1 |
// C/C++ headers |
2 |
// |
3 |
#include <fstream> |
4 |
#include <string.h> |
5 |
#include <iostream> |
6 |
#include <cstring> |
7 |
#include <stdio.h> |
8 |
// |
9 |
// ROOT headers |
10 |
// |
11 |
//#include <TCanvas.h> |
12 |
#include <TH2F.h> //for test only. Vitaly. |
13 |
#include <TVector3.h> |
14 |
//#include <TF1.h> |
15 |
|
16 |
#include <TTree.h> |
17 |
#include <TClassEdit.h> |
18 |
#include <TObject.h> |
19 |
#include <TList.h> |
20 |
#include <TArrayI.h> |
21 |
#include <TSystem.h> |
22 |
#include <TSystemDirectory.h> |
23 |
#include <TString.h> |
24 |
#include <TFile.h> |
25 |
#include <TClass.h> |
26 |
#include <TSQLServer.h> |
27 |
#include <TSQLRow.h> |
28 |
#include <TSQLResult.h> |
29 |
#include <TObjectTable.h> |
30 |
// |
31 |
// RunInfo header |
32 |
// |
33 |
#include <RunInfo.h> |
34 |
#include <GLTables.h> |
35 |
// |
36 |
// YODA headers |
37 |
// |
38 |
#include <PamelaRun.h> |
39 |
#include <PscuHeader.h> |
40 |
#include <PscuEvent.h> |
41 |
#include <EventHeader.h> |
42 |
#include <mcmd/McmdEvent.h> |
43 |
#include <mcmd/McmdRecord.h> |
44 |
// |
45 |
// This program headers |
46 |
// |
47 |
#include <OrbitalInfo.h> |
48 |
#include <OrbitalInfoVerl2.h> |
49 |
#include <OrbitalInfoCore.h> |
50 |
#include <InclinationInfo.h> |
51 |
|
52 |
// |
53 |
// Tracker and ToF classes headers and definitions |
54 |
// |
55 |
#include <ToFLevel2.h> |
56 |
#include <TrkLevel2.h> |
57 |
#include <ExtTrack.h> // new tracking code |
58 |
|
59 |
using namespace std; |
60 |
|
61 |
// |
62 |
// CORE ROUTINE |
63 |
// |
64 |
// |
65 |
int OrbitalInfoCore(UInt_t run, TFile *file, GL_TABLES *glt, Int_t OrbitalInfoargc, char *OrbitalInfoargv[]){ |
66 |
// |
67 |
Int_t i = 0; |
68 |
TString host = glt->CGetHost(); |
69 |
TString user = glt->CGetUser(); |
70 |
TString psw = glt->CGetPsw(); |
71 |
TSQLServer *dbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); |
72 |
// |
73 |
stringstream myquery; |
74 |
myquery.str(""); |
75 |
myquery << "SET time_zone='+0:00';"; |
76 |
delete dbc->Query(myquery.str().c_str()); |
77 |
delete dbc->Query("SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';"); |
78 |
// |
79 |
TString processFolder = Form("OrbitalInfoFolder_%u",run); |
80 |
// |
81 |
// Set these to true to have a very verbose output. |
82 |
// |
83 |
Bool_t debug = false; |
84 |
// |
85 |
Bool_t verbose = false; |
86 |
// |
87 |
Bool_t standalone = false; |
88 |
// |
89 |
if ( OrbitalInfoargc > 0 ){ |
90 |
i = 0; |
91 |
while ( i < OrbitalInfoargc ){ |
92 |
if ( !strcmp(OrbitalInfoargv[i],"-processFolder") ) { |
93 |
if ( OrbitalInfoargc < i+1 ){ |
94 |
throw -3; |
95 |
} |
96 |
processFolder = (TString)OrbitalInfoargv[i+1]; |
97 |
i++; |
98 |
} |
99 |
if ( (!strcmp(OrbitalInfoargv[i],"--debug")) || (!strcmp(OrbitalInfoargv[i],"-g")) ) { |
100 |
verbose = true; |
101 |
debug = true; |
102 |
} |
103 |
if ( (!strcmp(OrbitalInfoargv[i],"--verbose")) || (!strcmp(OrbitalInfoargv[i],"-v")) ) { |
104 |
verbose = true; |
105 |
} |
106 |
if ( (!strcmp(OrbitalInfoargv[i],"--standalone")) ) { |
107 |
standalone = true; |
108 |
} |
109 |
if ( (!strcmp(OrbitalInfoargv[i],"--calculate-pitch")) ) { |
110 |
standalone = false; |
111 |
} |
112 |
i++; |
113 |
} |
114 |
} |
115 |
if ( debug ){ |
116 |
printf("START\n"); |
117 |
gObjectTable->Print(); |
118 |
} |
119 |
// |
120 |
const char* outDir = gSystem->DirName(gSystem->DirName(file->GetPath())); |
121 |
// |
122 |
TTree *OrbitalInfotr = 0; |
123 |
UInt_t nevents = 0; |
124 |
UInt_t neventsm = 0; |
125 |
// |
126 |
// variables needed to reprocess data |
127 |
// |
128 |
Long64_t maxsize = 10000000000LL; |
129 |
TTree::SetMaxTreeSize(maxsize); |
130 |
// |
131 |
TString OrbitalInfoversion; |
132 |
ItoRunInfo *runinfo = 0; |
133 |
TArrayI *runlist = 0; |
134 |
TTree *OrbitalInfotrclone = 0; |
135 |
Bool_t reproc = false; |
136 |
Bool_t reprocall = false; |
137 |
Bool_t igrfloaded = false; |
138 |
UInt_t nobefrun = 0; |
139 |
UInt_t noaftrun = 0; |
140 |
UInt_t numbofrun = 0; |
141 |
stringstream ftmpname; |
142 |
TString fname; |
143 |
UInt_t totfileentries = 0; |
144 |
UInt_t idRun = 0; |
145 |
UInt_t anni5 = 60 * 60 * 24 * 365 * 5 ;//1576800 |
146 |
// |
147 |
// My variables. Vitaly. |
148 |
// |
149 |
// UInt_t oi = 0; |
150 |
Int_t tmpSize = 0; |
151 |
// |
152 |
// variables needed to handle error signals |
153 |
// |
154 |
Int_t code = 0; |
155 |
Int_t sgnl; |
156 |
// |
157 |
// OrbitalInfo classes |
158 |
// |
159 |
OrbitalInfo *orbitalinfo = new OrbitalInfo(); |
160 |
OrbitalInfo *orbitalinfoclone = new OrbitalInfo(); |
161 |
|
162 |
// |
163 |
// define variables for opening and reading level0 file |
164 |
// |
165 |
TFile *l0File = 0; |
166 |
TTree *l0tr = 0; |
167 |
// TTree *l0trm = 0; |
168 |
TChain *ch = 0; |
169 |
// EM: open also header branch |
170 |
TBranch *l0head = 0; |
171 |
pamela::EventHeader *eh = 0; |
172 |
pamela::PscuHeader *ph = 0; |
173 |
pamela::McmdEvent *mcmdev = 0; |
174 |
pamela::McmdRecord *mcmdrc = 0; |
175 |
// end EM |
176 |
|
177 |
// pamela::RunHeaderEvent *reh = new pamela::RunHeaderEvent; |
178 |
// pamela::EventHeader *eH = new pamela::EventHeader; |
179 |
|
180 |
// |
181 |
// Define other basic variables |
182 |
// |
183 |
UInt_t procev = 0; |
184 |
stringstream file2; |
185 |
stringstream file3; |
186 |
stringstream qy; |
187 |
Int_t totevent = 0; |
188 |
UInt_t atime = 0; |
189 |
UInt_t re = 0; |
190 |
UInt_t ik = 0; |
191 |
|
192 |
// Position |
193 |
Float_t lon, lat, alt; |
194 |
|
195 |
// |
196 |
// IGRF stuff |
197 |
// |
198 |
Float_t dimo = 0.0; // dipole moment (computed from dat files) // EM GCC 4.7 |
199 |
Float_t bnorth, beast, bdown, babs; |
200 |
Float_t xl; // L value |
201 |
Int_t icode; // code value for L accuracy (see fortran code) |
202 |
Float_t bab1; // What's the difference with babs? |
203 |
Float_t stps = 0.005; // step size for field line tracing |
204 |
Float_t bdel = 0.01; // required accuracy |
205 |
Float_t bequ; // equatorial b value (also called b_0) |
206 |
Bool_t value = 0; // false if bequ is not the minimum b value |
207 |
Float_t rr0; // equatorial radius normalized to earth radius |
208 |
|
209 |
// |
210 |
// Working filename |
211 |
// |
212 |
TString outputfile; |
213 |
stringstream name; |
214 |
name.str(""); |
215 |
name << outDir << "/"; |
216 |
// |
217 |
// temporary file and folder |
218 |
// |
219 |
TFile *tempfile = 0; |
220 |
TTree *tempOrbitalInfo = 0; |
221 |
stringstream tempname; |
222 |
stringstream OrbitalInfofolder; |
223 |
Bool_t myfold = false; |
224 |
tempname.str(""); |
225 |
tempname << outDir; |
226 |
tempname << "/" << processFolder.Data(); |
227 |
OrbitalInfofolder.str(""); |
228 |
OrbitalInfofolder << tempname.str().c_str(); |
229 |
tempname << "/OrbitalInfotree_run"; |
230 |
tempname << run << ".root"; |
231 |
UInt_t totnorun = 0; |
232 |
// |
233 |
// DB classes |
234 |
// |
235 |
GL_ROOT *glroot = new GL_ROOT(); |
236 |
GL_TIMESYNC *dbtime = 0; |
237 |
GL_TLE *gltle = new GL_TLE(); |
238 |
// |
239 |
//Quaternions classes |
240 |
// |
241 |
Quaternions *L_QQ_Q_l_lower = 0; |
242 |
InclinationInfo *RYPang_lower = 0; |
243 |
Quaternions *L_QQ_Q_l_upper = 0; |
244 |
InclinationInfo *RYPang_upper = 0; |
245 |
|
246 |
cEci eCi; |
247 |
|
248 |
// Initialize fortran routines!!! |
249 |
Int_t ltp1 = 0; |
250 |
Int_t ltp2 = 0; |
251 |
GL_PARAM *glparam0 = new GL_PARAM(); |
252 |
GL_PARAM *glparam = new GL_PARAM(); |
253 |
GL_PARAM *glparam2 = new GL_PARAM(); |
254 |
|
255 |
// |
256 |
// Orientation variables. Vitaly |
257 |
// |
258 |
|
259 |
UInt_t evfrom = 0; |
260 |
UInt_t jumped = 0; |
261 |
Int_t itr = -1; |
262 |
// Double_t A1; |
263 |
// Double_t A2; |
264 |
// Double_t A3; |
265 |
Double_t Px = 0; |
266 |
Double_t Py = 0; |
267 |
Double_t Pz = 0; |
268 |
TTree *ttof = 0; |
269 |
ToFLevel2 *tof = new ToFLevel2(); |
270 |
TTree *ttrke = 0; |
271 |
TrkLevel2 *trke = new TrkLevel2(); |
272 |
OrientationInfo *PO = new OrientationInfo(); |
273 |
Int_t nz = 6; |
274 |
Float_t zin[6]; |
275 |
Int_t nevtofl2 = 0; |
276 |
Int_t nevtrkl2 = 0; |
277 |
if ( verbose ) cout<<"Reading quaternions external file"<<endl; |
278 |
cout.setf(ios::fixed,ios::floatfield); |
279 |
/******Reading recovered quaternions...*********/ |
280 |
vector<Double_t> recqtime; |
281 |
vector<Float_t> recq0; |
282 |
vector<Float_t> recq1; |
283 |
vector<Float_t> recq2; |
284 |
vector<Float_t> recq3; |
285 |
Float_t Norm = 1; |
286 |
recqtime.reserve(1500000); |
287 |
recq0.reserve(1500000); |
288 |
recq1.reserve(1500000); |
289 |
recq2.reserve(1500000); |
290 |
recq3.reserve(1500000); |
291 |
|
292 |
vector<UInt_t> RTtime1; |
293 |
vector<UInt_t> RTtime2; |
294 |
vector<Double_t> RTbank1; |
295 |
vector<Double_t> RTbank2; |
296 |
vector<Double_t> RTbpluto1; |
297 |
vector<Double_t> RTbpluto2; |
298 |
vector<Int_t> RTazim; |
299 |
vector<UInt_t> RTstart; |
300 |
vector<UInt_t> RTpluto2; |
301 |
vector<UInt_t> RTpluto1; |
302 |
vector<Int_t> RTerrq; |
303 |
vector<Int_t> RTqual; |
304 |
RTtime1.reserve(200000); |
305 |
RTtime2.reserve(200000); |
306 |
RTbank1.reserve(200000); |
307 |
RTbank2.reserve(200000); |
308 |
RTbpluto1.reserve(200000); |
309 |
RTbpluto2.reserve(200000); |
310 |
RTazim.reserve(200000); |
311 |
RTstart.reserve(200000); |
312 |
RTpluto1.reserve(200000); |
313 |
RTpluto2.reserve(200000); |
314 |
RTerrq.reserve(200000); |
315 |
RTqual.reserve(200000); |
316 |
|
317 |
TClonesArray *tcNucleiTrk = NULL; |
318 |
TClonesArray *tcExtNucleiTrk = NULL; |
319 |
TClonesArray *tcExtTrk = NULL; |
320 |
TClonesArray *tcNucleiTof = NULL; |
321 |
TClonesArray *tcExtNucleiTof = NULL; |
322 |
TClonesArray *tcExtTof = NULL; |
323 |
TClonesArray *torbNucleiTrk = NULL; |
324 |
TClonesArray *torbExtNucleiTrk = NULL; |
325 |
TClonesArray *torbExtTrk = NULL; |
326 |
Bool_t hasNucleiTrk = false; |
327 |
Bool_t hasExtNucleiTrk = false; |
328 |
Bool_t hasExtTrk = false; |
329 |
Bool_t hasNucleiTof = false; |
330 |
Bool_t hasExtNucleiTof = false; |
331 |
Bool_t hasExtTof = false; |
332 |
|
333 |
ifstream in; |
334 |
ifstream an; |
335 |
// ofstream mc; |
336 |
// TString gr; |
337 |
Int_t parerror2=0; |
338 |
|
339 |
Int_t parerror=glparam0->Query_GL_PARAM(1,303,dbc); // parameters stored in DB in GL_PRAM table |
340 |
if ( verbose ) cout<<parerror<<"\t"<<(char*)(glparam0->PATH+glparam0->NAME).Data()<<endl; |
341 |
if ( parerror<0 ) { |
342 |
code = parerror; |
343 |
goto closeandexit; |
344 |
} |
345 |
in.open((char*)(glparam0->PATH+glparam0->NAME).Data(),ios::in); |
346 |
while(!in.eof()){ |
347 |
recqtime.resize(recqtime.size()+1); |
348 |
Int_t sizee = recqtime.size(); |
349 |
recq0.resize(sizee); |
350 |
recq1.resize(sizee); |
351 |
recq2.resize(sizee); |
352 |
recq3.resize(sizee); |
353 |
in>>recqtime[sizee-1]; |
354 |
in>>recq0[sizee-1]; |
355 |
in>>recq1[sizee-1]; |
356 |
in>>recq2[sizee-1]; |
357 |
in>>recq3[sizee-1]; |
358 |
in>>Norm; |
359 |
/* CHECK RECOVERED QUATERNIONS PROBLEM |
360 |
if(recqtime[sizee-1]>=1160987921.75 && recqtime[sizee-1]<=1160987932.00){ |
361 |
cout<<"We found it at start"<<"\t"<<recqtime[sizee-1]<<endl; |
362 |
} */ |
363 |
} |
364 |
in.close(); |
365 |
if ( verbose ) cout<<"We have read recovered data"<<endl; |
366 |
if (debug) cout << "size of recovered quaterions data set is " << recqtime.size() << endl; |
367 |
if ( debug ) printf(" RQ size %i RQ capacity %i \n",(int)recqtime.size(),(int)recqtime.capacity()); |
368 |
|
369 |
if ( verbose ) cout<<"read Rotation Table"<<endl; |
370 |
|
371 |
parerror2=glparam0->Query_GL_PARAM(1,305,dbc); |
372 |
|
373 |
if ( verbose ) cout<<parerror2<<"\t"<<(char*)(glparam0->PATH+glparam0->NAME).Data()<<endl; |
374 |
if ( parerror2<0 ) { |
375 |
code = parerror; |
376 |
goto closeandexit; |
377 |
} |
378 |
an.open((char*)(glparam0->PATH+glparam0->NAME).Data(),ios::in); |
379 |
while(!an.eof()){ |
380 |
RTtime1.resize(RTtime1.size()+1); |
381 |
Int_t sizee = RTtime1.size(); |
382 |
RTbank1.resize(sizee+1); |
383 |
RTazim.resize(sizee+1); |
384 |
RTerrq.resize(sizee+1); |
385 |
RTstart.resize(sizee+1); |
386 |
RTpluto1.resize(sizee+1); |
387 |
RTbpluto1.resize(sizee+1); |
388 |
RTqual.resize(sizee+1); |
389 |
an>>RTtime1[sizee-1]; |
390 |
an>>RTbank1[sizee-1]; |
391 |
an>>RTstart[sizee-1]; |
392 |
an>>RTpluto1[sizee-1]; |
393 |
an>>RTbpluto1[sizee-1]; |
394 |
an>>RTazim[sizee-1]; |
395 |
an>>RTerrq[sizee-1]; |
396 |
an>>RTqual[sizee-1]; |
397 |
if(sizee>1) { |
398 |
RTtime2.resize(sizee+1); |
399 |
RTbank2.resize(sizee+1); |
400 |
RTpluto2.resize(sizee+1); |
401 |
RTbpluto2.resize(sizee+1); |
402 |
