfo->absTime); // go to Pamela reference frame from Resurs reference frame Float_t tmpy = SP.Y(); SP.SetY(SP.Z()); SP.SetZ(-tmpy); TVector3 SunZenith; SunZenith.SetMagThetaPhi(1,23.439281*TMath::DegToRad(),TMath::Pi()/2.); TVector3 SunMag = -SP; SunMag.Rotate(-45*TMath::DegToRad(),SunZenith); tmpy=SunMag.Y(); SunMag.SetY(SunMag.Z()); SunMag.SetZ(-tmpy); orbitalinfo->Iij.ResizeTo(Iij); orbitalinfo->Iij = Iij; Bool_t saso=true; if (orbitalinfo->qkind==1) saso=true; if (orbitalinfo->qkind==0 && orbitalinfo->azim>0 && orbitalinfo->azim!=5 && tgpar) saso=false; if (orbitalinfo->qkind==0 && orbitalinfo->azim==5 && TMath::Abs(orbitalinfo->etha)>0.1 && tgpar) saso=false; if (orbitalinfo->qkind==0 && orbitalinfo->azim==5 && TMath::Abs(orbitalinfo->etha)<=0.1 && tgpar0) saso=false; if (saso) orbitalinfo->mode=orbitalinfo->rtqual; else orbitalinfo->mode=2; // // A1 = Iij(0,2); // A2 = Iij(1,2); // A3 = Iij(2,2); // // orbitalinfo->pamzenitangle = (Float_t)PO->GetPitchAngle(1,0,0,A1,A2,A3); // Angle between zenit and Pamela's main axiz // orbitalinfo->pamBangle = (Float_t)PO->GetPitchAngle(A1,A2,A3,Bx,By,Bz); // Angle between Pamela's main axiz and B // if ( debug ) printf(" matrixes done \n"); if ( !standalone ){ if ( debug ) printf(" !standalone \n"); // // Standard tracking algorithm // Int_t nn = 0; if ( verbose ) printf(" standard tracking \n"); for(Int_t nt=0; nt < tof->ntrk(); nt++){ // ToFTrkVar *ptt = tof->GetToFTrkVar(nt); if (debug) cout<<"tof->ntrk() = "<ntrk()<<"\tptt->trkseqno = "<trkseqno<<"\ttrke->ntrk() = "<ntrk()<xtr_tof[0]; // tr->x[0]; Double_t E11y = ptt->ytr_tof[0]; //tr->y[0]; Double_t E11z = zin[0]; Double_t E22x = ptt->xtr_tof[3];//tr->x[3]; Double_t E22y = ptt->ytr_tof[3];//tr->y[3]; Double_t E22z = zin[3]; if ( (E11x < 100. && E11y < 100. && E22x < 100. && E22y < 100.) || ptt->trkseqno != -1 ){ TrkTrack *mytrack = trke->GetStoredTrack(ptt->trkseqno); Float_t rig=1/mytrack->GetDeflection(); Double_t norm = sqrt(pow(E22x-E11x,2)+pow(E22y-E11y,2)+pow(E22z-E11z,2)); // Px = (E22x-E11x)/norm; Py = (E22y-E11y)/norm; Pz = (E22z-E11z)/norm; // t_orb->trkseqno = ptt->trkseqno; // TMatrixD Eij = PO->PamelatoGEO(Iij,Px,Py,Pz); t_orb->Eij.ResizeTo(Eij); t_orb->Eij = Eij; // TMatrixD Sij = PO->PamelatoGEO(Gij,Px,Py,Pz); t_orb->Sij.ResizeTo(Sij); t_orb->Sij = Sij; // t_orb->pitch = (Float_t)PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),Bx,By,Bz); // // SunPosition in instrumental reference frame TMatrixD Kij = PO->PamelatoGEO(qij,Px,Py,Pz); TMatrixD Lij = PO->PamelatoGEO(qij,0,0,1); t_orb->sunangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),-SP.X(),-SP.Y(),-SP.Z()); t_orb->sunmagangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),SunMag.X(),SunMag.Y(),SunMag.Z()); // // Double_t omega = PO->GetPitchAngle(-Eij(0,0),-Eij(1,0),-Eij(2,0),1,0,0) * TMath::DegToRad(); TVector3 Bxy(0,By,Bz); TVector3 Exy(0,-Eij(1,0),-Eij(2,0)); Double_t dzeta=Bxy.Angle(Exy); if (-Eij(1,0) < 0) dzeta=2.0*TMath::Pi() - dzeta; if(debug) cout << "omega = "<=0) t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); else t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(TMath::Pi()+dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); if (debug) cout << "R = " << rig << "\tcutoff = " << t_orb->cutoff << endl; // if ( t_orb->pitch != t_orb->pitch ) t_orb->pitch = -1000.; if ( t_orb->cutoff != t_orb->cutoff ) t_orb->cutoff = -1000.; if ( t_orb->sunangle != t_orb->sunangle ) t_orb->sunangle = -1000.; if ( t_orb->sunmagangle != t_orb->sunmagangle ) t_orb->sunmagangle = -1000.; // if ( debug ) printf(" orbitalinfo->cutoffsvl %f vitaly %f \n",orbitalinfo->cutoffsvl,t_orb->cutoff); // new(tor[nn]) OrbitalInfoTrkVar(*t_orb); nn++; // t_orb->Clear(); // } // } // end standard tracking algorithm // // Code for extended tracking algorithm: // if ( hasNucleiTrk ){ Int_t ttentry = 0; if ( verbose ) printf(" hasNucleiTrk \n"); for(Int_t nt=0; nt < tcNucleiTof->GetEntries() ; nt++){ // if ( verbose ) printf(" got1\n"); ToFTrkVar *ptt = (ToFTrkVar*)(tcNucleiTof->At(nt)); if (verbose) cout<<" tcNucleiTof->GetEntries() = "<GetEntries()<<"\tptt->trkseqno = "<trkseqno<xtr_tof[0]; // tr->x[0]; Double_t E11y = ptt->ytr_tof[0]; //tr->y[0]; Double_t E11z = zin[0]; Double_t E22x = ptt->xtr_tof[3];//tr->x[3]; Double_t E22y = ptt->ytr_tof[3];//tr->y[3]; Double_t E22z = zin[3]; if ( (E11x < 100. && E11y < 100. && E22x < 100. && E22y < 100.) || ptt->trkseqno != -1 ){ TrkTrack *mytrack = (TrkTrack*)(tcNucleiTrk->At(ptt->trkseqno)); if ( verbose ) printf(" got tcNucleiTrk \n"); Float_t rig=1/mytrack->GetDeflection(); Double_t norm = sqrt(pow(E22x-E11x,2)+pow(E22y-E11y,2)+pow(E22z-E11z,2)); // Px = (E22x-E11x)/norm; Py = (E22y-E11y)/norm; Pz = (E22z-E11z)/norm; // t_orb->trkseqno = ptt->trkseqno; // TMatrixD Eij = PO->PamelatoGEO(Iij,Px,Py,Pz); t_orb->Eij.ResizeTo(Eij); t_orb->Eij = Eij; // TMatrixD Sij = PO->PamelatoGEO(Gij,Px,Py,Pz); t_orb->Sij.ResizeTo(Sij); t_orb->Sij = Sij; // t_orb->pitch = (Float_t)PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),Bx,By,Bz); // // SunPosition in instrumental reference frame TMatrixD Kij = PO->PamelatoGEO(qij,Px,Py,Pz); TMatrixD Lij = PO->PamelatoGEO(qij,0,0,1); t_orb->sunangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),-SP.X(),-SP.Y(),-SP.Z()); t_orb->sunmagangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),SunMag.X(),SunMag.Y(),SunMag.Z()); // // Double_t omega = PO->GetPitchAngle(-Eij(0,0),-Eij(1,0),-Eij(2,0),1,0,0) * TMath::DegToRad(); TVector3 Bxy(0,By,Bz); TVector3 Exy(0,-Eij(1,0),-Eij(2,0)); Double_t dzeta=Bxy.Angle(Exy); if (-Eij(1,0) < 0) dzeta=2.0*TMath::Pi() - dzeta; if(debug) cout << "omega = "<=0) t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); else t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(TMath::Pi()+dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); if (debug) cout << "R = " << rig << "\tcutoff = " << t_orb->cutoff << endl; // if ( t_orb->pitch != t_orb->pitch ) t_orb->pitch = -1000.; if ( t_orb->cutoff != t_orb->cutoff ) t_orb->cutoff = -1000.; if ( t_orb->sunangle != t_orb->sunangle ) t_orb->sunangle = -1000.; if ( t_orb->sunmagangle != t_orb->sunmagangle ) t_orb->sunmagangle = -1000.; // if ( debug ) printf(" orbitalinfo->cutoffsvl %f vitaly %f \n",orbitalinfo->cutoffsvl,t_orb->cutoff); // TClonesArray &tt1 = *torbNucleiTrk; new(tt1[ttentry]) OrbitalInfoTrkVar(*t_orb); ttentry++; // t_orb->Clear(); // } // } } // end standard tracking algorithm: nuclei if ( hasExtNucleiTrk ){ Int_t ttentry = 0; if ( verbose ) printf(" hasExtNucleiTrk \n"); for(Int_t nt=0; nt < tcExtNucleiTof->GetEntries() ; nt++){ // if ( verbose ) printf(" got2\n"); ToFTrkVar *ptt = (ToFTrkVar*)(tcExtNucleiTof->At(nt)); if (verbose) cout<<" tcExtNucleiTof->GetEntries() = "<GetEntries()<<"\tptt->trkseqno = "<trkseqno<xtr_tof[0]; // tr->x[0]; Double_t E11y = ptt->ytr_tof[0]; //tr->y[0]; Double_t E11z = zin[0]; Double_t E22x = ptt->xtr_tof[3];//tr->x[3]; Double_t E22y = ptt->ytr_tof[3];//tr->y[3]; Double_t E22z = zin[3]; if ( (E11x < 100. && E11y < 100. && E22x < 100. && E22y < 100.) || ptt->trkseqno != -1 ){ ExtTrack *mytrack = (ExtTrack*)(tcExtNucleiTrk->At(ptt->trkseqno)); if ( verbose ) printf(" got tcExtNucleiTrk \n"); Float_t rig=1/mytrack->GetDeflection(); Double_t norm = sqrt(pow(E22x-E11x,2)+pow(E22y-E11y,2)+pow(E22z-E11z,2)); // Px = (E22x-E11x)/norm; Py = (E22y-E11y)/norm; Pz = (E22z-E11z)/norm; // t_orb->trkseqno = ptt->trkseqno; // TMatrixD Eij = PO->PamelatoGEO(Iij,Px,Py,Pz); t_orb->Eij.ResizeTo(Eij); t_orb->Eij = Eij; // TMatrixD Sij = PO->PamelatoGEO(Gij,Px,Py,Pz); t_orb->Sij.ResizeTo(Sij); t_orb->Sij = Sij; // t_orb->pitch = (Float_t)PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),Bx,By,Bz); // // SunPosition in instrumental reference frame TMatrixD Kij = PO->PamelatoGEO(qij,Px,Py,Pz); TMatrixD Lij = PO->PamelatoGEO(qij,0,0,1); t_orb->sunangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),-SP.X(),-SP.Y(),-SP.Z()); t_orb->sunmagangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),SunMag.X(),SunMag.Y(),SunMag.Z()); // // Double_t