RTtime2[sizee-2]=RTtime1[sizee-1]; |
403 |
RTpluto2[sizee-2]=RTpluto1[sizee-1]; |
404 |
RTbank2[sizee-2]=RTbank1[sizee-1]; |
405 |
RTbpluto2[sizee-2]=RTbpluto1[sizee-1]; |
406 |
} |
407 |
} |
408 |
an.close(); |
409 |
//cout<<"put some number here"<<endl; |
410 |
//Int_t yupi; |
411 |
//cin>>yupi; |
412 |
|
413 |
if ( verbose ) cout<<"We have read Rotation Table"<<endl; |
414 |
//Geomagnetic coordinates calculations staff |
415 |
|
416 |
if ( debug ) printf(" RT size %i RT capacity %i \n",(int)RTtime2.size(),(int)RTtime2.capacity()); |
417 |
|
418 |
GMtype_CoordGeodetic location; |
419 |
// GMtype_CoordDipole GMlocation; |
420 |
GMtype_Ellipsoid Ellip; |
421 |
GMtype_Data G0, G1, H1; |
422 |
|
423 |
// { // this braces is necessary to avoid jump to label 'closeandexit' error // but it is wrong since the variable "igpath" will not exist outside. To overcome the "jump to label 'closeandexit' error" it is necessary to set the "igpath" before line 276 |
424 |
// TString igpath="/data03/Malakhov/pam9Malakhov/installed10/calib/orb-param/"; |
425 |
// } |
426 |
|
427 |
//cout << G0.element[0] << "\t" << G1.element[0] << "\t" << H1.element[0] << endl; |
428 |
//cout << G0.element[5] << "\t" << G1.element[5] << "\t" << H1.element[5] << endl; |
429 |
|
430 |
GM_SetEllipsoid(&Ellip); |
431 |
|
432 |
// IGRF stuff moved inside run loop! |
433 |
|
434 |
for (Int_t ip=0;ip<nz;ip++){ |
435 |
zin[ip] = tof->GetZTOF(tof->GetToFPlaneID(ip)); |
436 |
}; |
437 |
// |
438 |
if ( !standalone ){ |
439 |
// |
440 |
// Does it contain the Tracker and ToF trees? |
441 |
// |
442 |
ttof = (TTree*)file->Get("ToF"); |
443 |
if ( !ttof ) { |
444 |
if ( verbose ) printf(" OrbitalInfo - ERROR: no tof tree\n"); |
445 |
code = -900; |
446 |
goto closeandexit; |
447 |
} |
448 |
ttof->SetBranchAddress("ToFLevel2",&tof); |
449 |
nevtofl2 = ttof->GetEntries(); |
450 |
|
451 |
// |
452 |
// Look for extended tracking algorithm |
453 |
// |
454 |
if ( verbose ) printf("Look for extended and nuclei tracking algorithms in ToF\n"); |
455 |
// Nuclei tracking algorithm |
456 |
Int_t checkAlgo = 0; |
457 |
tcNucleiTof = new TClonesArray("ToFTrkVar"); |
458 |
checkAlgo = ttof->SetBranchAddress("TrackNuclei",&tcNucleiTof); |
459 |
if ( !checkAlgo ){ |
460 |
if ( verbose ) printf(" Nuclei tracking algorithm ToF branch found! :D \n"); |
461 |
hasNucleiTof = true; |
462 |
} else { |
463 |
if ( verbose ) printf(" Nuclei tracking algorithm ToF branch not found :( !\n"); |
464 |
printf(" ok, this is not a problem (it depends on tracker settings) \n"); |
465 |
delete tcNucleiTof; |
466 |
tcNucleiTof=NULL; // 10RED reprocessing bug |
467 |
} |
468 |
// Nuclei tracking algorithm using calorimeter points |
469 |
tcExtNucleiTof = new TClonesArray("ToFTrkVar"); |
470 |
checkAlgo = ttof->SetBranchAddress("RecoveredTrackNuclei",&tcExtNucleiTof); |
471 |
if ( !checkAlgo ){ |
472 |
if ( verbose ) printf(" Recovered nuclei tracking algorithm ToF branch found! :D \n"); |
473 |
hasExtNucleiTof = true; |
474 |
} else { |
475 |
if ( verbose ) printf(" Recovered nuclei tracking algorithm ToF branch not found :( !\n"); |
476 |
printf(" ok, this is not a problem (it depends on tracker settings) \n"); |
477 |
delete tcExtNucleiTof; |
478 |
tcExtNucleiTof=NULL; // 10RED reprocessing bug |
479 |
} |
480 |
// Tracking algorithm using calorimeter points |
481 |
tcExtTof = new TClonesArray("ToFTrkVar"); |
482 |
checkAlgo = ttof->SetBranchAddress("RecoveredTrack",&tcExtTof); |
483 |
if ( !checkAlgo ){ |
484 |
if ( verbose ) printf(" Recovered track algorithm ToF branch found! :D \n"); |
485 |
hasExtTof = true; |
486 |
} else { |
487 |
if ( verbose ) printf(" Recovered track algorithm ToF branch not found :( !\n"); |
488 |
printf(" ok, this is not a problem (it depends on tracker settings) \n"); |
489 |
delete tcExtTof; |
490 |
tcExtTof=NULL; // 10RED reprocessing bug |
491 |
} |
492 |
|
493 |
ttrke = (TTree*)file->Get("Tracker"); |
494 |
if ( !ttrke ) { |
495 |
if ( verbose ) printf(" OrbitalInfo - ERROR: no trk tree\n"); |
496 |
code = -903; |
497 |
goto closeandexit; |
498 |
} |
499 |
ttrke->SetBranchAddress("TrkLevel2",&trke); |
500 |
nevtrkl2 = ttrke->GetEntries(); |
501 |
|
502 |
// |
503 |
// Look for extended tracking algorithm |
504 |
// |
505 |
if ( verbose ) printf("Look for extended and nuclei tracking algorithms\n"); |
506 |
// Nuclei tracking algorithm |
507 |
checkAlgo = 0; |
508 |
tcNucleiTrk = new TClonesArray("TrkTrack"); |
509 |
checkAlgo = ttrke->SetBranchAddress("TrackNuclei",&tcNucleiTrk); |
510 |
if ( !checkAlgo ){ |
511 |
if ( verbose ) printf(" Nuclei tracking algorithm branch found! :D \n"); |
512 |
hasNucleiTrk = true; |
513 |
} else { |
514 |
if ( verbose ) printf(" Nuclei tracking algorithm branch not found :( !\n"); |
515 |
printf(" ok, this is not a problem (it depends on tracker settings) \n"); |
516 |
delete tcNucleiTrk; |
517 |
tcNucleiTrk=NULL; // 10RED reprocessing bug |
518 |
} |
519 |
// Nuclei tracking algorithm using calorimeter points |
520 |
tcExtNucleiTrk = new TClonesArray("ExtTrack"); |
521 |
checkAlgo = ttrke->SetBranchAddress("RecoveredTrackNuclei",&tcExtNucleiTrk); |
522 |
if ( !checkAlgo ){ |
523 |
if ( verbose ) printf(" Recovered nuclei tracking algorithm branch found! :D \n"); |
524 |
hasExtNucleiTrk = true; |
525 |
} else { |
526 |
if ( verbose ) printf(" Recovered nuclei tracking algorithm branch not found :( !\n"); |
527 |
printf(" ok, this is not a problem (it depends on tracker settings) \n"); |
528 |
delete tcExtNucleiTrk; |
529 |
tcExtNucleiTrk=NULL; // 10RED reprocessing bug |
530 |
} |
531 |
// Tracking algorithm using calorimeter points |
532 |
tcExtTrk = new TClonesArray("ExtTrack"); |
533 |
checkAlgo = ttrke->SetBranchAddress("RecoveredTrack",&tcExtTrk); |
534 |
if ( !checkAlgo ){ |
535 |
if ( verbose ) printf(" Recovered track algorithm branch found! :D \n"); |
536 |
hasExtTrk = true; |
537 |
} else { |
538 |
if ( verbose ) printf(" Recovered track algorithm branch not found :( !\n"); |
539 |
printf(" ok, this is not a problem (it depends on tracker settings) \n"); |
540 |
delete tcExtTrk; |
541 |
tcExtTrk=NULL; // 10RED reprocessing bug |
542 |
} |
543 |
|
544 |
if ( (hasNucleiTrk && !hasNucleiTof) || (!hasNucleiTrk && hasNucleiTof) || |
545 |
(hasExtNucleiTrk && !hasExtNucleiTof) || (!hasExtNucleiTrk && hasExtNucleiTof) || |
546 |
(hasExtTrk && !hasExtTof) || (!hasExtTrk && hasExtTof) |
547 |
){ |
548 |
if ( verbose ) printf(" ERROR: Mismatch between tracker and tof tree branches concerning extended tracking algorithm(s)\n"); |
549 |
if ( debug ) printf("hasNucleiTrk %i hasExtNucleiTrk %i hasExtTrk %i \n",hasNucleiTrk,hasExtNucleiTrk,hasExtTrk); |
550 |
if ( debug ) printf("hasNucleiTof %i hasExtNucleiTof %i hasExtTof %i \n",hasNucleiTof,hasExtNucleiTof,hasExtTof); |
551 |
throw -901; |
552 |
} |
553 |
|
554 |
} |
555 |
// |
556 |
// Let's start! |
557 |
// |
558 |
// As a first thing we must check what we have to do: if run = 0 we must process all events in the file has been passed |
559 |
// if run != 0 we must process only that run but first we have to check if the tree MyDetector2 already exist in the file |
560 |
// if it exists we are reprocessing data and we must delete that entries, if not we must create it. |
561 |
// |
562 |
if ( run == 0 ) reproc = true; |
563 |
// |
564 |
// |
565 |
// Output file is "outputfile" |
566 |
// |
567 |
if ( !file->IsOpen() ){ |
568 |
//printf(" OrbitalInfo - ERROR: cannot open file for writing\n"); |
569 |
throw -901; |
570 |
}; |
571 |
// |
572 |
// Retrieve GL_RUN variables from the level2 file |
573 |
// |
574 |
OrbitalInfoversion = OrbitalInfoInfo(false); // we should decide how to handle versioning system |
575 |
// |
576 |
// create an interface to RunInfo called "runinfo" |
577 |
// |
578 |
runinfo = new ItoRunInfo(file); |
579 |
// |
580 |
// open "Run" tree in level2 file, if not existing return an error (sngl != 0) |
581 |
// |
582 |
sgnl = 0; |
583 |
sgnl = runinfo->Update(run, "ORB", OrbitalInfoversion); |
584 |
//sgnl = runinfo->Read(run); |
585 |
|
586 |
if ( sgnl ){ |
587 |
//printf("OrbitalInfo - ERROR: RunInfo exited with non-zero status\n"); |
588 |
code = sgnl; |
589 |
goto closeandexit; |
590 |
} else { |
591 |
sgnl = 0; |
592 |
}; |
593 |
// |
594 |
// number of events in the file BEFORE the first event of our run |
595 |
// |
596 |
nobefrun = runinfo->GetFirstEntry(); |
597 |
// |
598 |
// total number of events in the file |
599 |
// |
600 |
totfileentries = runinfo->GetFileEntries(); |
601 |
// |
602 |
// first file entry AFTER the last event of our run |
603 |
// |
604 |
noaftrun = runinfo->GetLastEntry() + 1; |
605 |
// |
606 |
// number of run to be processed |
607 |
// |
608 |
numbofrun = runinfo->GetNoRun(); |
609 |
totnorun = runinfo->GetRunEntries(); |
610 |
// |
611 |
// Try to access the OrbitalInfo tree in the file, if it exists we are reprocessing data if not we are processing a new run |
612 |
// |
613 |
OrbitalInfotrclone = (TTree*)file->Get("OrbitalInfo"); |
614 |
// |
615 |
if ( !OrbitalInfotrclone ){ |
616 |
// |
617 |
// tree does not exist, we are not reprocessing |
618 |
// |
619 |
reproc = false; |
620 |
if ( run == 0 ){ |
621 |
if (verbose) printf(" OrbitalInfo - WARNING: you are reprocessing data but OrbitalInfo tree does not exist!\n"); |
622 |
} |
623 |
if ( runinfo->IsReprocessing() && run != 0 ) { |
624 |
if (verbose) printf(" OrbitalInfo - WARNING: it seems you are not reprocessing data but OrbitalInfo\n versioning information already exists in RunInfo.\n"); |
625 |
} |
626 |
} else { |
627 |
// |
628 |
// tree exists, we are reprocessing data. Are we reprocessing a single run or all the file? |
629 |
// |
630 |
OrbitalInfotrclone->SetAutoSave(900000000000000LL); |
631 |
reproc = true; |
632 |
// |
633 |
// |
634 |
if (verbose) printf("\n Preparing the pre-processing...\n"); |
635 |
// |
636 |
if ( run == 0 || totnorun == 1 ){ |
637 |
// |
638 |
// we are reprocessing all the file |
639 |
// if we are reprocessing everything we don't need to copy any old event and we can just work with the new tree and delete the old one immediately |
640 |
// |
641 |
reprocall = true; |
642 |
// |
643 |
if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing all runs\n Deleting old tree...\n"); |
644 |
// |
645 |
} else { |
646 |
// |
647 |
// we are reprocessing a single run, we must copy to the new tree the events in the file which preceed the first event of the run |
648 |
// |
649 |
reprocall = false; |
650 |
// |
651 |
if (verbose) printf("\n OrbitalInfo - WARNING: Reprocessing run number %u \n",run); |
652 |
// |
653 |
// copying old tree to a new file |
654 |
// |
655 |
gSystem->MakeDirectory(OrbitalInfofolder.str().c_str()); |
656 |
myfold = true; |
657 |
tempfile = new TFile(tempname.str().c_str(),"RECREATE"); |
658 |
tempOrbitalInfo = OrbitalInfotrclone->CloneTree(-1,"fast"); |
659 |
tempOrbitalInfo->SetName("OrbitalInfo-old"); |
660 |
tempfile->Write(); |
661 |
tempOrbitalInfo->Delete(); |
662 |
tempfile->Close(); |
663 |
} |
664 |
// |
665 |
// Delete the old tree from old file and memory |
666 |
// |
667 |
OrbitalInfotrclone->Clear(); |
668 |
OrbitalInfotrclone->Delete("all"); |
669 |
// |
670 |
if (verbose) printf(" ...done!\n"); |
671 |
// |
672 |
}; |
673 |
// |
674 |
// create mydetector tree mydect |
675 |
// |
676 |
file->cd(); |
677 |
OrbitalInfotr = new TTree("OrbitalInfo-new","PAMELA OrbitalInfo data"); |
678 |
OrbitalInfotr->SetAutoSave(900000000000000LL); |
679 |
orbitalinfo->Set();//ELENA **TEMPORANEO?** |
680 |
OrbitalInfotr->Branch("OrbitalInfo","OrbitalInfo",&orbitalinfo); |
681 |
// |
682 |
// create new branches for new tracking algorithms |
683 |
// |
684 |
if ( hasNucleiTrk ){ |
685 |
torbNucleiTrk = new TClonesArray("OrbitalInfoTrkVar",1); |
686 |
OrbitalInfotr->Branch("TrackNuclei",&torbNucleiTrk); |
687 |
} |
688 |
if ( hasExtNucleiTrk ){ |
689 |
torbExtNucleiTrk = new TClonesArray("OrbitalInfoTrkVar",1); |
690 |
OrbitalInfotr->Branch("RecoveredTrackNuclei",&torbExtNucleiTrk); |
691 |
} |
692 |
if ( hasExtTrk ){ |
693 |
torbExtTrk = new TClonesArray("OrbitalInfoTrkVar",1); |
694 |
OrbitalInfotr->Branch("RecoveredTrack",&torbExtTrk); |
695 |
} |
696 |
|
697 |
// |
698 |
if ( reproc && !reprocall ){ |
699 |
// |
700 |
// open new file and retrieve also tree informations |
701 |
// |
702 |
tempfile = new TFile(tempname.str().c_str(),"READ"); |
703 |
OrbitalInfotrclone = (TTree*)tempfile->Get("OrbitalInfo-old"); |
704 |
OrbitalInfotrclone->SetAutoSave(900000000000000LL); |
705 |
OrbitalInfotrclone->SetBranchAddress("OrbitalInfo",&orbitalinfoclone); |
706 |
// |
707 |
if ( nobefrun > 0 ){ |
708 |
if (verbose){ |
709 |
printf("\n Pre-processing: copying events from the old tree before the processed run\n"); |
710 |
printf(" Copying %u events in the file which are before the beginning of the run %u \n",nobefrun,run); |
711 |
printf(" Start copying at event number 0, end copying at event number %u \n",nobefrun); |
712 |
} |
713 |
for (UInt_t j = 0; j < nobefrun; j++){ |
714 |
// |
715 |
if ( OrbitalInfotrclone->GetEntry(j) <= 0 ) throw -36; |
716 |
// |
717 |
// copy orbitalinfoclone to mydec |
718 |
// |
719 |
// orbitalinfo->Clear(); |
720 |
// |
721 |
memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone)); |
722 |
// |
723 |
// Fill entry in the new tree |
724 |
// |
725 |
OrbitalInfotr->Fill(); |
726 |
// |
727 |
}; |
728 |
if (verbose) printf(" Finished successful copying!\n"); |
729 |
}; |
730 |
}; |
731 |
// |
732 |
// |
733 |
// Get the list of run to be processed, if only one run has to be processed the list will contain one entry only. |
734 |
// |
735 |
runlist = runinfo->GetRunList(); |
736 |
if ( debug ){ |
737 |
printf("BEFORE LOOP ON RUN\n"); |
738 |
gObjectTable->Print(); |
739 |
} |
740 |
// |
741 |
// Loop over the run to be processed |
742 |
// |
743 |
for (UInt_t irun=0; irun < numbofrun; irun++){ //===> |
744 |
|
745 |
L_QQ_Q_l_lower = new Quaternions(); |
746 |
RYPang_lower = new InclinationInfo(); |
747 |
L_QQ_Q_l_upper = new Quaternions(); |
748 |
RYPang_upper = new InclinationInfo(); |
749 |
|
750 |
// |
751 |
// retrieve the first run ID to be processed using the RunInfo list |
752 |
// |
753 |
|
754 |
idRun = runlist->At(irun); |
755 |
if (verbose){ |
756 |
printf("\n\n\n ####################################################################### \n"); |
757 |
printf(" PROCESSING RUN NUMBER %i \n",(int)idRun); |
758 |
printf(" ####################################################################### \n\n\n"); |
759 |
} |
760 |
// |
761 |
runinfo->ID_ROOT_L0 = 0; |
762 |
// |
763 |
// store in the runinfo class the GL_RUN variables for our run |
764 |
// |
765 |
sgnl = 0; |
766 |
sgnl = runinfo->GetRunInfo(idRun); |
767 |
if ( sgnl ){ |
768 |
if ( debug ) printf("\n OrbitalInfo - ERROR: RunInfo exited with non-zero status\n"); |
769 |
code = sgnl; |
770 |
goto closeandexit; |
771 |
} else { |
772 |
sgnl = 0; |
773 |
}; |
774 |
// |
775 |
// now you can access that variables using the RunInfo class this way runinfo->ID_REG_RUN |
776 |
// |
777 |
if ( runinfo->ID_ROOT_L0 == 0 ){ |
778 |
if ( debug ) printf("\n OrbitalInfo - ERROR: no run with ID_RUN = %u \n\n Exiting... \n\n",idRun); |
779 |
code = -5; |
780 |
goto closeandexit; |
781 |
}; |
782 |
// |
783 |
// prepare the timesync for the db |
784 |
// |
785 |
dbtime = new GL_TIMESYNC(runinfo->ID_ROOT_L0,"ID",dbc); |
786 |
|
787 |
// |
788 |
// Search in the DB the path and name of the LEVEL0 file to be processed. |
789 |
// |
790 |
glroot->Query_GL_ROOT(runinfo->ID_ROOT_L0,dbc); |
791 |
// |
792 |
ftmpname.str(""); |
793 |
ftmpname << glroot->PATH.Data() << "/"; |
794 |
ftmpname << glroot->NAME.Data(); |
795 |
fname = ftmpname.str().c_str(); |
796 |
ftmpname.str(""); |
797 |
// |
798 |
// print nout informations |
799 |
// |
800 |
totevent = runinfo->NEVENTS; |
801 |
evfrom = runinfo->EV_FROM; |
802 |
//cout<<"totevents = "<<totevent<<"\n"; |
803 |
if (verbose){ |
804 |
printf("\n LEVEL0 data file: %s \n",fname.Data()); |
805 |
printf(" RUN HEADER absolute time is: %u \n",runinfo->RUNHEADER_TIME); |
806 |
printf(" RUN TRAILER absolute time is: %u \n",runinfo->RUNTRAILER_TIME); |
807 |
printf(" %i events to be processed for run %u: from %i to %i \n\n",totevent,idRun,runinfo->EV_FROM+1,runinfo->EV_FROM+totevent); |
808 |
}// |
809 |
// |
810 |
// if ( !totevent ) goto closeandexit; |
811 |
// Open Level0 file |
812 |
if ( l0File ) l0File->Close(); |
813 |
l0File = new TFile(fname.Data()); |
814 |
if ( !l0File ) { |
815 |
if ( debug ) printf(" OrbitalInfo - ERROR: problems opening Level0 file\n"); |
816 |
code = -6; |
817 |
goto closeandexit; |
818 |
}; |
819 |
l0tr = (TTree*)l0File->Get("Physics"); |
820 |
if ( !l0tr ) { |
821 |
if ( debug ) printf(" OrbitalInfo - ERROR: no Physics tree in Level0 file\n"); |
822 |
l0File->Close(); |
823 |
code = -7; |
824 |
goto closeandexit; |
825 |
}; |
826 |
// EM: open header branch as well |
827 |
l0head = l0tr->GetBranch("Header"); |
828 |
if ( !l0head ) { |
829 |
if ( debug ) printf(" OrbitalInfo - ERROR: no Header branch in Level0 tree\n"); |
830 |
l0File->Close(); |
831 |
code = -8; |
832 |
goto closeandexit; |
833 |
}; |
834 |
l0tr->SetBranchAddress("Header", &eh); |
835 |
// end EM |
836 |
nevents = l0head->GetEntries(); |
837 |
// |
838 |
if ( nevents < 1 && totevent ) { |
839 |
if ( debug ) printf(" OrbitalInfo - ERROR: Level0 file is empty\n\n"); |
840 |
l0File->Close(); |
841 |
code = -11; |
842 |
goto closeandexit; |
843 |
}; |
844 |
// |
845 |
if ( runinfo->EV_TO > nevents-1 && totevent ) { |
846 |
if ( debug ) printf(" OrbitalInfo - ERROR: too few entries in the registry tree\n"); |
847 |
l0File->Close(); |
848 |
code = -12; |
849 |
goto closeandexit; |
850 |
}; |
851 |
|
852 |
ULong_t TimeSync = (ULong_t)dbtime->GetTimesync(); |
853 |
ULong_t ObtSync = (ULong_t)(dbtime->GetObt0()/1000); |
854 |
ULong_t DeltaOBT = TimeSync - ObtSync; |
855 |
|
856 |
if ( debug ) printf(" 2 TimeSync %lu ObtSync %lu DeltaOBT %lu\n",(ULong_t)(dbtime->GetTimesync()/1000),(ULong_t)dbtime->GetObt0(),TimeSync-ObtSync); |
857 |
// |
858 |
// Read MCMDs from up to 11 files, 5 before and 5 after the present one in order to have some kind of inclination information |
859 |
// |
860 |
ch = new TChain("Mcmd","Mcmd"); |
861 |
// |
862 |
// look in the DB to find the closest files to this run |
863 |
// |
864 |
TSQLResult *pResult = 0; |
865 |
TSQLRow *Row = 0; |
866 |
stringstream myquery; |
867 |
UInt_t l0fid[10]; |
868 |
Int_t i = 0; |
869 |
memset(l0fid,0,10*sizeof(Int_t)); |
870 |
// |
871 |
myquery.str(""); |
872 |
myquery << "select ID_ROOT_L0 from GL_RUN where RUNHEADER_TIME<=" << runinfo->RUNHEADER_TIME << " group by ID_ROOT_L0 order by RUNHEADER_TIME desc limit 5;"; |
873 |
// |
874 |
pResult = dbc->Query(myquery.str().c_str()); |
875 |
// |
876 |
i = 9; |
877 |
if( pResult ){ |
878 |
// |
879 |
Row = pResult->Next(); |
880 |
// |
881 |
while ( Row ){ |
882 |
// |
883 |
// store infos and exit |
884 |
// |
885 |
l0fid[i] = (UInt_t)atoll(Row->GetField(0)); |
886 |
i--; |
887 |
if (Row){ // memleak! |
888 |
delete Row; |
889 |
Row = 0; |
890 |
} |
891 |
Row = pResult->Next(); |
892 |
// |
893 |
} |
894 |
if (Row) delete Row; |
895 |
pResult->Delete(); |
896 |
} |
897 |
// |
898 |
myquery.str(""); |
899 |
myquery << "select ID_ROOT_L0 from GL_RUN where RUNHEADER_TIME>" << runinfo->RUNHEADER_TIME << " group by ID_ROOT_L0 order by RUNHEADER_TIME asc limit 5;"; |
900 |
// |
901 |
pResult = dbc->Query(myquery.str().c_str()); |
902 |
// |
903 |
i = 0; |
904 |
if( pResult ){ |
905 |
// |
906 |
Row = pResult->Next(); |
907 |
// |
908 |
while ( Row ){ |
909 |
// |
910 |
// store infos and exit |
911 |
// |
912 |
l0fid[i] = (UInt_t)atoll(Row->GetField(0)); |
913 |
i++; |
914 |
if (Row){ // memleak! |
915 |
delete Row; |
916 |
Row = 0; |
917 |
} |
918 |
Row = pResult->Next(); |
919 |
// |
920 |
} |
921 |
if (Row) delete Row; |
922 |
pResult->Delete(); |
923 |
} |
924 |
// |
925 |
i = 0; |
926 |
UInt_t previd = 0; |
927 |
while ( i < 10 ){ |
928 |
if ( l0fid[i] && previd != l0fid[i] ){ |
929 |
previd = l0fid[i]; |
930 |
myquery.str(""); |
931 |
myquery << "select PATH,NAME from GL_ROOT where ID=" << l0fid[i] << " ;"; |
932 |
// |
933 |
pResult = dbc->Query(myquery.str().c_str()); |
934 |
// |
935 |
if( pResult ){ |
936 |
// |
937 |
Row = pResult->Next(); |
938 |
// |
939 |
if ( debug ) printf(" Using inclination informations from file: %s \n",(((TString)gSystem->ExpandPathName(Row->GetField(0)))+"/"+(TString)Row->GetField(1)).Data()); |
940 |
ch->Add(((TString)gSystem->ExpandPathName(Row->GetField(0)))+"/"+(TString)Row->GetField(1)); |
941 |
// |
942 |
if (Row) delete Row; |
943 |
pResult->Delete(); |
944 |
} |
945 |
} |
946 |
i++; |
947 |
} |
948 |
// |
949 |
ch->SetBranchAddress("Mcmd",&mcmdev); |
950 |
neventsm = ch->GetEntries(); |
951 |
if ( debug ) printf(" entries %u \n", neventsm); |
952 |
// |
953 |
if (neventsm == 0){ |
954 |
if ( debug ) printf("InclinationInfo - WARNING: No quaternions in this File"); |
955 |
code = 900; |
956 |
} |
957 |
// |
958 |
Double_t lowerqtime = 0; |
959 |
// |
960 |
// init quaternions information from mcmd-packets |
961 |
// |
962 |
Bool_t isf = true; |
963 |
|
964 |
vector<Float_t> q0; |
965 |
vector<Float_t> q1; |
966 |
vector<Float_t> q2; |
967 |
vector<Float_t> q3; |
968 |
vector<Double_t> qtime; |
969 |
vector<Float_t> qPitch; |
970 |
vector<Float_t> qRoll; |
971 |
vector<Float_t> qYaw; |
972 |
vector<Int_t> qmode; |
973 |
|
974 |
q0.reserve(4096); |
975 |
q1.reserve(4096); |
976 |
q2.reserve(4096); |
977 |
q3.reserve(4096); |
978 |
qtime.reserve(4096); |
979 |
qPitch.reserve(4096); |
980 |
qRoll.reserve(4096); |
981 |
qYaw.reserve(4096); |
982 |
qmode.reserve(4096); |
983 |
if ( debug ) printf(" q0 capa %i \n",(int)q0.capacity()); |
984 |
Int_t nt = 0; |
985 |
UInt_t must = 0; |
986 |
|
987 |
Int_t currentYear = 0; |
988 |
Int_t previousYear = 0; |
989 |
|
990 |
// |
991 |
// run over all the events of the run |
992 |
// |
993 |
if (verbose) printf("\n Ready to start! \n\n Processed events: \n\n"); |
994 |
if ( debug ){ |
995 |
printf("BEFORE LOOP ON EVENTS\n"); |
996 |
gObjectTable->Print(); |
997 |
} |
998 |
// |
999 |
// |
1000 |
for ( re = runinfo->EV_FROM; re < (runinfo->EV_FROM+runinfo->NEVENTS); re++){ |
1001 |
//for ( re = runinfo->EV_FROM; re < (runinfo->EV_FROM+10); re++){ |
1002 |
|
1003 |
// |
1004 |
if ( procev%1000 == 0 && procev > 0 && verbose ) printf(" %iK \n",procev/1000); |
1005 |
if ( debug ) printf(" %i \n",procev); |
1006 |
// |
1007 |
if ( l0head->GetEntry(re) <= 0 ) throw -36; |
1008 |
// |
1009 |
// absolute time of this event |
1010 |
// |
1011 |
ph = eh->GetPscuHeader(); |
1012 |
atime = dbtime->DBabsTime(ph->GetOrbitalTime()); |
1013 |
if ( debug ) printf(" %i absolute time \n",procev); |
1014 |
// |
1015 |
// paranoid check |
1016 |
// |
1017 |
if ( (atime > (runinfo->RUNTRAILER_TIME+1)) || (atime < (runinfo->RUNHEADER_TIME-1)) ) { |
1018 |
if (verbose) printf(" OrbitalInfo - WARNING: event at time outside the run time window, skipping it\n"); |
1019 |
jumped++; |
1020 |
// debug = true; |
1021 |
continue; |
1022 |
} |
1023 |
|
1024 |
// just for testing: |
1025 |
// if (re >= 5+runinfo->EV_FROM) atime += anni5; |
1026 |
// if (re >= 7+runinfo->EV_FROM) atime += anni5; |
1027 |
// if (re >= 9+runinfo->EV_FROM) atime += anni5; |
1028 |
|
1029 |
// |
1030 |
// open IGRF files and do it only once if we are processing a full level2 file |
1031 |
// |
1032 |
Float_t kkyear; |
1033 |
UInt_t kyear, kmonth, kday, khour, kmin, ksec; |
1034 |
// |
1035 |
TTimeStamp kt = TTimeStamp(atime, kTRUE); |
1036 |
kt.GetDate(kTRUE, 0, &kyear, &kmonth, &kday); |
1037 |
kt.GetTime(kTRUE, 0, &khour, &kmin, &ksec); |
1038 |
kkyear = (float) kyear |
1039 |
+ (kmonth*31.+ (float) kday)/365. |
1040 |
+ (khour*3600.+kmin*60.+(float)ksec)/(24.*3600.*365.); |
1041 |
currentYear = int(kkyear/5.) * 5; |
1042 |
if ( debug ) printf(" prevy %i curry %i igrfloaded %i \n",previousYear,currentYear,igrfloaded); |
1043 |
if ( currentYear != previousYear ) igrfloaded = false; |
1044 |
previousYear = currentYear; |
1045 |
if ( debug ) printf(" prevy %i curry %i igrfloaded %i \n",previousYear,currentYear,igrfloaded); |
1046 |
// |
1047 |
if ( !igrfloaded ){ |
1048 |
|
1049 |
igrfloaded = true; |
1050 |
|
1051 |
parerror=glparam->Query_GL_PARAM(atime,302,dbc); // parameters stored in DB in GL_PRAM table |
1052 |
if ( parerror<0 ) { |
1053 |
code = parerror; |
1054 |
goto closeandexit; |
1055 |
} |
1056 |
ltp1 = (Int_t)(glparam->PATH+glparam->NAME).Length(); |
1057 |
if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam->PATH+glparam->NAME).Data()); |
1058 |
// |
1059 |
if ( glparam->NAME.EndsWith("s.txt") || glparam->NAME.EndsWith("s.dat") ){ |
1060 |
if ( verbose ) printf("ERROR: Current date is beyond the latest secular variation file time span. Please update IGRF files to process data\n"); |
1061 |
throw -906; |
1062 |
} |
1063 |
// |
1064 |
int isSecular = false; |
1065 |
// |
1066 |
parerror=glparam2->Query_GL_PARAM(atime+anni5,302,dbc); // parameters stored in DB in GL_PRAM table |