omega = PO->GetPitchAngle(-Eij(0,0),-Eij(1,0),-Eij(2,0),1,0,0) * TMath::DegToRad(); TVector3 Bxy(0,By,Bz); TVector3 Exy(0,-Eij(1,0),-Eij(2,0)); Double_t dzeta=Bxy.Angle(Exy); if (-Eij(1,0) < 0) dzeta=2.0*TMath::Pi() - dzeta; if(debug) cout << "omega = "<=0) t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); else t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(TMath::Pi()+dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); if (debug) cout << "R = " << rig << "\tcutoff = " << t_orb->cutoff << endl; // if ( t_orb->pitch != t_orb->pitch ) t_orb->pitch = -1000.; if ( t_orb->cutoff != t_orb->cutoff ) t_orb->cutoff = -1000.; if ( t_orb->sunangle != t_orb->sunangle ) t_orb->sunangle = -1000.; if ( t_orb->sunmagangle != t_orb->sunmagangle ) t_orb->sunmagangle = -1000.; // if ( debug ) printf(" orbitalinfo->cutoffsvl %f vitaly %f \n",orbitalinfo->cutoffsvl,t_orb->cutoff); // TClonesArray &tt2 = *torbExtNucleiTrk; new(tt2[ttentry]) OrbitalInfoTrkVar(*t_orb); ttentry++; // t_orb->Clear(); // } // } } // end standard tracking algorithm: nuclei extended if ( hasExtTrk ){ Int_t ttentry = 0; if ( verbose ) printf(" hasExtTrk \n"); for(Int_t nt=0; nt < tcExtTof->GetEntries() ; nt++){ // if ( verbose ) printf(" got3\n"); ToFTrkVar *ptt = (ToFTrkVar*)(tcExtTof->At(nt)); if (verbose) cout<<" tcExtTof->GetEntries() = "<GetEntries()<<"\tptt->trkseqno = "<trkseqno<xtr_tof[0]; // tr->x[0]; Double_t E11y = ptt->ytr_tof[0]; //tr->y[0]; Double_t E11z = zin[0]; Double_t E22x = ptt->xtr_tof[3];//tr->x[3]; Double_t E22y = ptt->ytr_tof[3];//tr->y[3]; Double_t E22z = zin[3]; if ( (E11x < 100. && E11y < 100. && E22x < 100. && E22y < 100.) || ptt->trkseqno != -1 ){ ExtTrack *mytrack = (ExtTrack*)(tcExtTrk->At(ptt->trkseqno)); if ( verbose ) printf(" got tcExtTrk \n"); Float_t rig=1/mytrack->GetDeflection(); Double_t norm = sqrt(pow(E22x-E11x,2)+pow(E22y-E11y,2)+pow(E22z-E11z,2)); // Px = (E22x-E11x)/norm; Py = (E22y-E11y)/norm; Pz = (E22z-E11z)/norm; // t_orb->trkseqno = ptt->trkseqno; // TMatrixD Eij = PO->PamelatoGEO(Iij,Px,Py,Pz); t_orb->Eij.ResizeTo(Eij); t_orb->Eij = Eij; // TMatrixD Sij = PO->PamelatoGEO(Gij,Px,Py,Pz); t_orb->Sij.ResizeTo(Sij); t_orb->Sij = Sij; // t_orb->pitch = (Float_t)PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),Bx,By,Bz); // // SunPosition in instrumental reference frame TMatrixD Kij = PO->PamelatoGEO(qij,Px,Py,Pz); TMatrixD Lij = PO->PamelatoGEO(qij,0,0,1); t_orb->sunangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),-SP.X(),-SP.Y(),-SP.Z()); t_orb->sunmagangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),SunMag.X(),SunMag.Y(),SunMag.Z()); // // Double_t omega = PO->GetPitchAngle(-Eij(0,0),-Eij(1,0),-Eij(2,0),1,0,0) * TMath::DegToRad(); TVector3 Bxy(0,By,Bz); TVector3 Exy(0,-Eij(1,0),-Eij(2,0)); Double_t dzeta=Bxy.Angle(Exy); if (-Eij(1,0) < 0) dzeta=2.0*TMath::Pi() - dzeta; if(debug) cout << "omega = "<=0) t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); else t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(TMath::Pi()+dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); if (debug) cout << "R = " << rig << "\tcutoff = " << t_orb->cutoff << endl; // if ( t_orb->pitch != t_orb->pitch ) t_orb->pitch = -1000.; if ( t_orb->cutoff != t_orb->cutoff ) t_orb->cutoff = -1000.; if ( t_orb->sunangle != t_orb->sunangle ) t_orb->sunangle = -1000.; if ( t_orb->sunmagangle != t_orb->sunmagangle ) t_orb->sunmagangle = -1000.; // if ( debug ) printf(" orbitalinfo->cutoffsvl %f vitaly %f \n",orbitalinfo->cutoffsvl,t_orb->cutoff); // TClonesArray &tt3 = *torbExtTrk; new(tt3[ttentry]) OrbitalInfoTrkVar(*t_orb); ttentry++; // t_orb->Clear(); // } // } } // end standard tracking algorithm: extended } else { if ( debug ) printf(" mmm... mode %u standalone \n",orbitalinfo->mode); } // } else { // HERE IT MISS ALL CODE FOR EXTENDED TRACKING! if ( !standalone ){ // if ( verbose ) printf(" no orb info for tracks \n"); Int_t nn = 0; for(Int_t nt=0; nt < tof->ntrk(); nt++){ // ToFTrkVar *ptt = tof->GetToFTrkVar(nt); if ( ptt->trkseqno != -1 ){ // t_orb->trkseqno = ptt->trkseqno; // TMatrixD Iij(3,1); Iij(0,0)=0.; Iij(1,0)=0.; Iij(2,0)=1.; //Iij(1,0)=0; Iij(1,1)=0; Iij(1,2)=0; //Iij(2,0)=0; Iij(2,1)=0; Iij(2,2)=0; //Iij.Zero(); t_orb->Eij.ResizeTo(Iij); t_orb->Sij.ResizeTo(Iij); t_orb->Eij = Iij; // t_orb->Sij = Iij; // t_orb->pitch = -1000.; // t_orb->sunangle = -1000.; // t_orb->sunmagangle = -1000; // t_orb->cutoff = -1000.; // new(tor[nn]) OrbitalInfoTrkVar(*t_orb); nn++; // t_orb->Clear(); // } // } // // Code for extended tracking algorithm: // if ( hasNucleiTrk ){ Int_t ttentry = 0; if ( verbose ) printf(" hasNucleiTrk \n"); for(Int_t nt=0; nt < tcNucleiTof->GetEntries() ; nt++){ // ToFTrkVar *ptt = (ToFTrkVar*)(tcNucleiTof->At(nt)); if ( ptt->trkseqno != -1 ){ // t_orb->trkseqno = ptt->trkseqno; // TMatrixD Iij(3,1); Iij(0,0)=0.; Iij(1,0)=0.; Iij(2,0)=1.; //Iij(1,0)=0; Iij(1,1)=0; Iij(1,2)=0; //Iij(2,0)=0; Iij(2,1)=0; Iij(2,2)=0; //Iij.Zero(); t_orb->Eij.ResizeTo(Iij); t_orb->Sij.ResizeTo(Iij); t_orb->Eij = Iij; // t_orb->Sij = Iij; // t_orb->pitch = -1000.; // t_orb->sunangle = -1000.; // t_orb->sunmagangle = -1000; // t_orb->cutoff = -1000.; // TClonesArray &tz1 = *torbNucleiTrk; new(tz1[ttentry]) OrbitalInfoTrkVar(*t_orb); ttentry++; // t_orb->Clear(); // } // } } if ( hasExtNucleiTrk ){ Int_t ttentry = 0; if ( verbose ) printf(" hasExtNucleiTrk \n"); for(Int_t nt=0; nt < tcExtNucleiTof->GetEntries() ; nt++){ // if ( verbose ) printf(" got2\n"); ToFTrkVar *ptt = (ToFTrkVar*)(tcExtNucleiTof->At(nt)); if ( ptt->trkseqno != -1 ){ // t_orb->trkseqno = ptt->trkseqno; // TMatrixD Iij(3,1); Iij(0,0)=0.; Iij(1,0)=0.; Iij(2,0)=1.; //Iij(1,0)=0; Iij(1,1)=0; Iij(1,2)=0; //Iij(2,0)=0; Iij(2,1)=0; Iij(2,2)=0; //Iij.Zero(); t_orb->Eij.ResizeTo(Iij); t_orb->Sij.ResizeTo(Iij); t_orb->Eij = Iij; // t_orb->Sij = Iij; // t_orb->pitch = -1000.; // t_orb->sunangle = -1000.; // t_orb->sunmagangle = -1000; // t_orb->cutoff = -1000.; // TClonesArray &tz2 = *torbExtNucleiTrk; new(tz2[ttentry]) OrbitalInfoTrkVar(*t_orb); ttentry++; // t_orb->Clear(); // } // } } if ( hasExtTrk ){ Int_t ttentry = 0; if ( verbose ) printf(" hasExtTrk \n"); for(Int_t nt=0; nt < tcExtTof->GetEntries() ; nt++){ // if ( verbose ) printf(" got3\n"); ToFTrkVar *ptt = (ToFTrkVar*)(tcExtTof->At(nt)); if ( ptt->trkseqno != -1 ){ // t_orb->trkseqno = ptt->trkseqno; // TMatrixD Iij(3,1); Iij(0,0)=0.; Iij(1,0)=0.; Iij(2,0)=1.; //Iij(1,0)=0; Iij(1,1)=0; Iij(1,2)=0; //Iij(2,0)=0; Iij(2,1)=0; Iij(2,2)=0; //Iij.Zero(); t_orb->Eij.ResizeTo(Iij); t_orb->Sij.ResizeTo(Iij); t_orb->Eij = Iij; // t_orb->Sij = Iij; // t_orb->pitch = -1000.; // t_orb->sunangle = -1000.; // t_orb->sunmagangle = -1000; // t_orb->cutoff = -1000.; // TClonesArray &tz3 = *torbExtTrk; new(tz3[ttentry]) OrbitalInfoTrkVar(*t_orb); ttentry++; // t_orb->Clear(); // } // } } } } // if( orbitalinfo->TimeGap>0){ // // Fill the class // OrbitalInfotr->Fill(); // // tor.Clear("C"); // memory leak? tor.Delete(); // memory leak? delete t_orb; // // printf(" q0 size %i q0 capacity %i \n",(int)q0.size(),(int)q0.capacity()); } // loop over the events in the run // // Here you may want to clear some variables before processing another run // // OrbitalInfotr->FlushBaskets(); if ( verbose ) printf(" Clear before new run \n"); delete dbtime; if ( mcmdrc ) mcmdrc->Clear(); mcmdrc = 0; if ( verbose ) printf(" Clear before new run1 \n"); if ( L_QQ_Q_l_lower ) delete L_QQ_Q_l_lower; if ( verbose ) printf(" Clear before new run2 \n"); if ( L_QQ_Q_l_upper ) delete L_QQ_Q_l_upper; if ( verbose ) printf(" Clear before new run3 \n"); if ( RYPang_upper ) delete RYPang_upper; if ( verbose ) printf(" Clear before new run4 \n"); if ( RYPang_lower ) delete RYPang_lower; if ( l0tr ){ if ( verbose ) printf(" delete l0tr\n"); l0tr->Delete(); l0tr = 0; } // if ( l0head ){ // printf(" delete l0head\n"); // l0head->Reset(); // delete