1067 |
if ( parerror<0 ) { |
1068 |
code = parerror; |
1069 |
goto closeandexit; |
1070 |
} |
1071 |
ltp2 = (Int_t)(glparam2->PATH+glparam2->NAME).Length(); |
1072 |
if ( verbose ) printf(" Reading Earth's Magnetic Field parameter file: %s \n",(glparam2->PATH+glparam2->NAME).Data()); |
1073 |
if ( glparam2->NAME.EndsWith("s.txt") || glparam2->NAME.EndsWith("s.dat") ){ |
1074 |
isSecular = true; |
1075 |
if ( verbose ) printf(" Using secular variation file and hence fortran subroutine 'extrapolation'\n"); |
1076 |
} else { |
1077 |
if ( verbose ) printf(" Using two field measurement files and hence fortran subroutine 'interpolation'\n"); |
1078 |
} |
1079 |
// |
1080 |
initize_(&isSecular,(char *)(glparam->PATH+glparam->NAME).Data(),<p1,(char *)(glparam2->PATH+glparam2->NAME).Data(),<p2); |
1081 |
// |
1082 |
if (debug) cout<<"initize: "<<(char *)(glparam->PATH+glparam->NAME).Data()<<"\t"<<(char *)(glparam2->PATH+glparam2->NAME).Data()<<"\t isSecular? "<<isSecular<<endl; |
1083 |
|
1084 |
// GM_ScanIGRF(dbc, &G0, &G1, &H1); |
1085 |
TString igrfFile1 = glparam->PATH+glparam->NAME; |
1086 |
TString igrfFile2 = glparam2->PATH+glparam2->NAME; |
1087 |
GM_SetIGRF(isSecular,igrfFile1,igrfFile2, &G0, &G1, &H1); |
1088 |
} |
1089 |
// |
1090 |
// End IGRF stuff// |
1091 |
// |
1092 |
|
1093 |
// |
1094 |
// retrieve tof informations |
1095 |
// |
1096 |
if ( !reprocall ){ |
1097 |
itr = nobefrun + (re - evfrom - jumped); |
1098 |
//itr = re-(46438+200241); |
1099 |
} else { |
1100 |
itr = runinfo->GetFirstEntry() + (re - evfrom - jumped); |
1101 |
}; |
1102 |
// |
1103 |
if ( !standalone ){ |
1104 |
if ( itr > nevtofl2 ){ |
1105 |
if ( verbose ) printf(" OrbitalInfo - ERROR: no tof events with entry = %i in Level2 file\n",itr); |
1106 |
if ( debug ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall); |
1107 |
l0File->Close(); |
1108 |
code = -904; |
1109 |
goto closeandexit; |
1110 |
}; |
1111 |
// |
1112 |
tof->Clear(); |
1113 |
// |
1114 |
// Clones array must be cleared before going on |
1115 |
// |
1116 |
if ( hasNucleiTof ){ |
1117 |
tcNucleiTof->Delete(); |
1118 |
} |
1119 |
if ( hasExtNucleiTof ){ |
1120 |
tcExtNucleiTof->Delete(); |
1121 |
} |
1122 |
if ( hasExtTof ){ |
1123 |
tcExtTof->Delete(); |
1124 |
} |
1125 |
// |
1126 |
if ( verbose ) printf(" get tof tree entries... entry = %i in Level2 file\n",itr); |
1127 |
if ( ttof->GetEntry(itr) <= 0 ){ |
1128 |
if ( verbose ) printf(" problems with tof tree entries... entry = %i in Level2 file\n",itr); |
1129 |
if ( verbose ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall); |
1130 |
throw -36; |
1131 |
} |
1132 |
if ( verbose ) printf(" gat0\n"); |
1133 |
// |
1134 |
} |
1135 |
// |
1136 |
// retrieve tracker informations |
1137 |
// |
1138 |
if ( !standalone ){ |
1139 |
if ( itr > nevtrkl2 ){ |
1140 |
if ( verbose ) printf(" OrbitalInfo - ERROR: no trk events with entry = %i in Level2 file\n",itr); |
1141 |
if ( debug ) printf(" nobefrun %u re %u evfrom %u jumped %u reprocall %i \n",nobefrun,re,evfrom,jumped,reprocall); |
1142 |
l0File->Close(); |
1143 |
code = -905; |
1144 |
goto closeandexit; |
1145 |
} |
1146 |
// |
1147 |
if ( verbose ) printf(" gat1\n"); |
1148 |
trke->Clear(); |
1149 |
// |
1150 |
// Clones array must be cleared before going on |
1151 |
// |
1152 |
if ( hasNucleiTrk ){ |
1153 |
if ( verbose ) printf(" gat2\n"); |
1154 |
tcNucleiTrk->Delete(); |
1155 |
if ( verbose ) printf(" gat3\n"); |
1156 |
torbNucleiTrk->Delete(); |
1157 |
} |
1158 |
if ( hasExtNucleiTrk ){ |
1159 |
if ( verbose ) printf(" gat4\n"); |
1160 |
tcExtNucleiTrk->Delete(); |
1161 |
if ( verbose ) printf(" gat5\n"); |
1162 |
torbExtNucleiTrk->Delete(); |
1163 |
} |
1164 |
if ( hasExtTrk ){ |
1165 |
if ( verbose ) printf(" gat6\n"); |
1166 |
tcExtTrk->Delete(); |
1167 |
if ( verbose ) printf(" gat7\n"); |
1168 |
torbExtTrk->Delete(); |
1169 |
} |
1170 |
// |
1171 |
if ( verbose ) printf(" get trk tree entries... entry = %i in Level2 file\n",itr); |
1172 |
if ( ttrke->GetEntry(itr) <= 0 ) throw -36; |
1173 |
// |
1174 |
} |
1175 |
|
1176 |
// |
1177 |
procev++; |
1178 |
// |
1179 |
// start processing |
1180 |
// |
1181 |
if ( debug ) printf(" %i start processing \n",procev); |
1182 |
orbitalinfo->Clear(); |
1183 |
|
1184 |
// |
1185 |
OrbitalInfoTrkVar *t_orb = new OrbitalInfoTrkVar(); |
1186 |
if( !(orbitalinfo->OrbitalInfoTrk) ) orbitalinfo->OrbitalInfoTrk = new TClonesArray("OrbitalInfoTrkVar",2); |
1187 |
TClonesArray &tor = *orbitalinfo->OrbitalInfoTrk; |
1188 |
|
1189 |
// Geomagnetic coordinates calculation variables |
1190 |
GMtype_CoordSpherical CoordSpherical, DipoleSpherical; |
1191 |
GMtype_CoordCartesian CoordCartesian, DipoleCartesian; |
1192 |
GMtype_Model Model; |
1193 |
GMtype_Pole Pole; |
1194 |
|
1195 |
// |
1196 |
// Fill OBT, pkt_num and absTime |
1197 |
// |
1198 |
orbitalinfo->pkt_num = ph->GetCounter(); |
1199 |
orbitalinfo->OBT = ph->GetOrbitalTime(); |
1200 |
orbitalinfo->absTime = atime; |
1201 |
if ( debug ) printf(" %i pktnum obt abstime \n",procev); |
1202 |
// |
1203 |
// Propagate the orbit from the tle time to atime, using SGP(D)4. |
1204 |
// |
1205 |
if ( debug ) printf(" %i sgp4 \n",procev); |
1206 |
cCoordGeo coo; |
1207 |
Float_t jyear=0.; |
1208 |
// |
1209 |
if(atime >= gltle->GetToTime() || atime < gltle->GetFromTime() ) { // AGH! bug when reprocessing?? |
1210 |
|
1211 |
if ( !gltle->Query(atime, dbc) ){ |
1212 |
// |
1213 |
// Compute the magnetic dipole moment. |
1214 |
// |
1215 |
if ( debug ) printf(" %i compute magnetic dipole moment \n",procev); |
1216 |
UInt_t year, month, day, hour, min, sec; |
1217 |
// |
1218 |
TTimeStamp t = TTimeStamp(atime, kTRUE); |
1219 |
t.GetDate(kTRUE, 0, &year, &month, &day); |
1220 |
t.GetTime(kTRUE, 0, &hour, &min, &sec); |
1221 |
jyear = (float) year |
1222 |
+ (month*31.+ (float) day)/365. |
1223 |
+ (hour*3600.+min*60.+(float)sec)/(24.*3600.*365.); |
1224 |
// |
1225 |
if ( debug ) printf(" %i compute magnetic dipole moment get dipole moment for year\n",procev); |
1226 |
if ( debug ) printf(" %i jyear %f dimo %f \n",procev,jyear,dimo); |
1227 |
feldcof_(&jyear, &dimo); // get dipole moment for year |
1228 |
if ( debug ) printf(" %i compute magnetic dipole moment end\n",procev); |
1229 |
|
1230 |
// GM_TimeAdjustCoefs(year, jyear, G0, G1, H1, &Model); |
1231 |
GM_TimeAdjustCoefs(GM_STARTYEAR, (jyear-currentYear+GM_STARTYEAR), G0, G1, H1, &Model); // EM: input this way due to the new way of storing data into Gn,H1 and to avoid changing GM_Time... |
1232 |
GM_PoleLocation(Model, &Pole); |
1233 |
} else { |
1234 |
code = -56; |
1235 |
goto closeandexit; |
1236 |
}; |
1237 |
} |
1238 |
coo = getCoo(atime, gltle->GetFromTime(), gltle->GetTle()); |
1239 |
// |
1240 |
cOrbit orbits(*gltle->GetTle()); |
1241 |
// |
1242 |
// synchronize with quaternions data |
1243 |
// |
1244 |
if ( isf && neventsm>0 ){ |
1245 |
// |
1246 |
// First event |
1247 |
// |
1248 |
isf = false; |
1249 |
// upperqtime = atime; |
1250 |
lowerqtime = runinfo->RUNHEADER_TIME; |
1251 |
for ( ik = 0; ik < neventsm; ik++){ //number of macrocommad packets |
1252 |
if ( ch->GetEntry(ik) <= 0 ) throw -36; |
1253 |
tmpSize = mcmdev->Records->GetEntries(); |
1254 |
// numrec = tmpSize; |
1255 |
if ( debug ) cout << "packet number " << ik <<"\tnumber of subpackets is " << tmpSize << endl; |
1256 |
for (Int_t j3 = 0;j3<tmpSize;j3++){ //number of subpackets |
1257 |
mcmdrc = (pamela::McmdRecord*)mcmdev->Records->At(j3); |
1258 |
if ( mcmdrc ){ // missing inclination bug [8RED 090116] |
1259 |
if ( debug ) printf(" pluto \n"); |
1260 |
if ((int)mcmdrc->ID1 == 226 && mcmdrc->Mcmd_Block_crc_ok == 1){ //Check that it is Inclination Packet |
1261 |
L_QQ_Q_l_upper->fill(mcmdrc->McmdData); |
1262 |
for (UInt_t ui = 0; ui < 6; ui++){ |
1263 |
if (ui>0){ |
1264 |
if (L_QQ_Q_l_upper->time[ui]>L_QQ_Q_l_upper->time[0]){ |
1265 |
Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[ui]*1000-DeltaOBT*1000)); |
1266 |
Int_t recSize = recqtime.size(); |
1267 |
if(lowerqtime > recqtime[recSize-1]){ |
1268 |
// to avoid interpolation between bad quaternions arrays |
1269 |
if(sqrt(pow(L_QQ_Q_l_upper->quat[ui][0],2)+pow(L_QQ_Q_l_upper->quat[ui][1],2)+pow(L_QQ_Q_l_upper->quat[ui][2],2)+pow(L_QQ_Q_l_upper->quat[ui][3],2))>0.99999){ |
1270 |
Int_t sizeqmcmd = qtime.size(); |
1271 |
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
1272 |
qtime[sizeqmcmd]=u_time; |
1273 |
q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][0]; |
1274 |
q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][1]; |
1275 |
q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][2]; |
1276 |
q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][3]; |
1277 |
qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui); |
1278 |
lowerqtime = u_time; |
1279 |
orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi); |
1280 |
RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[ui][0],L_QQ_Q_l_upper->quat[ui][1],L_QQ_Q_l_upper->quat[ui][2],L_QQ_Q_l_upper->quat[ui][3]); |
1281 |
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
1282 |
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
1283 |
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
1284 |
} |
1285 |
} |
1286 |
for(Int_t mu = nt;mu<recSize;mu++){ |
1287 |
if(recqtime[mu]>lowerqtime && recqtime[mu]<u_time){ |
1288 |
if(sqrt(pow(recq0[mu],2)+pow(recq1[mu],2)+pow(recq2[mu],2)+pow(recq3[mu],2))>0.99999){ |
1289 |
nt=mu; |
1290 |
Int_t sizeqmcmd = qtime.size(); |
1291 |
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
1292 |
qtime[sizeqmcmd]=recqtime[mu]; |
1293 |
q0[sizeqmcmd]=recq0[mu]; |
1294 |
q1[sizeqmcmd]=recq1[mu]; |
1295 |
q2[sizeqmcmd]=recq2[mu]; |
1296 |
q3[sizeqmcmd]=recq3[mu]; |
1297 |
qmode[sizeqmcmd]=-10; |
1298 |
orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi); |
1299 |
RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]); |
1300 |
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
1301 |
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
1302 |
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
1303 |
} |
1304 |
} |
1305 |
if(recqtime[mu]>=u_time){ |
1306 |
if(sqrt(pow(L_QQ_Q_l_upper->quat[ui][0],2)+pow(L_QQ_Q_l_upper->quat[ui][1],2)+pow(L_QQ_Q_l_upper->quat[ui][2],2)+pow(L_QQ_Q_l_upper->quat[ui][3],2))>0.99999){ |
1307 |
Int_t sizeqmcmd = qtime.size(); |
1308 |
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
1309 |
qtime[sizeqmcmd]=u_time; |
1310 |
q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][0]; |
1311 |
q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][1]; |
1312 |
q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][2]; |
1313 |
q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[ui][3]; |
1314 |
qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui); |
1315 |
lowerqtime = u_time; |
1316 |
orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi); |
1317 |
RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[ui][0],L_QQ_Q_l_upper->quat[ui][1],L_QQ_Q_l_upper->quat[ui][2],L_QQ_Q_l_upper->quat[ui][3]); |
1318 |
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
1319 |
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
1320 |
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
1321 |
break; |
1322 |
} |
1323 |
} |
1324 |
} |
1325 |
} |
1326 |
}else{ |
1327 |
//if ( debug ) printf(" here2 %i \n",ui); |
1328 |
Double_t u_time = dbtime->DBabsTime((UInt_t)(L_QQ_Q_l_upper->time[0]*1000-DeltaOBT*1000)); |
1329 |
if(lowerqtime>u_time)nt=0; |
1330 |
Int_t recSize = recqtime.size(); |
1331 |
if(lowerqtime > recqtime[recSize-1]){ |
1332 |
if(sqrt(pow(L_QQ_Q_l_upper->quat[ui][0],2)+pow(L_QQ_Q_l_upper->quat[ui][1],2)+pow(L_QQ_Q_l_upper->quat[ui][2],2)+pow(L_QQ_Q_l_upper->quat[ui][3],2))>0.99999){ |
1333 |
Int_t sizeqmcmd = qtime.size(); |
1334 |
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
1335 |
qtime[sizeqmcmd]=u_time; |
1336 |
q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][0]; |
1337 |
q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][1]; |
1338 |
q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][2]; |
1339 |
q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][3]; |
1340 |
qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui); |
1341 |
lowerqtime = u_time; |
1342 |
orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi); |
1343 |
RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]); |
1344 |
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
1345 |
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
1346 |
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