l0head; // printf(" delete l0head done\n"); // l0head = 0; // } if (eh) { if ( verbose ) printf(" delete eh\n"); delete eh; eh = 0; } if ( verbose ) printf(" close file \n"); if ( l0File ) l0File->Close("R"); if ( verbose ) printf(" End run \n"); q0.clear(); q1.clear(); q2.clear(); q3.clear(); qtime.clear(); qPitch.clear(); qRoll.clear(); qYaw.clear(); qmode.clear(); if (ch){ if ( verbose ) printf(" delete ch\n"); ch->Delete(); ch = 0; } } // process all the runs <=== if ( debug ){ printf("AFTER LOOP ON RUNs\n"); gObjectTable->Print(); } // if (verbose) printf("\n Finished processing data \n"); // closeandexit: // // we have finished processing the run(s). If we processed a single run now we must copy all the events after our run from the old tree to the new one and delete the old tree. // if ( !reprocall && reproc && code >= 0 ){ if ( totfileentries > noaftrun ){ if (verbose){ printf("\n Post-processing: copying events from the old tree after the processed run\n"); printf(" Copying %i events in the file which are after the end of the run %i \n",(int)(totfileentries-noaftrun),(int)run); printf(" Start copying at event number %i end copying at event number %i \n",(int)noaftrun,(int)totfileentries); } for (UInt_t j = noaftrun; j < totfileentries; j++ ){ // // Get entry from old tree // if ( OrbitalInfotrclone->GetEntry(j) <= 0 ) throw -36; // // copy orbitalinfoclone to OrbitalInfo // // orbitalinfo->Clear(); // memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone)); // // Fill entry in the new tree // OrbitalInfotr->Fill(); }; if (verbose) printf(" Finished successful copying!\n"); }; //if ( OrbitalInfotrclone ) OrbitalInfotrclone->Clear(); //if ( OrbitalInfotrclone ) OrbitalInfotrclone->Delete(); }; // // Close files, delete old tree(s), write and close level2 file // if ( l0File ) l0File->Close(); if ( myfold ) gSystem->Unlink(tempname.str().c_str()); // if ( OrbitalInfotr ) OrbitalInfotr->SetName("OrbitalInfo"); // if ( file ){ file->cd(); if ( OrbitalInfotr ) OrbitalInfotr->Write("OrbitalInfo", TObject::kOverwrite); // 10 RED bug fixed }; // if (verbose) printf("\n Exiting...\n"); if ( myfold ) gSystem->Unlink(OrbitalInfofolder.str().c_str()); // // the end // if ( dbc ){ dbc->Close(); delete dbc; }; // if (verbose) printf("\n Exiting...\n"); if ( tempfile ) tempfile->Close(); if ( PO ) delete PO; if ( gltle ) delete gltle; if ( glparam ) delete glparam; if ( glparam2 ) delete glparam2; if (verbose) printf("\n Exiting3...\n"); if ( glroot ) delete glroot; if (verbose) printf("\n Exiting4...\n"); if ( runinfo ) runinfo->Close(); if ( runinfo ) delete runinfo; if ( tcNucleiTrk ){ tcNucleiTrk->Delete(); delete tcNucleiTrk; tcNucleiTrk = NULL; } if ( tcExtNucleiTrk ){ tcExtNucleiTrk->Delete(); delete tcExtNucleiTrk; tcExtNucleiTrk = NULL; } if ( tcExtTrk ){ tcExtTrk->Delete(); delete tcExtTrk; tcExtTrk = NULL; } if ( tcNucleiTof ){ tcNucleiTof->Delete(); delete tcNucleiTof; tcNucleiTof = NULL; } if ( tcExtNucleiTof ){ tcExtNucleiTof->Delete(); delete tcExtNucleiTof; tcExtNucleiTof = NULL; } if ( tcExtTof ){ tcExtTof->Delete(); delete tcExtTof; tcExtTrk = NULL; } if ( tof ) delete tof; if ( trke ) delete trke; if ( debug ){ cout << "1 0x" << OrbitalInfotr << endl; cout << "2 0x" << OrbitalInfotrclone << endl; cout << "3 0x" << l0tr << endl; cout << "4 0x" << tempOrbitalInfo << endl; cout << "5 0x" << ttof << endl; } // if ( debug ) file->ls(); // if ( debug ){ printf("BEFORE EXITING\n"); gObjectTable->Print(); } if(code < 0) throw code; return(code); } // // Returns the cCoordGeo structure holding the geographical // coordinates for the event (see sgp4.h). // // atime is the abstime of the event in UTC unix time. // tletime is the time of the tle in UTC unix time. // tle is the previous and nearest tle (compared to atime). cCoordGeo getCoo(UInt_t atime, UInt_t tletime, cTle *tle) { cEci eci; cOrbit orbit(*tle); orbit.getPosition((double) (atime - tletime)/60., &eci); return eci.toGeo(); } // function of copyng of quatrnions classes void CopyQ(Quaternions *Q1, Quaternions *Q2){ for(UInt_t i = 0; i < 6; i++){ Q1->time[i]=Q2->time[i]; for (UInt_t j = 0; j < 4; j++)Q1->quat[i][j]=Q2->quat[i][j]; } return; } // functions of copyng InclinationInfo classes void CopyAng(InclinationInfo *A1, InclinationInfo *A2){ A1->Tangazh = A2->Tangazh; A1->Ryskanie = A2->Ryskanie; A1->Kren = A2->Kren; return; } UInt_t holeq(Double_t lower,Double_t upper,Quaternions *Qlower, Quaternions *Qupper, UInt_t f){ UInt_t hole = 10; Bool_t R10l = false; // Sign of R10 mode in lower quaternions array Bool_t R10u = false; // Sign of R10 mode in upper quaternions array Bool_t insm = false; // Sign that we inside quaternions array // Bool_t mxtml = false; // Sign of mixt mode in lower quaternions array // Bool_t mxtmu = false; // Sign of mixt mode in upper quaternions array Bool_t npasm = false; // Sign of normall pass between R10 and non R10 or between non R10 and R10 UInt_t NCQl = 6; // Number of correct quaternions in lower array // UInt_t NCQu = 6; // Number of correct quaternions in upper array if (f>0){ insm = true; if(Qupper->time[f]-Qupper->time[f-1]==30) R10u = false; if(Qupper->time[f]-Qupper->time[f-1]<1) R10u = true; }else{ insm = false; if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]<2)) R10l = true; if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]<2)) R10u = true; if((Qlower->time[5]-Qlower->time[0]==150)&&(Qlower->time[1]-Qlower->time[0]==30)) R10l = false; if((Qupper->time[5]-Qupper->time[0]==150)&&(Qupper->time[1]-Qupper->time[0]==30)) R10u = false; if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]==30)){ // mxtml = true; for(UInt_t i = 1; i < 6; i++){ if(Qlower->time[i]-Qlower->time[0]==30*i) NCQl=i; } } // if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]==30)){ // mxtmu = true; // for(UInt_t i = 1; i < 6; i++){ // if(Qupper->time[i]-Qupper->time[0]==30*i) NCQu=i; // } // } } if(((upper-lower==1.5)||(upper-lower==3.)||(upper-lower==30.)||(upper-lower==31.5)||(upper-lower==33.)||(upper-lower==181.5)||(upper-lower==210.)||(upper-lower==211.5))&&!insm) npasm = true; if (R10u&&insm) hole=0; // best event R10 if ((upper-lower<=5)&&(!insm)&&R10l&&R10u) hole = 1; // when first of 6 quaternions in array is correct if (((!R10u)&&insm)||((!insm)&&(!R10u)&&(!R10l)&&((upper-lower==210+(6-NCQl)*30)||(upper-lower==30)))) hole = 2; //non R10 if (npasm&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 3; //normall pass from R10 to non R10 or from non R10 to R10 if ((!npasm)&&(upper-lower<=300)&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 4; // eliminable hole between R10 and non R10 or between non R10 and R10 if ((upper-lower>=300)&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 5; //uneliminable hole between R10 and non R10 or between non R10 and R10 if ((upper-lower>5)&&(upper-lower<=300)&&R10u&&R10l) hole = 6; // eliminable hole inside R10 if ((upper-lower>300)&&R10u&&R10l) hole = 7; //uneliminable hole inside R10 if ((upper-lower>210)&&(upper-lower<=1200)&&(!R10u)&&(!R10l)) hole = 8; //eliminable hole inside non R10 if ((upper-lower>1200)&&!R10u&&!R10l) hole = 9; // uneliminable hole inside non R10 return hole; } void inclresize(vector& t,vector& q0,vector& q1,vector& q2,vector& q3,vector& mode,vector& Roll,vector& Pitch,vector& Yaw){ Int_t sizee = t.size()+1; t.resize(sizee); q0.resize(sizee); q1.resize(sizee); q2.resize(sizee); q3.resize(sizee); mode.resize(sizee); Roll.resize(sizee); Pitch.resize(sizee); Yaw.resize(sizee); } // geomagnetic calculation staff void GM_ScanIGRF(TSQLServer *dbc, GMtype_Data *G0, GMtype_Data *G1, GMtype_Data *H1) { GL_PARAM *glp = new GL_PARAM(); Int_t parerror=glp->Query_GL_PARAM(1,304,dbc); // parameters stored in DB in GL_PRAM table if ( parerror<0 ) { throw -902; } /*This function scans inputs G0, G1, and H1 of the IGRF table into 3 data arrays*/ // TString SATH="/data03/Malakhov/pam9Malakhov/installed10/calib/orb-param/"; int i; double temp; char