1347 |
} |
1348 |
} |
1349 |
for(Int_t mu = nt;mu<recSize;mu++){ |
1350 |
if(recqtime[mu]>lowerqtime && recqtime[mu]<u_time){ |
1351 |
if(sqrt(pow(recq0[mu],2)+pow(recq1[mu],2)+pow(recq2[mu],2)+pow(recq3[mu],2))>0.99999){ |
1352 |
Int_t sizeqmcmd = qtime.size(); |
1353 |
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
1354 |
qtime[sizeqmcmd]=recqtime[mu]; |
1355 |
q0[sizeqmcmd]=recq0[mu]; |
1356 |
q1[sizeqmcmd]=recq1[mu]; |
1357 |
q2[sizeqmcmd]=recq2[mu]; |
1358 |
q3[sizeqmcmd]=recq3[mu]; |
1359 |
qmode[sizeqmcmd]=-10; |
1360 |
orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi); |
1361 |
RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[mu],recq1[mu],recq2[mu],recq3[mu]); |
1362 |
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
1363 |
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
1364 |
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
1365 |
} |
1366 |
} |
1367 |
if(recqtime[mu]>=u_time){ |
1368 |
if(sqrt(pow(L_QQ_Q_l_upper->quat[0][0],2)+pow(L_QQ_Q_l_upper->quat[0][1],2)+pow(L_QQ_Q_l_upper->quat[0][2],2)+pow(L_QQ_Q_l_upper->quat[0][3],2))>0.99999){ |
1369 |
Int_t sizeqmcmd = qtime.size(); |
1370 |
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
1371 |
qtime[sizeqmcmd]=u_time; |
1372 |
q0[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][0]; |
1373 |
q1[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][1]; |
1374 |
q2[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][2]; |
1375 |
q3[sizeqmcmd]=L_QQ_Q_l_upper->quat[0][3]; |
1376 |
qmode[sizeqmcmd]=holeq(lowerqtime,qtime[sizeqmcmd],L_QQ_Q_l_lower,L_QQ_Q_l_upper,ui); |
1377 |
lowerqtime = u_time; |
1378 |
orbits.getPosition((double) (u_time - gltle->GetFromTime())/60., &eCi); |
1379 |
RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,L_QQ_Q_l_upper->quat[0][0],L_QQ_Q_l_upper->quat[0][1],L_QQ_Q_l_upper->quat[0][2],L_QQ_Q_l_upper->quat[0][3]); |
1380 |
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
1381 |
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
1382 |
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
1383 |
CopyQ(L_QQ_Q_l_lower,L_QQ_Q_l_upper); |
1384 |
break; |
1385 |
} |
1386 |
} |
1387 |
} |
1388 |
} |
1389 |
} |
1390 |
} |
1391 |
} |
1392 |
} |
1393 |
} |
1394 |
|
1395 |
if(qtime.size()==0){ // in case if no orientation information in data |
1396 |
if ( debug ) cout << "qtime.size() = 0" << endl; |
1397 |
for(UInt_t my=0;my<recqtime.size();my++){ |
1398 |
if(sqrt(pow(recq0[my],2)+pow(recq1[my],2)+pow(recq2[my],2)+pow(recq3[my],2))>0.99999){ |
1399 |
Int_t sizeqmcmd = qtime.size(); |
1400 |
inclresize(qtime,q0,q1,q2,q3,qmode,qRoll,qPitch,qYaw); |
1401 |
qtime[sizeqmcmd]=recqtime[my]; |
1402 |
q0[sizeqmcmd]=recq0[my]; |
1403 |
q1[sizeqmcmd]=recq1[my]; |
1404 |
q2[sizeqmcmd]=recq2[my]; |
1405 |
q3[sizeqmcmd]=recq3[my]; |
1406 |
qmode[sizeqmcmd]=-10; |
1407 |
orbits.getPosition((double) (qtime[sizeqmcmd] - gltle->GetFromTime())/60., &eCi); |
1408 |
RYPang_upper->TransAngle(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,recq0[my],recq1[my],recq2[my],recq3[my]); |
1409 |
qRoll[sizeqmcmd]=RYPang_upper->Kren; |
1410 |
qYaw[sizeqmcmd]=RYPang_upper->Ryskanie; |
1411 |
qPitch[sizeqmcmd]=RYPang_upper->Tangazh; |
1412 |
} |
1413 |
} |
1414 |
} |
1415 |
//if ( debug ) printf(" puffi \n"); |
1416 |
Double_t tmin = 9999999999.; |
1417 |
Double_t tmax = 0.; |
1418 |
for(UInt_t tre = 0;tre<qtime.size();tre++){ |
1419 |
if(qtime[tre]>tmax)tmax = qtime[tre]; |
1420 |
if(qtime[tre]<tmin)tmin = qtime[tre]; |
1421 |
} |
1422 |
// sorting quaternions by time |
1423 |
Bool_t t = true; |
1424 |
while(t){ |
1425 |
t=false; |
1426 |
for(UInt_t i=0;i<qtime.size()-1;i++){ |
1427 |
if(qtime[i]>qtime[i+1]){ |
1428 |
Double_t tmpr = qtime[i]; |
1429 |
qtime[i]=qtime[i+1]; |
1430 |
qtime[i+1] = tmpr; |
1431 |
tmpr = q0[i]; |
1432 |
q0[i]=q0[i+1]; |
1433 |
q0[i+1] = tmpr; |
1434 |
tmpr = q1[i]; |
1435 |
q1[i]=q1[i+1]; |
1436 |
q1[i+1] = tmpr; |
1437 |
tmpr = q2[i]; |
1438 |
q2[i]=q2[i+1]; |
1439 |
q2[i+1] = tmpr; |
1440 |
tmpr = q3[i]; |
1441 |
q3[i]=q3[i+1]; |
1442 |
q3[i+1] = tmpr; |
1443 |
tmpr = qRoll[i]; |
1444 |
qRoll[i]=qRoll[i+1]; |
1445 |
qRoll[i+1] = tmpr; |
1446 |
tmpr = qYaw[i]; |
1447 |
qYaw[i]=qYaw[i+1]; |
1448 |
qYaw[i+1] = tmpr; |
1449 |
tmpr = qPitch[i]; |
1450 |
qPitch[i]=qPitch[i+1]; |
1451 |
qPitch[i+1] = tmpr; |
1452 |
t=true; |
1453 |
} |
1454 |
} |
1455 |
} |
1456 |
if ( debug ){ |
1457 |
cout << "we have loaded quaternions: size of quaternions set is "<< qtime.size() << endl; |
1458 |
for(UInt_t i=0;i<qtime.size();i++) cout << qtime[i] << "\t"; |
1459 |
cout << endl << endl; |
1460 |
Int_t lopu; |
1461 |
cin >> lopu; |
1462 |
} |
1463 |
} // if we processed first event |
1464 |
|
1465 |
//Filling Inclination information |
1466 |
Double_t incli = 0; |
1467 |
if ( qtime.size() > 1 ){ |
1468 |
if(atime<qtime[0]){ |
1469 |
for(UInt_t mu = 1;mu<qtime.size()-1;mu++){ |
1470 |
if(qtime[mu]>qtime[0]){ |
1471 |
incli = (qPitch[mu]-qPitch[0])/(qtime[mu]-qtime[0]); |
1472 |
orbitalinfo->theta = incli*atime+qPitch[mu]-incli*qtime[mu]; |
1473 |
incli = (qRoll[mu]-qRoll[0])/(qtime[mu]-qtime[0]); |
1474 |
orbitalinfo->etha = incli*atime+qRoll[mu]-incli*qtime[mu]; |
1475 |
incli = (qYaw[mu]-qYaw[0])/(qtime[mu]-qtime[0]); |
1476 |
orbitalinfo->phi = incli*atime+qYaw[mu]-incli*qtime[mu]; |
1477 |
|
1478 |
incli = (q0[mu]-q0[0])/(qtime[mu]-qtime[0]); |
1479 |
orbitalinfo->q0 = incli*atime+q0[mu]-incli*qtime[mu]; |
1480 |
incli = (q1[mu]-q1[0])/(qtime[mu]-qtime[0]); |
1481 |
orbitalinfo->q1 = incli*atime+q1[mu]-incli*qtime[mu]; |
1482 |
incli = (q2[mu]-q2[0])/(qtime[mu]-qtime[0]); |
1483 |
orbitalinfo->q2 = incli*atime+q2[mu]-incli*qtime[mu]; |
1484 |
incli = (q3[mu]-q3[0])/(qtime[mu]-qtime[0]); |
1485 |
orbitalinfo->q3 = incli*atime+q3[mu]-incli*qtime[mu]; |
1486 |
orbitalinfo->TimeGap=qtime[0]-atime; |
1487 |
break; |
1488 |
} |
1489 |
} |
1490 |
} |
1491 |
Float_t eend=qtime.size()-1; |
1492 |
if(atime>qtime[eend]){ |
1493 |
for(UInt_t mu=eend-1;mu>=0;mu--){ |
1494 |
if(qtime[mu]<qtime[eend]){ |
1495 |
incli = (qPitch[eend]-qPitch[mu])/(qtime[eend]-qtime[mu]); |
1496 |
orbitalinfo->theta = incli*atime+qPitch[eend]-incli*qtime[eend]; |
1497 |
incli = (qRoll[eend]-qRoll[mu])/(qtime[eend]-qtime[mu]); |
1498 |
orbitalinfo->etha = incli*atime+qRoll[eend]-incli*qtime[eend]; |
1499 |
incli = (qYaw[eend]-qYaw[mu])/(qtime[eend]-qtime[mu]); |
1500 |
orbitalinfo->phi = incli*atime+qYaw[eend]-incli*qtime[eend]; |
1501 |
|
1502 |
incli = (q0[eend]-q0[mu])/(qtime[eend]-qtime[mu]); |
1503 |
orbitalinfo->q0 = incli*atime+q0[eend]-incli*qtime[eend]; |
1504 |
incli = (q1[eend]-q1[mu])/(qtime[eend]-qtime[mu]); |
1505 |
orbitalinfo->q1 = incli*atime+q1[eend]-incli*qtime[eend]; |
1506 |
incli = (q2[eend]-q2[mu])/(qtime[eend]-qtime[mu]); |
1507 |
orbitalinfo->q2 = incli*atime+q2[eend]-incli*qtime[eend]; |
1508 |
incli = (q3[eend]-q3[mu])/(qtime[eend]-qtime[mu]); |
1509 |
orbitalinfo->q3 = incli*atime+q3[eend]-incli*qtime[eend]; |
1510 |
break; |
1511 |
} |
1512 |
} |
1513 |
} |
1514 |
for(UInt_t mu = must;mu<qtime.size()-1;mu++){ |
1515 |
if ( debug ) printf(" ??grfuffi %i sixe %i must %i \n",mu,qtime.size()-1,must); |
1516 |
if(qtime[mu+1]>qtime[mu]){ |
1517 |
if ( debug ) cout << "qtime[" << mu << "] = " << qtime[mu] << "\tqtime[" << mu+1 << "] = " << qtime[mu+1] << "\tatime = " << atime << endl; |
1518 |
if(atime<=qtime[mu+1] && atime>=qtime[mu]){ |
1519 |
if ( debug ) cout << "here we have found proper quaternions for interpolation: mu = "<<mu<<endl; |
1520 |
must = mu; |
1521 |
incli = (qPitch[mu+1]-qPitch[mu])/(qtime[mu+1]-qtime[mu]); |
1522 |
orbitalinfo->theta = incli*atime+qPitch[mu+1]-incli*qtime[mu+1]; |
1523 |
incli = (qRoll[mu+1]-qRoll[mu])/(qtime[mu+1]-qtime[mu]); |
1524 |
orbitalinfo->etha = incli*atime+qRoll[mu+1]-incli*qtime[mu+1]; |
1525 |
incli = (qYaw[mu+1]-qYaw[mu])/(qtime[mu+1]-qtime[mu]); |
1526 |
orbitalinfo->phi = incli*atime+qYaw[mu+1]-incli*qtime[mu+1]; |
1527 |
|
1528 |
incli = (q0[mu+1]-q0[mu])/(qtime[mu+1]-qtime[mu]); |
1529 |
orbitalinfo->q0 = incli*atime+q0[mu+1]-incli*qtime[mu+1]; |
1530 |
incli = (q1[mu+1]-q1[mu])/(qtime[mu+1]-qtime[mu]); |
1531 |
orbitalinfo->q1 = incli*atime+q1[mu+1]-incli*qtime[mu+1]; |
1532 |
incli = (q2[mu+1]-q2[mu])/(qtime[mu+1]-qtime[mu]); |
1533 |
orbitalinfo->q2 = incli*atime+q2[mu+1]-incli*qtime[mu+1]; |
1534 |
incli = (q3[mu+1]-q3[mu])/(qtime[mu+1]-qtime[mu]); |
1535 |
orbitalinfo->q3 = incli*atime+q3[mu+1]-incli*qtime[mu+1]; |
1536 |
Float_t tg = (qtime[mu+1]-qtime[mu])/1000.0; |
1537 |
if(tg>=1) tg=0.00; |
1538 |
orbitalinfo->TimeGap = TMath::Min(TMath::Abs(qtime[mu+1]-atime),TMath::Abs(atime-qtime[mu]))+tg;//qtime[mu+1]-qtime[mu]; |
1539 |
orbitalinfo->mode = qmode[mu+1]; |
1540 |
//if(atime==qtime[mu] || atime==qtime[mu+1]) orbitalinfo->qkind = 0; else orbitalinfo->qkind=1; |
1541 |
//if(qmode[mu+1]==-10) orbitalinfo->R10r = true;else orbitalinfo->R10r = false; |
1542 |
if ( debug ) printf(" grfuffi4 %i \n",mu); |
1543 |
break; |
1544 |
} |
1545 |
} |
1546 |
} |
1547 |
} |
1548 |
if ( debug ) printf(" grfuffi5 \n"); |
1549 |
// |
1550 |
// ops no inclination information |
1551 |
// |
1552 |
|
1553 |
if ( orbitalinfo->q0< -999 || orbitalinfo->q1 < -999 || orbitalinfo->q2 < -999 || orbitalinfo->q3 < -999 || orbitalinfo->q0 != orbitalinfo->q0 || orbitalinfo->q1 != orbitalinfo->q1 || orbitalinfo->q2 != orbitalinfo->q2 || orbitalinfo->q3 != orbitalinfo->q3 ){ |
1554 |
if (debug) cout << "Warning: no iclination information "<< endl; |
1555 |
orbitalinfo->mode = 10; |
1556 |
orbitalinfo->q0 = -1000.; |
1557 |
orbitalinfo->q1 = -1000.; |
1558 |
orbitalinfo->q2 = -1000.; |
1559 |
orbitalinfo->q3 = -1000.; |
1560 |
orbitalinfo->etha = -1000.; |
1561 |
orbitalinfo->phi = -1000.; |
1562 |
orbitalinfo->theta = -1000.; |
1563 |
orbitalinfo->TimeGap = -1000.; |
1564 |
TMatrixD Iij(3,3); |
1565 |
Iij(0,0)=0; Iij(0,1)=0; Iij(0,2)=0; |
1566 |
Iij(1,0)=0; Iij(1,1)=0; Iij(1,2)=0; |
1567 |
Iij(2,0)=0; Iij(2,1)=0; Iij(2,2)=0; |
1568 |
Iij.Zero(); |
1569 |
orbitalinfo->Iij.ResizeTo(Iij); |
1570 |
orbitalinfo->Iij = Iij; |
1571 |
//orbitalinfo->qkind = -1000; |
1572 |
|
1573 |
// if ( debug ){ |
1574 |
// Int_t lopu; |
1575 |
// cin >> lopu; |
1576 |
// } |
1577 |
if ( debug ) printf(" grfuffi6 \n"); |
1578 |
} |
1579 |
// |
1580 |
if ( debug ) printf(" filling \n"); |
1581 |
// ######################################################################################################################### |
1582 |
// |
1583 |
// fill orbital positions |
1584 |
// |
1585 |
// Build coordinates in the right range. We want to convert, |
1586 |
// longitude from (0, 2*pi) to (-180deg, 180deg). Altitude is |
1587 |
// in meters. |
1588 |
lon = (coo.m_Lon > M_PI) ? rad2deg(coo.m_Lon - 2*M_PI) : rad2deg(coo.m_Lon); |
1589 |
lat = rad2deg(coo.m_Lat); |
1590 |
alt = coo.m_Alt; |
1591 |
|
1592 |
cOrbit orbits2(*gltle->GetTle()); |
1593 |
orbits2.getPosition((double) (atime - gltle->GetFromTime())/60., &eCi); |
1594 |
// Float_t x=eCi.getPos().m_x; |
1595 |
// Float_t y=eCi.getPos().m_y; |
1596 |
// Float_t z=eCi.getPos().m_z; |
1597 |
|
1598 |
TVector3 V(eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z); |
1599 |
TVector3 Pos(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z); |
1600 |
|
1601 |
Float_t dlon=Pos.Phi()*TMath::RadToDeg()-lon; |
1602 |
|
1603 |
Pos.RotateZ(-dlon*TMath::DegToRad()); |
1604 |
V.RotateZ(-dlon*TMath::DegToRad()); |
1605 |
Float_t diro; |
1606 |
if(V.Z()>0) diro=1; else diro=-1; |
1607 |
|
1608 |
// 10REDNEW |
1609 |
Int_t errq=0; |
1610 |
Int_t azim=0; |
1611 |
Int_t qual=0; |
1612 |
Int_t MU=0; |
1613 |
for(UInt_t mu = 0;mu<RTtime2.size()-1;mu++){ |
1614 |
if(atime<RTstart[mu+1] && atime>=RTstart[mu]){ |
1615 |
errq=RTerrq[mu]; |
1616 |
azim=RTazim[mu]; |
1617 |
qual=RTqual[mu]; |
1618 |
MU=mu; |
1619 |
break; |
1620 |
} |
1621 |
} |
1622 |
orbitalinfo->errq = errq; |
1623 |
orbitalinfo->azim = azim; |
1624 |
orbitalinfo->rtqual=qual; |
1625 |
orbitalinfo->qkind = 0; |
1626 |
|
1627 |
if ( debug ) printf(" coord done \n"); |
1628 |
if( lon<180 && lon>-180 && lat<90 && lat>-90 && alt>0 ){ |
1629 |
orbitalinfo->lon = lon; |
1630 |
orbitalinfo->lat = lat; |
1631 |
orbitalinfo->alt = alt; |
1632 |
orbitalinfo->V = V; |
1633 |
|
1634 |
// GMtype_CoordGeodetic location; |
1635 |
location.lambda = lon; |
1636 |
location.phi = lat; |
1637 |
location.HeightAboveEllipsoid = alt; |
1638 |
|
1639 |
GM_GeodeticToSpherical(Ellip, location, &CoordSpherical); |
1640 |
GM_SphericalToCartesian(CoordSpherical, &CoordCartesian); |
1641 |
GM_EarthCartToDipoleCartCD(Pole, CoordCartesian, &DipoleCartesian); |
1642 |
GM_CartesianToSpherical(DipoleCartesian, &DipoleSpherical); |
1643 |
orbitalinfo->londip = DipoleSpherical.lambda; |
1644 |
orbitalinfo->latdip = DipoleSpherical.phig; |
1645 |
|
1646 |
if(debug)cout<<"geodetic:\t"<<lon<<"\t"<<lat<<"\tgeomagnetic:\t"<<orbitalinfo->londip<<"\t"<<orbitalinfo->latdip<<endl; |
1647 |
|
1648 |
// |
1649 |
// compute mag field components and L shell. |
1650 |
// |
1651 |
if ( debug ) printf(" call igrf feldg \n"); |
1652 |
feldg_(&lat, &lon, &alt, &bnorth, &beast, &bdown, &babs); |
1653 |
if ( debug ) printf(" call igrf shellg \n"); |
1654 |
shellg_(&lat, &lon, &alt, &dimo, &xl, &icode, &bab1); |
1655 |
if ( debug ) printf(" call igrf findb \n"); |
1656 |
findb0_(&stps, &bdel, &value, &bequ, &rr0); |
1657 |
// |
1658 |
if ( debug ) printf(" done igrf \n"); |
1659 |
orbitalinfo->Bnorth = bnorth; |
1660 |
orbitalinfo->Beast = beast; |
1661 |
orbitalinfo->Bdown = bdown; |
1662 |
orbitalinfo->Babs = babs; |
1663 |
orbitalinfo->M = dimo; |
1664 |
orbitalinfo->BB0 = babs/bequ; |
1665 |
orbitalinfo->L = xl; |
1666 |
// Set Stormer vertical cutoff using L shell. |
1667 |
orbitalinfo->cutoffsvl = 14.295 / (xl*xl); // |
1668 |
if(debug)cout << "L = " << xl << "\tM = " << dimo << "\tvertical cutoff: "<< orbitalinfo->cutoffsvl << endl; |
1669 |
|
1670 |
// ---------- Forwarded message ---------- |
1671 |
// Date: Wed, 09 May 2012 12:16:47 +0200 |
1672 |
// From: Alessandro Bruno <alessandro.bruno@ba.infn.it> |
1673 |
// To: Mirko Boezio <mirko.boezio@ts.infn.it> |
1674 |
// Cc: Francesco S. Cafagna <Francesco.Cafagna@ba.infn.it> |
1675 |
// Subject: Störmer vertical cutoff |
1676 |
|
1677 |
// Ciao Mirko, |
1678 |
// volevo segnalarti che il valore dello Störmer vertical cutoff nel Level2 è |
1679 |
// sovrastimato di circa il 4%. |
1680 |
// Dopo un'approfondita analisi con l'IGRF-05 abbiamo ricavano un valore pari |
1681 |
// a: 14.295 / L^2 anzichè 14.9 / L^2, valore obsoleto in quanto riferito agli |
1682 |
// anni '50. |
1683 |
// |
1684 |
// 14.9/(xl*xl); |
1685 |
orbitalinfo->igrf_icode = (Float_t)icode; |
1686 |
// |
1687 |
} //check lon lat alt |
1688 |
// |
1689 |
if ( debug ) printf(" pitch angle \n"); |
1690 |
// |
1691 |
// pitch angles |
1692 |
// |
1693 |
if( orbitalinfo->TimeGap>=0){ |
1694 |
// |
1695 |
if ( debug ) printf(" timegap %f \n",orbitalinfo->TimeGap); |
1696 |
Float_t Bx = -orbitalinfo->Bdown; |
1697 |
Float_t By = orbitalinfo->Beast; |
1698 |
Float_t Bz = orbitalinfo->Bnorth; |
1699 |
|
1700 |
// TMatrixD Qiji(3,3); |
1701 |
TMatrixD Qij = PO->QuatoECI(orbitalinfo->q0,orbitalinfo->q1,orbitalinfo->q2,orbitalinfo->q3); |
1702 |
TMatrixD Dij = PO->ECItoGEO(Qij,orbitalinfo->absTime,orbitalinfo->lat,orbitalinfo->lon); |
1703 |
|
1704 |
//10REDNEW |
1705 |
// If initial orientation data have reason to be inaccurate |
1706 |
Float_t tg = 0.00; |
1707 |
Float_t tmptg; |
1708 |
Bool_t tgpar=false; |
1709 |
Bool_t tgpar0=false; |
1710 |
if (orbitalinfo->TimeGap>10.0 || ((modf(orbitalinfo->TimeGap,&tmptg)*1000>10 || modf(orbitalinfo->TimeGap,&tmptg)*1000==0.0) && orbitalinfo->TimeGap>2.0)) tgpar=true; |
1711 |
if (orbitalinfo->TimeGap>180.0) tgpar0=true; |
1712 |
if(MU!=0){ |
1713 |
// if(orbitalinfo->TimeGap>0 && errq==0 && azim==0){ // 10RED CHECK (comparison between three metod of recovering orientation) |
1714 |
if((atime>=RTstart[MU] && atime<RTstart[MU+1] && RTbank1[MU]==0 && RTbank2[MU]==0 && (TMath::Abs(orbitalinfo->etha)>0.1 || tgpar0)) || ((RTbank1[MU]!=0 || RTbank2[MU]!=0) && atime>=RTstart[MU] && atime<RTstart[MU+1] && azim==0 && (errq!=0 || tgpar))){ |
1715 |
//found in Rotation Table this data for this time interval |
1716 |
if(atime<RTtime1[0]) |
1717 |
orbitalinfo->azim = 5; //means that RotationTable no started yet |
1718 |
else{ |
1719 |
// search for angle betwean velosity and direction to north in tangential to Earth surfase plane in satellite position |
1720 |
Double_t bank=RTstart[MU]; |
1721 |
Double_t tlat=orbitalinfo->lat; |
1722 |
|
1723 |
tg=modf(orbitalinfo->TimeGap,&tg)*1000; |
1724 |
|
1725 |
if(atime>=RTpluto1[MU] && atime<=RTpluto2[MU]){ |
1726 |
Double_t kar=(RTbank2[MU]-RTbank1[MU])/(RTtime2[MU]-RTtime1[MU]); |
1727 |
Double_t bak=RTbank1[MU]-kar*RTtime1[MU]; |
1728 |
bank=kar*atime+bak; |
1729 |
} |
1730 |
if(atime>=RTstart[MU] && atime<RTpluto1[MU]){ |
1731 |
Double_t s_dBdt2=(RTbpluto1[MU]-RTbank1[MU])/(Int_t)(RTpluto1[MU]-RTstart[MU]); |
1732 |
Double_t s_t2=((Double_t)RTpluto1[MU]+(Double_t)RTstart[MU])/2. - RTstart[MU]; |
1733 |
Double_t s_t1=RTstart[MU]-RTstart[MU]; |
1734 |
Double_t s_k=s_dBdt2/(s_t2-s_t1); |
1735 |
Double_t s_b=-s_k*s_t1; |
1736 |
Double_t s_t3=RTpluto1[MU]-RTstart[MU]; |
1737 |
Double_t s_b3=RTbpluto1[MU]; |
1738 |
Double_t s_c=s_b3-0.5*s_k*s_t3*s_t3 -s_b*s_t3; |
1739 |
bank=0.5*s_k*(atime-RTstart[MU])*(atime-RTstart[MU]) + s_b*(atime-RTstart[MU]) + s_c; |
1740 |
} |
1741 |
if(atime>RTpluto2[MU] && atime<=RTstart[MU+1]){ |
1742 |
Double_t s_dBdt2=(RTbpluto2[MU] - RTbank2[MU])/(Int_t)(RTpluto2[MU]-RTstart[MU+1]); |
1743 |
Double_t s_t2=((Double_t)RTpluto2[MU]+(Double_t)RTstart[MU+1])/2. - RTstart[MU]; |
1744 |
Double_t s_t1=RTstart[MU+1]-RTstart[MU]; |
1745 |
Double_t s_k=s_dBdt2/(s_t2-s_t1); |
1746 |
Double_t s_b=-s_k*s_t1; |
1747 |
Double_t s_t3=RTpluto2[MU]-RTstart[MU]; |
1748 |
Double_t s_b3=RTbpluto2[MU]; |
1749 |
Double_t s_c=s_b3-0.5*s_k*s_t3*s_t3 -s_b*s_t3; |
1750 |
bank=0.5*s_k*(atime-RTstart[MU])*(atime-RTstart[MU]) + s_b*(atime-RTstart[MU]) + s_c; |
1751 |
} |
1752 |
if(TMath::Abs(orbitalinfo->etha-bank)>0.1){ |
1753 |
orbitalinfo->etha=bank; |
1754 |
Double_t spitch = 0.00001; // temprary not zero to avoid problem with tranzition from Euler angles to orientation matrix |
1755 |
|
1756 |
//Estimations of pitch angle of satellite |
1757 |
if(TMath::Abs(bank)>0.7){ |
1758 |
Float_t spitch1=TMath::DegToRad()*0.7*diro;//RTdir1[MU]; |
1759 |
Float_t spitch2=TMath::DegToRad()*0.7*diro;//RTdir2[MU]; |
1760 |
Float_t kva=(spitch2-spitch1)/(RTtime2[MU]-RTtime1[MU]); |
1761 |
Float_t bva=spitch1-kva*RTtime1[MU]; |
1762 |
spitch=kva*atime+bva; |
1763 |
} |
1764 |
|
1765 |
//Calculate Yaw angle accordingly with fit, see picture FitYaw.jpg |
1766 |
Double_t yaw=0.00001; // temprary not zero to avoid problem with tranzition from Euler angles to orientation matrix |
1767 |
if(TMath::Abs(tlat)<70) |
1768 |
yaw = -3.7e-8*tlat*tlat*tlat*tlat + 1.4e-7*tlat*tlat*tlat - 0.0005*tlat*tlat - 0.00025*tlat + 3.6; |
1769 |
yaw = diro*yaw; //because should be different sign for ascending and descending orbits! |
1770 |
orbitalinfo->phi=yaw; |
1771 |
|
1772 |
if(TMath::Abs(bank)>0.5 && TMath::Abs(yaw-orbitalinfo->phi)<3.0) yaw=orbitalinfo->phi; |
1773 |
|
1774 |
//Qiji = PO->EulertoEci(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,bank,yaw,spitch); // 10RED CHECK |
1775 |
Qij = PO->EulertoEci(eCi.getPos().m_x,eCi.getPos().m_y,eCi.getPos().m_z,eCi.getVel().m_x,eCi.getVel().m_y,eCi.getVel().m_z,bank,yaw,spitch); // STANDARD |
1776 |
orbitalinfo->qkind = 1; |
1777 |
} |
1778 |
//Qij = PO->GEOtoECI(Dij,orbitalinfo->absTime,orbitalinfo->lat,orbitalinfo->lon); // to convert from Dij to Qij |
1779 |
} // end of if(atime<RTtime1[0] |
1780 |
} // end of (((orbitalinfo->TimeGap>60.0 && TMath... |
1781 |
} // end of MU~=0 |
1782 |
|
1783 |
TMatrixD qij = PO->ColPermutation(Qij); |
1784 |
TMatrixD Fij = PO->ECItoGreenwich(Qij,orbitalinfo->absTime); |
1785 |
TMatrixD Gij = PO->ColPermutation(Fij); |
1786 |
Dij = PO->ECItoGEO(Qij,orbitalinfo->absTime,orbitalinfo->lat,orbitalinfo->lon); |
1787 |
TMatrixD Iij = PO->ColPermutation(Dij); |
1788 |
|
1789 |
TVector3 SP = PO->GetSunPosition(orbitalinfo->absTime); |
1790 |
// go to Pamela reference frame from Resurs reference frame |
1791 |
Float_t tmpy = SP.Y(); |
1792 |
SP.SetY(SP.Z()); |
1793 |
SP.SetZ(-tmpy); |
1794 |
TVector3 SunZenith; |
1795 |
SunZenith.SetMagThetaPhi(1,23.439281*TMath::DegToRad(),TMath::Pi()/2.); |
1796 |
TVector3 SunMag = -SP; |
1797 |
SunMag.Rotate(-45*TMath::DegToRad(),SunZenith); |
1798 |
tmpy=SunMag.Y(); |
1799 |
SunMag.SetY(SunMag.Z()); |
1800 |
SunMag.SetZ(-tmpy); |
1801 |
|
1802 |
orbitalinfo->Iij.ResizeTo(Iij); |
1803 |
orbitalinfo->Iij = Iij; |
1804 |
|
1805 |
Bool_t saso=true; |
1806 |
if (orbitalinfo->qkind==1) saso=true; |
1807 |
if (orbitalinfo->qkind==0 && orbitalinfo->azim>0 && orbitalinfo->azim!=5 && tgpar) saso=false; |
1808 |
if (orbitalinfo->qkind==0 && orbitalinfo->azim==5 && TMath::Abs(orbitalinfo->etha)>0.1 && tgpar) saso=false; |
1809 |
if (orbitalinfo->qkind==0 && orbitalinfo->azim==5 && TMath::Abs(orbitalinfo->etha)<=0.1 && tgpar0) saso=false; |
1810 |
if (saso) orbitalinfo->mode=orbitalinfo->rtqual; else orbitalinfo->mode=2; |
1811 |
|
1812 |
// |
1813 |
// A1 = Iij(0,2); |
1814 |
// A2 = Iij(1,2); |
1815 |
// A3 = Iij(2,2); |
1816 |
// |
1817 |
// orbitalinfo->pamzenitangle = (Float_t)PO->GetPitchAngle(1,0,0,A1,A2,A3); // Angle between zenit and Pamela's main axiz |
1818 |
// orbitalinfo->pamBangle = (Float_t)PO->GetPitchAngle(A1,A2,A3,Bx,By,Bz); // Angle between Pamela's main axiz and B |
1819 |
// |
1820 |
if ( debug ) printf(" matrixes done \n"); |
1821 |
if ( !standalone ){ |
1822 |
if ( debug ) printf(" !standalone \n"); |
1823 |
// |
1824 |
// Standard tracking algorithm |
1825 |
// |
1826 |
Int_t nn = 0; |
1827 |
if ( verbose ) printf(" standard tracking \n"); |
1828 |
for(Int_t nt=0; nt < tof->ntrk(); nt++){ |
1829 |
// |
1830 |
ToFTrkVar *ptt = tof->GetToFTrkVar(nt); |
1831 |
if (debug) cout<<"tof->ntrk() = "<<tof->ntrk()<<"\tptt->trkseqno = "<<ptt->trkseqno<<"\ttrke->ntrk() = "<<trke->ntrk()<<endl; |
1832 |
Double_t E11x = ptt->xtr_tof[0]; // tr->x[0]; |
1833 |
Double_t E11y = ptt->ytr_tof[0]; //tr->y[0]; |
1834 |
Double_t E11z = zin[0]; |
1835 |
Double_t E22x = ptt->xtr_tof[3];//tr->x[3]; |
1836 |
Double_t E22y = ptt->ytr_tof[3];//tr->y[3]; |
1837 |
Double_t E22z = zin[3]; |
1838 |
if ( (E11x < 100. && E11y < 100. && E22x < 100. && E22y < 100.) || ptt->trkseqno != -1 ){ |
1839 |
TrkTrack *mytrack = trke->GetStoredTrack(ptt->trkseqno); |
1840 |
Float_t rig=1/mytrack->GetDeflection(); |
1841 |
Double_t norm = sqrt(pow(E22x-E11x,2)+pow(E22y-E11y,2)+pow(E22z-E11z,2)); |
1842 |
// |
1843 |
Px = (E22x-E11x)/norm; |
1844 |
Py = (E22y-E11y)/norm; |
1845 |
Pz = (E22z-E11z)/norm; |
1846 |
// |
1847 |
t_orb->trkseqno = ptt->trkseqno; |
1848 |
// |
1849 |
TMatrixD Eij = PO->PamelatoGEO(Iij,Px,Py,Pz); |
1850 |
t_orb->Eij.ResizeTo(Eij); |
1851 |
t_orb->Eij = Eij; |
1852 |
// |
1853 |
TMatrixD Sij = PO->PamelatoGEO(Gij,Px,Py,Pz); |
1854 |
t_orb->Sij.ResizeTo(Sij); |
1855 |
t_orb->Sij = Sij; |
1856 |
// |
1857 |
t_orb->pitch = (Float_t)PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),Bx,By,Bz); |
1858 |
// |
1859 |
// SunPosition in instrumental reference frame |
1860 |
TMatrixD Kij = PO->PamelatoGEO(qij,Px,Py,Pz); |
1861 |
TMatrixD Lij = PO->PamelatoGEO(qij,0,0,1); |
1862 |
t_orb->sunangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),-SP.X(),-SP.Y(),-SP.Z()); |
1863 |
t_orb->sunmagangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),SunMag.X(),SunMag.Y(),SunMag.Z()); |
1864 |
// |
1865 |
// |
1866 |
Double_t omega = PO->GetPitchAngle(-Eij(0,0),-Eij(1,0),-Eij(2,0),1,0,0) * TMath::DegToRad(); |
1867 |
TVector3 Bxy(0,By,Bz); |
1868 |
TVector3 Exy(0,-Eij(1,0),-Eij(2,0)); |
1869 |
Double_t dzeta=Bxy.Angle(Exy); |
1870 |
if (-Eij(1,0) < 0) dzeta=2.0*TMath::Pi() - dzeta; |
1871 |
|
1872 |
if(debug) cout << "omega = "<<omega*TMath::RadToDeg()<<"\tdzeta = "<<dzeta*TMath::RadToDeg()<<endl; |
1873 |
|
1874 |
// Formula from D.F. Smart *, M.A. Shea [2005]; A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft |
1875 |
if(rig>=0) t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); |
1876 |
else t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(TMath::Pi()+dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); |
1877 |
if (debug) cout << "R = " << rig << "\tcutoff = " << t_orb->cutoff << endl; |
1878 |
|
1879 |
// |
1880 |
if ( t_orb->pitch != t_orb->pitch ) t_orb->pitch = -1000.; |
1881 |
if ( t_orb->cutoff != t_orb->cutoff ) t_orb->cutoff = -1000.; |
1882 |
if ( t_orb->sunangle != t_orb->sunangle ) t_orb->sunangle = -1000.; |
1883 |
if ( t_orb->sunmagangle != t_orb->sunmagangle ) t_orb->sunmagangle = -1000.; |
1884 |
// |
1885 |
if ( debug ) printf(" orbitalinfo->cutoffsvl %f vitaly %f \n",orbitalinfo->cutoffsvl,t_orb->cutoff); |
1886 |
// |
1887 |
new(tor[nn]) OrbitalInfoTrkVar(*t_orb); |
1888 |
nn++; |
1889 |
// |
1890 |
t_orb->Clear(); |
1891 |
// |
1892 |