buffer[200]; FILE *IGRF; IGRF = fopen((glp->PATH+glp->NAME).Data(), "r"); // IGRF = fopen(PATH+"IGRF.tab", "r"); G0->size = 25; G1->size = 25; H1->size = 25; for( i = 0; i < 4; i++) { fgets(buffer, 200, IGRF); } fscanf(IGRF, "g 1 0 %lf ", &G0->element[0]); for(i = 1; i <= 22; i++) { fscanf(IGRF ,"%lf ", &G0->element[i]); } fscanf(IGRF ,"%lf\n", &temp); G0->element[23] = temp * 5 + G0->element[22]; G0->element[24] = G0->element[23] + 5 * temp; fscanf(IGRF, "g 1 1 %lf ", &G1->element[0]); for(i = 1; i <= 22; i++) { fscanf( IGRF, "%lf ", &G1->element[i]); } fscanf(IGRF, "%lf\n", &temp); G1->element[23] = temp * 5 + G1->element[22]; G1->element[24] = temp * 5 + G1->element[23]; fscanf(IGRF, "h 1 1 %lf ", &H1->element[0]); for(i = 1; i <= 22; i++) { fscanf( IGRF, "%lf ", &H1->element[i]); } fscanf(IGRF, "%lf\n", &temp); H1->element[23] = temp * 5 + H1->element[22]; H1->element[24] = temp * 5 + H1->element[23]; if ( glp ) delete glp; /* printf("############################## SCAN IGRF ######################################\n"); printf(" G0 G1 H1\n"); printf(" size %10i %10i %10i \n",G0->size,G1->size,H1->size); for ( i = 0; i < 30; i++){ printf("%5i %10.2f %10.2f %10.2f \n",i,G0->element[i],G1->element[i],H1->element[i]); } printf("###############################################################################\n"); */ } /*GM_ScanIGRF*/ void GM_SetIGRF(Int_t isSecular, TString ifile1, TString ifile2, GMtype_Data *G0, GMtype_Data *G1, GMtype_Data *H1) { /*This function scans inputs G0, G1, and H1 of the IGRF table into 3 data arrays*/ int i; double temp,temp2; int it1,it2; char buffer[200]; FILE *IGRF; G0->size = 2; G1->size = 2; H1->size = 2; for( i = 0; i < 30; i++){ G0->element[i] = 0.; G1->element[i] = 0.; H1->element[i] = 0.; } IGRF = fopen(ifile1.Data(), "r"); for( i = 0; i < 2; i++){ fgets(buffer, 200, IGRF); } fscanf(IGRF, "%3i%3i%12lf%11lf",&it1,&it2, &G0->element[0],&temp); fscanf(IGRF, "%3i%3i%12lf%11lf",&it1,&it2, &G1->element[0],&H1->element[0]); fclose(IGRF); IGRF = fopen(ifile2.Data(), "r"); for( i = 0; i < 2; i++){ fgets(buffer, 200, IGRF); } if ( isSecular ){ fscanf(IGRF, "%3i%3i%12lf%11lf",&it1,&it2,&temp,&temp2); G0->element[1] = temp * 5. + G0->element[0]; fscanf(IGRF, "%3i%3i%12lf%11lf",&it1,&it2,&temp,&temp2); G1->element[1] = temp * 5. + G1->element[0]; H1->element[1] = temp2 * 5. + H1->element[0]; } else { fscanf(IGRF, "%3i%3i%12lf%11lf",&it1,&it2, &G0->element[1],&temp); fscanf(IGRF, "%3i%3i%12lf%11lf",&it1,&it2, &G1->element[1],&H1->element[1]); } fclose(IGRF); /* printf("############################## SCAN IGRF ######################################\n"); printf(" G0 G1 H1\n"); printf(" size %10i %10i %10i \n",G0->size,G1->size,H1->size); for ( i = 0; i < 30; i++){ printf("%5i %10.2f %10.2f %10.2f \n",i,G0->element[i],G1->element[i],H1->element[i]); } printf("###############################################################################\n"); */ } /*GM_ScanIGRF*/ void GM_SetEllipsoid(GMtype_Ellipsoid *Ellip) { /*This function sets the WGS84 reference ellipsoid to its default values*/ Ellip->a = 6378.137; /*semi-major axis of the ellipsoid in */ Ellip->b = 6356.7523142;/*semi-minor axis of the ellipsoid in */ Ellip->fla = 1/298.257223563;/* flattening */ Ellip->eps = sqrt(1- ( Ellip->b * Ellip->b) / (Ellip->a * Ellip->a )); /*first eccentricity */ Ellip->epssq = (Ellip->eps * Ellip->eps); /*first eccentricity squared */ Ellip->re = 6371.2;/* Earth's radius */ } /*GM_SetEllipsoid*/ void GM_EarthCartToDipoleCartCD(GMtype_Pole Pole, GMtype_CoordCartesian EarthCoord, GMtype_CoordCartesian *DipoleCoords) { /*This function converts from Earth centered cartesian coordinates to dipole centered cartesian coordinates*/ double X, Y, Z, CosPhi, SinPhi, CosLambda, SinLambda; CosPhi = cos(TMath::DegToRad()*Pole.phi); SinPhi = sin(TMath::DegToRad()*Pole.phi); CosLambda = cos(TMath::DegToRad()*Pole.lambda); SinLambda = sin(TMath::DegToRad()*Pole.lambda); X = EarthCoord.x; Y = EarthCoord.y; Z = EarthCoord.z; /*These