} |
1893 |
// |
1894 |
} // end standard tracking algorithm |
1895 |
|
1896 |
// |
1897 |
// Code for extended tracking algorithm: |
1898 |
// |
1899 |
if ( hasNucleiTrk ){ |
1900 |
Int_t ttentry = 0; |
1901 |
if ( verbose ) printf(" hasNucleiTrk \n"); |
1902 |
for(Int_t nt=0; nt < tcNucleiTof->GetEntries() ; nt++){ |
1903 |
// |
1904 |
if ( verbose ) printf(" got1\n"); |
1905 |
ToFTrkVar *ptt = (ToFTrkVar*)(tcNucleiTof->At(nt)); |
1906 |
if (verbose) cout<<" tcNucleiTof->GetEntries() = "<<tcNucleiTof->GetEntries()<<"\tptt->trkseqno = "<<ptt->trkseqno<<endl; |
1907 |
Double_t E11x = ptt->xtr_tof[0]; // tr->x[0]; |
1908 |
Double_t E11y = ptt->ytr_tof[0]; //tr->y[0]; |
1909 |
Double_t E11z = zin[0]; |
1910 |
Double_t E22x = ptt->xtr_tof[3];//tr->x[3]; |
1911 |
Double_t E22y = ptt->ytr_tof[3];//tr->y[3]; |
1912 |
Double_t E22z = zin[3]; |
1913 |
if ( (E11x < 100. && E11y < 100. && E22x < 100. && E22y < 100.) || ptt->trkseqno != -1 ){ |
1914 |
TrkTrack *mytrack = (TrkTrack*)(tcNucleiTrk->At(ptt->trkseqno)); |
1915 |
if ( verbose ) printf(" got tcNucleiTrk \n"); |
1916 |
Float_t rig=1/mytrack->GetDeflection(); |
1917 |
Double_t norm = sqrt(pow(E22x-E11x,2)+pow(E22y-E11y,2)+pow(E22z-E11z,2)); |
1918 |
// |
1919 |
Px = (E22x-E11x)/norm; |
1920 |
Py = (E22y-E11y)/norm; |
1921 |
Pz = (E22z-E11z)/norm; |
1922 |
// |
1923 |
t_orb->trkseqno = ptt->trkseqno; |
1924 |
// |
1925 |
TMatrixD Eij = PO->PamelatoGEO(Iij,Px,Py,Pz); |
1926 |
t_orb->Eij.ResizeTo(Eij); |
1927 |
t_orb->Eij = Eij; |
1928 |
// |
1929 |
TMatrixD Sij = PO->PamelatoGEO(Gij,Px,Py,Pz); |
1930 |
t_orb->Sij.ResizeTo(Sij); |
1931 |
t_orb->Sij = Sij; |
1932 |
// |
1933 |
t_orb->pitch = (Float_t)PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),Bx,By,Bz); |
1934 |
// |
1935 |
// SunPosition in instrumental reference frame |
1936 |
TMatrixD Kij = PO->PamelatoGEO(qij,Px,Py,Pz); |
1937 |
TMatrixD Lij = PO->PamelatoGEO(qij,0,0,1); |
1938 |
t_orb->sunangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),-SP.X(),-SP.Y(),-SP.Z()); |
1939 |
t_orb->sunmagangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),SunMag.X(),SunMag.Y(),SunMag.Z()); |
1940 |
// |
1941 |
// |
1942 |
Double_t omega = PO->GetPitchAngle(-Eij(0,0),-Eij(1,0),-Eij(2,0),1,0,0) * TMath::DegToRad(); |
1943 |
TVector3 Bxy(0,By,Bz); |
1944 |
TVector3 Exy(0,-Eij(1,0),-Eij(2,0)); |
1945 |
Double_t dzeta=Bxy.Angle(Exy); |
1946 |
if (-Eij(1,0) < 0) dzeta=2.0*TMath::Pi() - dzeta; |
1947 |
|
1948 |
if(debug) cout << "omega = "<<omega*TMath::RadToDeg()<<"\tdzeta = "<<dzeta*TMath::RadToDeg()<<endl; |
1949 |
|
1950 |
// Formula from D.F. Smart *, M.A. Shea [2005]; A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft |
1951 |
if(rig>=0) t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); |
1952 |
else t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(TMath::Pi()+dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); |
1953 |
if (debug) cout << "R = " << rig << "\tcutoff = " << t_orb->cutoff << endl; |
1954 |
|
1955 |
// |
1956 |
if ( t_orb->pitch != t_orb->pitch ) t_orb->pitch = -1000.; |
1957 |
if ( t_orb->cutoff != t_orb->cutoff ) t_orb->cutoff = -1000.; |
1958 |
if ( t_orb->sunangle != t_orb->sunangle ) t_orb->sunangle = -1000.; |
1959 |
if ( t_orb->sunmagangle != t_orb->sunmagangle ) t_orb->sunmagangle = -1000.; |
1960 |
// |
1961 |
if ( debug ) printf(" orbitalinfo->cutoffsvl %f vitaly %f \n",orbitalinfo->cutoffsvl,t_orb->cutoff); |
1962 |
// |
1963 |
TClonesArray &tt1 = *torbNucleiTrk; |
1964 |
new(tt1[ttentry]) OrbitalInfoTrkVar(*t_orb); |
1965 |
ttentry++; |
1966 |
// |
1967 |
t_orb->Clear(); |
1968 |
// |
1969 |
} |
1970 |
// |
1971 |
} |
1972 |
} // end standard tracking algorithm: nuclei |
1973 |
if ( hasExtNucleiTrk ){ |
1974 |
Int_t ttentry = 0; |
1975 |
if ( verbose ) printf(" hasExtNucleiTrk \n"); |
1976 |
for(Int_t nt=0; nt < tcExtNucleiTof->GetEntries() ; nt++){ |
1977 |
// |
1978 |
if ( verbose ) printf(" got2\n"); |
1979 |
ToFTrkVar *ptt = (ToFTrkVar*)(tcExtNucleiTof->At(nt)); |
1980 |
if (verbose) cout<<" tcExtNucleiTof->GetEntries() = "<<tcExtNucleiTof->GetEntries()<<"\tptt->trkseqno = "<<ptt->trkseqno<<endl; |
1981 |
Double_t E11x = ptt->xtr_tof[0]; // tr->x[0]; |
1982 |
Double_t E11y = ptt->ytr_tof[0]; //tr->y[0]; |
1983 |
Double_t E11z = zin[0]; |
1984 |
Double_t E22x = ptt->xtr_tof[3];//tr->x[3]; |
1985 |
Double_t E22y = ptt->ytr_tof[3];//tr->y[3]; |
1986 |
Double_t E22z = zin[3]; |
1987 |
if ( (E11x < 100. && E11y < 100. && E22x < 100. && E22y < 100.) || ptt->trkseqno != -1 ){ |
1988 |
ExtTrack *mytrack = (ExtTrack*)(tcExtNucleiTrk->At(ptt->trkseqno)); |
1989 |
if ( verbose ) printf(" got tcExtNucleiTrk \n"); |
1990 |
Float_t rig=1/mytrack->GetDeflection(); |
1991 |
Double_t norm = sqrt(pow(E22x-E11x,2)+pow(E22y-E11y,2)+pow(E22z-E11z,2)); |
1992 |
// |
1993 |
Px = (E22x-E11x)/norm; |
1994 |
Py = (E22y-E11y)/norm; |
1995 |
Pz = (E22z-E11z)/norm; |
1996 |
// |
1997 |
t_orb->trkseqno = ptt->trkseqno; |
1998 |
// |
1999 |
TMatrixD Eij = PO->PamelatoGEO(Iij,Px,Py,Pz); |
2000 |
t_orb->Eij.ResizeTo(Eij); |
2001 |
t_orb->Eij = Eij; |
2002 |
// |
2003 |
TMatrixD Sij = PO->PamelatoGEO(Gij,Px,Py,Pz); |
2004 |
t_orb->Sij.ResizeTo(Sij); |
2005 |
t_orb->Sij = Sij; |
2006 |
// |
2007 |
t_orb->pitch = (Float_t)PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),Bx,By,Bz); |
2008 |
// |
2009 |
// SunPosition in instrumental reference frame |
2010 |
TMatrixD Kij = PO->PamelatoGEO(qij,Px,Py,Pz); |
2011 |
TMatrixD Lij = PO->PamelatoGEO(qij,0,0,1); |
2012 |
t_orb->sunangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),-SP.X(),-SP.Y(),-SP.Z()); |
2013 |
t_orb->sunmagangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),SunMag.X(),SunMag.Y(),SunMag.Z()); |
2014 |
// |
2015 |
// |
2016 |
Double_t omega = PO->GetPitchAngle(-Eij(0,0),-Eij(1,0),-Eij(2,0),1,0,0) * TMath::DegToRad(); |
2017 |
TVector3 Bxy(0,By,Bz); |
2018 |
TVector3 Exy(0,-Eij(1,0),-Eij(2,0)); |
2019 |
Double_t dzeta=Bxy.Angle(Exy); |
2020 |
if (-Eij(1,0) < 0) dzeta=2.0*TMath::Pi() - dzeta; |
2021 |
|
2022 |
if(debug) cout << "omega = "<<omega*TMath::RadToDeg()<<"\tdzeta = "<<dzeta*TMath::RadToDeg()<<endl; |
2023 |
|
2024 |
// Formula from D.F. Smart *, M.A. Shea [2005]; A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft |
2025 |
if(rig>=0) t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); |
2026 |
else t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(TMath::Pi()+dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); |
2027 |
if (debug) cout << "R = " << rig << "\tcutoff = " << t_orb->cutoff << endl; |
2028 |
|
2029 |
// |
2030 |
if ( t_orb->pitch != t_orb->pitch ) t_orb->pitch = -1000.; |
2031 |
if ( t_orb->cutoff != t_orb->cutoff ) t_orb->cutoff = -1000.; |
2032 |
if ( t_orb->sunangle != t_orb->sunangle ) t_orb->sunangle = -1000.; |
2033 |
if ( t_orb->sunmagangle != t_orb->sunmagangle ) t_orb->sunmagangle = -1000.; |
2034 |
// |
2035 |
if ( debug ) printf(" orbitalinfo->cutoffsvl %f vitaly %f \n",orbitalinfo->cutoffsvl,t_orb->cutoff); |
2036 |
// |
2037 |
TClonesArray &tt2 = *torbExtNucleiTrk; |
2038 |
new(tt2[ttentry]) OrbitalInfoTrkVar(*t_orb); |
2039 |
ttentry++; |
2040 |
// |
2041 |
t_orb->Clear(); |
2042 |
// |
2043 |
} |
2044 |
// |
2045 |
} |
2046 |
} // end standard tracking algorithm: nuclei extended |
2047 |
if ( hasExtTrk ){ |
2048 |
Int_t ttentry = 0; |
2049 |
if ( verbose ) printf(" hasExtTrk \n"); |
2050 |
for(Int_t nt=0; nt < tcExtTof->GetEntries() ; nt++){ |
2051 |
// |
2052 |
if ( verbose ) printf(" got3\n"); |
2053 |
ToFTrkVar *ptt = (ToFTrkVar*)(tcExtTof->At(nt)); |
2054 |
if (verbose) cout<<" tcExtTof->GetEntries() = "<<tcExtTof->GetEntries()<<"\tptt->trkseqno = "<<ptt->trkseqno<<endl; |
2055 |
Double_t E11x = ptt->xtr_tof[0]; // tr->x[0]; |
2056 |
Double_t E11y = ptt->ytr_tof[0]; //tr->y[0]; |
2057 |
Double_t E11z = zin[0]; |
2058 |
Double_t E22x = ptt->xtr_tof[3];//tr->x[3]; |
2059 |
Double_t E22y = ptt->ytr_tof[3];//tr->y[3]; |
2060 |
Double_t E22z = zin[3]; |
2061 |
if ( (E11x < 100. && E11y < 100. && E22x < 100. && E22y < 100.) || ptt->trkseqno != -1 ){ |
2062 |
ExtTrack *mytrack = (ExtTrack*)(tcExtTrk->At(ptt->trkseqno)); |
2063 |
if ( verbose ) printf(" got tcExtTrk \n"); |
2064 |
Float_t rig=1/mytrack->GetDeflection(); |
2065 |
Double_t norm = sqrt(pow(E22x-E11x,2)+pow(E22y-E11y,2)+pow(E22z-E11z,2)); |
2066 |
// |
2067 |
Px = (E22x-E11x)/norm; |
2068 |
Py = (E22y-E11y)/norm; |
2069 |
Pz = (E22z-E11z)/norm; |
2070 |
// |
2071 |
t_orb->trkseqno = ptt->trkseqno; |
2072 |
// |
2073 |
TMatrixD Eij = PO->PamelatoGEO(Iij,Px,Py,Pz); |
2074 |
t_orb->Eij.ResizeTo(Eij); |
2075 |
t_orb->Eij = Eij; |
2076 |
// |
2077 |
TMatrixD Sij = PO->PamelatoGEO(Gij,Px,Py,Pz); |
2078 |
t_orb->Sij.ResizeTo(Sij); |
2079 |
t_orb->Sij = Sij; |
2080 |
// |
2081 |
t_orb->pitch = (Float_t)PO->GetPitchAngle(Eij(0,0),Eij(1,0),Eij(2,0),Bx,By,Bz); |
2082 |
// |
2083 |
// SunPosition in instrumental reference frame |
2084 |
TMatrixD Kij = PO->PamelatoGEO(qij,Px,Py,Pz); |
2085 |
TMatrixD Lij = PO->PamelatoGEO(qij,0,0,1); |
2086 |
t_orb->sunangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),-SP.X(),-SP.Y(),-SP.Z()); |
2087 |
t_orb->sunmagangle=(Float_t)PO->GetPitchAngle(Kij(0,0),Kij(1,0),Kij(2,0),SunMag.X(),SunMag.Y(),SunMag.Z()); |
2088 |
// |
2089 |
// |
2090 |
Double_t omega = PO->GetPitchAngle(-Eij(0,0),-Eij(1,0),-Eij(2,0),1,0,0) * TMath::DegToRad(); |
2091 |
TVector3 Bxy(0,By,Bz); |
2092 |
TVector3 Exy(0,-Eij(1,0),-Eij(2,0)); |
2093 |
Double_t dzeta=Bxy.Angle(Exy); |
2094 |
if (-Eij(1,0) < 0) dzeta=2.0*TMath::Pi() - dzeta; |
2095 |
|
2096 |
if(debug) cout << "omega = "<<omega*TMath::RadToDeg()<<"\tdzeta = "<<dzeta*TMath::RadToDeg()<<endl; |
2097 |
|
2098 |
// Formula from D.F. Smart *, M.A. Shea [2005]; A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft |
2099 |
if(rig>=0) t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); |
2100 |
else t_orb->cutoff = 59.3/(pow(orbitalinfo->L,2)*pow(1+sqrt(1-sin(omega)*sin(TMath::Pi()+dzeta)*pow(cos(orbitalinfo->lat*TMath::DegToRad()),3)),2)); |
2101 |
if (debug) cout << "R = " << rig << "\tcutoff = " << t_orb->cutoff << endl; |
2102 |
|
2103 |
// |
2104 |
if ( t_orb->pitch != t_orb->pitch ) t_orb->pitch = -1000.; |
2105 |
if ( t_orb->cutoff != t_orb->cutoff ) t_orb->cutoff = -1000.; |
2106 |
if ( t_orb->sunangle != t_orb->sunangle ) t_orb->sunangle = -1000.; |
2107 |
if ( t_orb->sunmagangle != t_orb->sunmagangle ) t_orb->sunmagangle = -1000.; |
2108 |
// |
2109 |
if ( debug ) printf(" orbitalinfo->cutoffsvl %f vitaly %f \n",orbitalinfo->cutoffsvl,t_orb->cutoff); |
2110 |
// |
2111 |
TClonesArray &tt3 = *torbExtTrk; |
2112 |
new(tt3[ttentry]) OrbitalInfoTrkVar(*t_orb); |
2113 |
ttentry++; |
2114 |
// |
2115 |
t_orb->Clear(); |
2116 |
// |
2117 |
} |
2118 |
// |
2119 |
} |
2120 |
} // end standard tracking algorithm: extended |
2121 |
|
2122 |
} else { |
2123 |
if ( debug ) printf(" mmm... mode %u standalone \n",orbitalinfo->mode); |
2124 |
} |
2125 |
// |
2126 |
} else { // HERE IT MISS ALL CODE FOR EXTENDED TRACKING! |
2127 |
if ( !standalone ){ |
2128 |
// |
2129 |
if ( verbose ) printf(" no orb info for tracks \n"); |
2130 |
Int_t nn = 0; |
2131 |
for(Int_t nt=0; nt < tof->ntrk(); nt++){ |
2132 |
// |
2133 |
ToFTrkVar *ptt = tof->GetToFTrkVar(nt); |
2134 |
if ( ptt->trkseqno != -1 ){ |
2135 |
// |
2136 |
t_orb->trkseqno = ptt->trkseqno; |
2137 |
// |
2138 |
TMatrixD Iij(3,1); |
2139 |
Iij(0,0)=0.; Iij(1,0)=0.; Iij(2,0)=1.; |
2140 |
//Iij(1,0)=0; Iij(1,1)=0; Iij(1,2)=0; |
2141 |
//Iij(2,0)=0; Iij(2,1)=0; Iij(2,2)=0; |
2142 |
//Iij.Zero(); |
2143 |
t_orb->Eij.ResizeTo(Iij); |
2144 |
t_orb->Sij.ResizeTo(Iij); |
2145 |
t_orb->Eij = Iij; |
2146 |
// |
2147 |
t_orb->Sij = Iij; |
2148 |
// |
2149 |
t_orb->pitch = -1000.; |
2150 |
// |
2151 |
t_orb->sunangle = -1000.; |
2152 |
// |
2153 |
t_orb->sunmagangle = -1000; |
2154 |
// |
2155 |
t_orb->cutoff = -1000.; |
2156 |
// |
2157 |
new(tor[nn]) OrbitalInfoTrkVar(*t_orb); |
2158 |
nn++; |
2159 |
// |
2160 |
t_orb->Clear(); |
2161 |
// |
2162 |
} |
2163 |
// |
2164 |
} |
2165 |
// |
2166 |
// Code for extended tracking algorithm: |
2167 |
// |
2168 |
if ( hasNucleiTrk ){ |
2169 |
Int_t ttentry = 0; |
2170 |
if ( verbose ) printf(" hasNucleiTrk \n"); |
2171 |
for(Int_t nt=0; nt < tcNucleiTof->GetEntries() ; nt++){ |
2172 |
// |
2173 |
ToFTrkVar *ptt = (ToFTrkVar*)(tcNucleiTof->At(nt)); |
2174 |
if ( ptt->trkseqno != -1 ){ |
2175 |
// |
2176 |
t_orb->trkseqno = ptt->trkseqno; |
2177 |
// |
2178 |
TMatrixD Iij(3,1); |
2179 |
Iij(0,0)=0.; Iij(1,0)=0.; Iij(2,0)=1.; |
2180 |