equations are taken from a document by Wallace H. Campbell*/ DipoleCoords->x = X * CosPhi * CosLambda + Y * CosPhi * SinLambda - Z * SinPhi; DipoleCoords->y = -X * SinLambda + Y * CosLambda; DipoleCoords->z = X * SinPhi * CosLambda + Y * SinPhi * SinLambda + Z * CosPhi; } /*GM_EarthCartToDipoleCartCD*/ void GM_GeodeticToSpherical(GMtype_Ellipsoid Ellip, GMtype_CoordGeodetic CoordGeodetic, GMtype_CoordSpherical *CoordSpherical) { double CosLat, SinLat, rc, xp, zp; /*all local variables */ /* ** Convert geodetic coordinates, (defined by the WGS-84 ** reference ellipsoid), to Earth Centered Earth Fixed Cartesian ** coordinates, and then to spherical coordinates. */ CosLat = cos(TMath::DegToRad()*CoordGeodetic.phi); SinLat = sin(TMath::DegToRad()*CoordGeodetic.phi); /* compute the local radius of curvature on the WGS-84 reference ellipsoid */ rc = Ellip.a / sqrt(1.0 - Ellip.epssq * SinLat * SinLat); /* compute ECEF Cartesian coordinates of specified point (for longitude=0) */ xp = (rc + CoordGeodetic.HeightAboveEllipsoid) * CosLat; zp = (rc*(1.0 - Ellip.epssq) + CoordGeodetic.HeightAboveEllipsoid) * SinLat; /* compute spherical radius and angle lambda and phi of specified point */ CoordSpherical->r = sqrt(xp * xp + zp * zp); CoordSpherical->phig = TMath::RadToDeg()*asin(zp / CoordSpherical->r); /* geocentric latitude */ CoordSpherical->lambda = CoordGeodetic.lambda; /* longitude */ } /*GM_GeodeticToSpherical*/ void GM_PoleLocation(GMtype_Model Model, GMtype_Pole *Pole) { /*This function finds the location of the north magnetic pole in spherical coordinates. The equations are **from Wallace H. Campbell's Introduction to Geomagnetic Fields*/ Pole->phi = TMath::RadToDeg()*-atan(sqrt(Model.h1 * Model.h1 + Model.g1 * Model.g1)/Model.g0); Pole->lambda = TMath::RadToDeg()*atan(Model.h1/Model.g1); } /*GM_PoleLocation*/ void GM_SphericalToCartesian(GMtype_CoordSpherical CoordSpherical, GMtype_CoordCartesian *CoordCartesian) { /*This function converts spherical coordinates into Cartesian coordinates*/ double CosPhi = cos(TMath::DegToRad()*CoordSpherical.phig); double SinPhi = sin(TMath::DegToRad()*CoordSpherical.phig); double CosLambda = cos(TMath::DegToRad()*CoordSpherical.lambda); double SinLambda = sin(TMath::DegToRad()*CoordSpherical.lambda); CoordCartesian->x = CoordSpherical.r * CosPhi * CosLambda; CoordCartesian->y = CoordSpherical.r * CosPhi * SinLambda; CoordCartesian->z = CoordSpherical.r * SinPhi; } /*GM_SphericalToCartesian*/ void GM_TimeAdjustCoefs(Float_t year, Float_t jyear, GMtype_Data g0d, GMtype_Data g1d, GMtype_Data h1d, GMtype_Model *Model) { /*This function calls GM_LinearInterpolation for the coefficients to estimate the value of the **coefficient for the given date*/ int index; double x; index = (year - GM_STARTYEAR) / 5; x = (jyear - GM_STARTYEAR) / 5.; Model->g0 = GM_LinearInterpolation(index, index+1, g0d.element[index], g0d.element[index+1], x); Model->g1 = GM_LinearInterpolation(index, index+1, g1d.element[index], g1d.element[index+1], x); Model->h1 = GM_LinearInterpolation(index, index+1, h1d.element[index], h1d.element[index+1], x); } /*GM_TimeAdjustCoefs*/ double GM_LinearInterpolation(double x1, double x2, double y1, double y2, double x) { /*This function takes a linear interpolation between two given points for x*/ double weight, y; weight = (x - x1) / (x2 - x1); y = y1 * (1. - weight) + y2 * weight; // printf(" x1 %f x2 %f y1 %f y2 %f x %f ==> y %f \n",x1,x2,y1,y2,x,y); return y; }/*GM_LinearInterpolation*/ void GM_CartesianToSpherical(GMtype_CoordCartesian CoordCartesian, GMtype_CoordSpherical *CoordSpherical) { /*This function converts a point from Cartesian coordinates into spherical coordinates*/ double X, Y, Z; X = CoordCartesian.x; Y = CoordCartesian.y; Z = CoordCartesian.z; CoordSpherical->r = sqrt(X * X + Y * Y + Z * Z); CoordSpherical->phig = TMath::RadToDeg()*asin(Z / (CoordSpherical->r)); CoordSpherical->lambda = TMath::RadToDeg()*atan2(Y, X); } /*GM_CartesianToSpherical*/