//Iij(1,0)=0; Iij(1,1)=0; Iij(1,2)=0; |
2181 |
//Iij(2,0)=0; Iij(2,1)=0; Iij(2,2)=0; |
2182 |
//Iij.Zero(); |
2183 |
t_orb->Eij.ResizeTo(Iij); |
2184 |
t_orb->Sij.ResizeTo(Iij); |
2185 |
t_orb->Eij = Iij; |
2186 |
// |
2187 |
t_orb->Sij = Iij; |
2188 |
// |
2189 |
t_orb->pitch = -1000.; |
2190 |
// |
2191 |
t_orb->sunangle = -1000.; |
2192 |
// |
2193 |
t_orb->sunmagangle = -1000; |
2194 |
// |
2195 |
t_orb->cutoff = -1000.; |
2196 |
// |
2197 |
TClonesArray &tz1 = *torbNucleiTrk; |
2198 |
new(tz1[ttentry]) OrbitalInfoTrkVar(*t_orb); |
2199 |
ttentry++; |
2200 |
// |
2201 |
t_orb->Clear(); |
2202 |
// |
2203 |
} |
2204 |
// |
2205 |
} |
2206 |
} |
2207 |
if ( hasExtNucleiTrk ){ |
2208 |
Int_t ttentry = 0; |
2209 |
if ( verbose ) printf(" hasExtNucleiTrk \n"); |
2210 |
for(Int_t nt=0; nt < tcExtNucleiTof->GetEntries() ; nt++){ |
2211 |
// |
2212 |
if ( verbose ) printf(" got2\n"); |
2213 |
ToFTrkVar *ptt = (ToFTrkVar*)(tcExtNucleiTof->At(nt)); |
2214 |
if ( ptt->trkseqno != -1 ){ |
2215 |
// |
2216 |
t_orb->trkseqno = ptt->trkseqno; |
2217 |
// |
2218 |
TMatrixD Iij(3,1); |
2219 |
Iij(0,0)=0.; Iij(1,0)=0.; Iij(2,0)=1.; |
2220 |
//Iij(1,0)=0; Iij(1,1)=0; Iij(1,2)=0; |
2221 |
//Iij(2,0)=0; Iij(2,1)=0; Iij(2,2)=0; |
2222 |
//Iij.Zero(); |
2223 |
t_orb->Eij.ResizeTo(Iij); |
2224 |
t_orb->Sij.ResizeTo(Iij); |
2225 |
t_orb->Eij = Iij; |
2226 |
// |
2227 |
t_orb->Sij = Iij; |
2228 |
// |
2229 |
t_orb->pitch = -1000.; |
2230 |
// |
2231 |
t_orb->sunangle = -1000.; |
2232 |
// |
2233 |
t_orb->sunmagangle = -1000; |
2234 |
// |
2235 |
t_orb->cutoff = -1000.; |
2236 |
// |
2237 |
TClonesArray &tz2 = *torbExtNucleiTrk; |
2238 |
new(tz2[ttentry]) OrbitalInfoTrkVar(*t_orb); |
2239 |
ttentry++; |
2240 |
// |
2241 |
t_orb->Clear(); |
2242 |
// |
2243 |
} |
2244 |
// |
2245 |
} |
2246 |
} |
2247 |
if ( hasExtTrk ){ |
2248 |
Int_t ttentry = 0; |
2249 |
if ( verbose ) printf(" hasExtTrk \n"); |
2250 |
for(Int_t nt=0; nt < tcExtTof->GetEntries() ; nt++){ |
2251 |
// |
2252 |
if ( verbose ) printf(" got3\n"); |
2253 |
ToFTrkVar *ptt = (ToFTrkVar*)(tcExtTof->At(nt)); |
2254 |
if ( ptt->trkseqno != -1 ){ |
2255 |
// |
2256 |
t_orb->trkseqno = ptt->trkseqno; |
2257 |
// |
2258 |
TMatrixD Iij(3,1); |
2259 |
Iij(0,0)=0.; Iij(1,0)=0.; Iij(2,0)=1.; |
2260 |
//Iij(1,0)=0; Iij(1,1)=0; Iij(1,2)=0; |
2261 |
//Iij(2,0)=0; Iij(2,1)=0; Iij(2,2)=0; |
2262 |
//Iij.Zero(); |
2263 |
t_orb->Eij.ResizeTo(Iij); |
2264 |
t_orb->Sij.ResizeTo(Iij); |
2265 |
t_orb->Eij = Iij; |
2266 |
// |
2267 |
t_orb->Sij = Iij; |
2268 |
// |
2269 |
t_orb->pitch = -1000.; |
2270 |
// |
2271 |
t_orb->sunangle = -1000.; |
2272 |
// |
2273 |
t_orb->sunmagangle = -1000; |
2274 |
// |
2275 |
t_orb->cutoff = -1000.; |
2276 |
// |
2277 |
TClonesArray &tz3 = *torbExtTrk; |
2278 |
new(tz3[ttentry]) OrbitalInfoTrkVar(*t_orb); |
2279 |
ttentry++; |
2280 |
// |
2281 |
t_orb->Clear(); |
2282 |
// |
2283 |
} |
2284 |
// |
2285 |
} |
2286 |
} |
2287 |
} |
2288 |
} // if( orbitalinfo->TimeGap>0){ |
2289 |
// |
2290 |
// Fill the class |
2291 |
// |
2292 |
OrbitalInfotr->Fill(); |
2293 |
// |
2294 |
// tor.Clear("C"); // memory leak? |
2295 |
tor.Delete(); // memory leak? |
2296 |
delete t_orb; |
2297 |
// |
2298 |
// printf(" q0 size %i q0 capacity %i \n",(int)q0.size(),(int)q0.capacity()); |
2299 |
} // loop over the events in the run |
2300 |
|
2301 |
|
2302 |
// |
2303 |
// Here you may want to clear some variables before processing another run |
2304 |
// |
2305 |
|
2306 |
// OrbitalInfotr->FlushBaskets(); |
2307 |
|
2308 |
if ( verbose ) printf(" Clear before new run \n"); |
2309 |
delete dbtime; |
2310 |
|
2311 |
if ( mcmdrc ) mcmdrc->Clear(); |
2312 |
mcmdrc = 0; |
2313 |
|
2314 |
if ( verbose ) printf(" Clear before new run1 \n"); |
2315 |
if ( L_QQ_Q_l_lower ) delete L_QQ_Q_l_lower; |
2316 |
if ( verbose ) printf(" Clear before new run2 \n"); |
2317 |
if ( L_QQ_Q_l_upper ) delete L_QQ_Q_l_upper; |
2318 |
if ( verbose ) printf(" Clear before new run3 \n"); |
2319 |
if ( RYPang_upper ) delete RYPang_upper; |
2320 |
if ( verbose ) printf(" Clear before new run4 \n"); |
2321 |
if ( RYPang_lower ) delete RYPang_lower; |
2322 |
|
2323 |
|
2324 |
if ( l0tr ){ |
2325 |
if ( verbose ) printf(" delete l0tr\n"); |
2326 |
l0tr->Delete(); |
2327 |
l0tr = 0; |
2328 |
} |
2329 |
// if ( l0head ){ |
2330 |
// printf(" delete l0head\n"); |
2331 |
// l0head->Reset(); |
2332 |
// delete l0head; |
2333 |
// printf(" delete l0head done\n"); |
2334 |
// l0head = 0; |
2335 |
// } |
2336 |
if (eh) { |
2337 |
if ( verbose ) printf(" delete eh\n"); |
2338 |
delete eh; |
2339 |
eh = 0; |
2340 |
} |
2341 |
|
2342 |
if ( verbose ) printf(" close file \n"); |
2343 |
if ( l0File ) l0File->Close("R"); |
2344 |
if ( verbose ) printf(" End run \n"); |
2345 |
|
2346 |
q0.clear(); |
2347 |
q1.clear(); |
2348 |
q2.clear(); |
2349 |
q3.clear(); |
2350 |
qtime.clear(); |
2351 |
qPitch.clear(); |
2352 |
qRoll.clear(); |
2353 |
qYaw.clear(); |
2354 |
qmode.clear(); |
2355 |
|
2356 |
if (ch){ |
2357 |
if ( verbose ) printf(" delete ch\n"); |
2358 |
ch->Delete(); |
2359 |
ch = 0; |
2360 |
} |
2361 |
} // process all the runs <=== |
2362 |
if ( debug ){ |
2363 |
printf("AFTER LOOP ON RUNs\n"); |
2364 |
gObjectTable->Print(); |
2365 |
} |
2366 |
// |
2367 |
if (verbose) printf("\n Finished processing data \n"); |
2368 |
// |
2369 |
closeandexit: |
2370 |
// |
2371 |
// we have finished processing the run(s). If we processed a single run now we must copy all the events after our run from the old tree to the new one and delete the old tree. |
2372 |
// |
2373 |
if ( !reprocall && reproc && code >= 0 ){ |
2374 |
if ( totfileentries > noaftrun ){ |
2375 |
if (verbose){ |
2376 |
printf("\n Post-processing: copying events from the old tree after the processed run\n"); |
2377 |
printf(" Copying %i events in the file which are after the end of the run %i \n",(int)(totfileentries-noaftrun),(int)run); |
2378 |
printf(" Start copying at event number %i end copying at event number %i \n",(int)noaftrun,(int)totfileentries); |
2379 |
} |
2380 |
for (UInt_t j = noaftrun; j < totfileentries; j++ ){ |
2381 |
// |
2382 |
// Get entry from old tree |
2383 |
// |
2384 |
if ( OrbitalInfotrclone->GetEntry(j) <= 0 ) throw -36; |
2385 |
// |
2386 |
// copy orbitalinfoclone to OrbitalInfo |
2387 |
// |
2388 |
// orbitalinfo->Clear(); |
2389 |
// |
2390 |
memcpy(&orbitalinfo,&orbitalinfoclone,sizeof(orbitalinfoclone)); |
2391 |
// |
2392 |
// Fill entry in the new tree |
2393 |
// |
2394 |
OrbitalInfotr->Fill(); |
2395 |
}; |
2396 |
if (verbose) printf(" Finished successful copying!\n"); |
2397 |
}; |
2398 |
//if ( OrbitalInfotrclone ) OrbitalInfotrclone->Clear(); |
2399 |
//if ( OrbitalInfotrclone ) OrbitalInfotrclone->Delete(); |
2400 |
}; |
2401 |
// |
2402 |
// Close files, delete old tree(s), write and close level2 file |
2403 |
// |
2404 |
|
2405 |
if ( l0File ) l0File->Close(); |
2406 |
if ( myfold ) gSystem->Unlink(tempname.str().c_str()); |
2407 |
// |
2408 |
if ( OrbitalInfotr ) OrbitalInfotr->SetName("OrbitalInfo"); |
2409 |
// |
2410 |
if ( file ){ |
2411 |
file->cd(); |
2412 |
if ( OrbitalInfotr ) OrbitalInfotr->Write("OrbitalInfo", TObject::kOverwrite); // 10 RED bug fixed |
2413 |
}; |
2414 |
// |
2415 |
if (verbose) printf("\n Exiting...\n"); |
2416 |
|
2417 |
if ( myfold ) gSystem->Unlink(OrbitalInfofolder.str().c_str()); |
2418 |
// |
2419 |
// the end |
2420 |
// |
2421 |
if ( dbc ){ |
2422 |
dbc->Close(); |
2423 |
delete dbc; |
2424 |
}; |
2425 |
// |
2426 |
if (verbose) printf("\n Exiting...\n"); |
2427 |
if ( tempfile ) tempfile->Close(); |
2428 |
|
2429 |
if ( PO ) delete PO; |
2430 |
if ( gltle ) delete gltle; |
2431 |
if ( glparam ) delete glparam; |
2432 |
if ( glparam2 ) delete glparam2; |
2433 |
if (verbose) printf("\n Exiting3...\n"); |
2434 |
if ( glroot ) delete glroot; |
2435 |
if (verbose) printf("\n Exiting4...\n"); |
2436 |
if ( runinfo ) runinfo->Close(); |
2437 |
if ( runinfo ) delete runinfo; |
2438 |
|
2439 |
if ( tcNucleiTrk ){ |
2440 |
tcNucleiTrk->Delete(); |
2441 |
delete tcNucleiTrk; |
2442 |
tcNucleiTrk = NULL; |
2443 |
} |
2444 |
if ( tcExtNucleiTrk ){ |
2445 |
tcExtNucleiTrk->Delete(); |
2446 |
delete tcExtNucleiTrk; |
2447 |
tcExtNucleiTrk = NULL; |
2448 |
} |
2449 |
if ( tcExtTrk ){ |
2450 |
tcExtTrk->Delete(); |
2451 |
delete tcExtTrk; |
2452 |
tcExtTrk = NULL; |
2453 |
} |
2454 |
|
2455 |
if ( tcNucleiTof ){ |
2456 |
tcNucleiTof->Delete(); |
2457 |
delete tcNucleiTof; |
2458 |
tcNucleiTof = NULL; |
2459 |
} |
2460 |
if ( tcExtNucleiTof ){ |
2461 |
tcExtNucleiTof->Delete(); |
2462 |
delete tcExtNucleiTof; |
2463 |
tcExtNucleiTof = NULL; |
2464 |
} |
2465 |
if ( tcExtTof ){ |
2466 |
tcExtTof->Delete(); |
2467 |
delete tcExtTof; |
2468 |
tcExtTrk = NULL; |
2469 |
} |
2470 |
|
2471 |
|
2472 |
if ( tof ) delete tof; |
2473 |
if ( trke ) delete trke; |
2474 |
|
2475 |
if ( debug ){ |
2476 |
cout << "1 0x" << OrbitalInfotr << endl; |
2477 |
cout << "2 0x" << OrbitalInfotrclone << endl; |
2478 |
cout << "3 0x" << l0tr << endl; |
2479 |
cout << "4 0x" << tempOrbitalInfo << endl; |
2480 |
cout << "5 0x" << ttof << endl; |
2481 |
} |
2482 |
// |
2483 |
if ( debug ) file->ls(); |
2484 |
// |
2485 |
if ( debug ){ |
2486 |
printf("BEFORE EXITING\n"); |
2487 |
gObjectTable->Print(); |
2488 |
} |
2489 |
if(code < 0) throw code; |
2490 |
return(code); |
2491 |
} |
2492 |
|
2493 |
|
2494 |
// |
2495 |
// Returns the cCoordGeo structure holding the geographical |
2496 |
// coordinates for the event (see sgp4.h). |
2497 |
// |
2498 |
// atime is the abstime of the event in UTC unix time. |
2499 |
// tletime is the time of the tle in UTC unix time. |
2500 |
// tle is the previous and nearest tle (compared to atime). |
2501 |
cCoordGeo getCoo(UInt_t atime, UInt_t tletime, cTle *tle) |
2502 |
{ |
2503 |
cEci eci; |
2504 |
cOrbit orbit(*tle); |
2505 |
orbit.getPosition((double) (atime - tletime)/60., &eci); |
2506 |
|
2507 |
return eci.toGeo(); |
2508 |
} |
2509 |
|
2510 |
// function of copyng of quatrnions classes |
2511 |
|
2512 |
void CopyQ(Quaternions *Q1, Quaternions *Q2){ |
2513 |
for(UInt_t i = 0; i < 6; i++){ |
2514 |
Q1->time[i]=Q2->time[i]; |
2515 |
for (UInt_t j = 0; j < 4; j++)Q1->quat[i][j]=Q2->quat[i][j]; |
2516 |
} |
2517 |
return; |
2518 |
} |
2519 |
|
2520 |
// functions of copyng InclinationInfo classes |
2521 |
|
2522 |
void CopyAng(InclinationInfo *A1, InclinationInfo *A2){ |
2523 |
A1->Tangazh = A2->Tangazh; |
2524 |
A1->Ryskanie = A2->Ryskanie; |
2525 |
A1->Kren = A2->Kren; |
2526 |
return; |
2527 |
} |
2528 |
|
2529 |
UInt_t holeq(Double_t lower,Double_t upper,Quaternions *Qlower, Quaternions *Qupper, UInt_t f){ |
2530 |
|
2531 |
UInt_t hole = 10; |
2532 |
Bool_t R10l = false; // Sign of R10 mode in lower quaternions array |
2533 |
Bool_t R10u = false; // Sign of R10 mode in upper quaternions array |
2534 |
Bool_t insm = false; // Sign that we inside quaternions array |
2535 |
// Bool_t mxtml = false; // Sign of mixt mode in lower quaternions array |
2536 |
// Bool_t mxtmu = false; // Sign of mixt mode in upper quaternions array |
2537 |
Bool_t npasm = false; // Sign of normall pass between R10 and non R10 or between non R10 and R10 |
2538 |
UInt_t NCQl = 6; // Number of correct quaternions in lower array |
2539 |
// UInt_t NCQu = 6; // Number of correct quaternions in upper array |
2540 |
if (f>0){ |
2541 |
insm = true; |
2542 |
if(Qupper->time[f]-Qupper->time[f-1]==30) R10u = false; |
2543 |
if(Qupper->time[f]-Qupper->time[f-1]<1) R10u = true; |
2544 |
}else{ |
2545 |
insm = false; |
2546 |
if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]<2)) R10l = true; |
2547 |
if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]<2)) R10u = true; |
2548 |
if((Qlower->time[5]-Qlower->time[0]==150)&&(Qlower->time[1]-Qlower->time[0]==30)) R10l = false; |
2549 |
if((Qupper->time[5]-Qupper->time[0]==150)&&(Qupper->time[1]-Qupper->time[0]==30)) R10u = false; |
2550 |
if((Qlower->time[5]-Qlower->time[0]<2)&&(Qlower->time[1]-Qlower->time[0]==30)){ |
2551 |
// mxtml = true; |
2552 |
for(UInt_t i = 1; i < 6; i++){ |
2553 |
if(Qlower->time[i]-Qlower->time[0]==30*i) NCQl=i; |
2554 |
} |
2555 |
} |
2556 |
// if((Qupper->time[5]-Qupper->time[0]<2)&&(Qupper->time[1]-Qupper->time[0]==30)){ |
2557 |
// mxtmu = true; |
2558 |
// for(UInt_t i = 1; i < 6; i++){ |
2559 |
// if(Qupper->time[i]-Qupper->time[0]==30*i) NCQu=i; |
2560 |
// } |
2561 |
// } |
2562 |
} |
2563 |
|
2564 |
if(((upper-lower==1.5)||(upper-lower==3.)||(upper-lower==30.)||(upper-lower==31.5)||(upper-lower==33.)||(upper-lower==181.5)||(upper-lower==210.)||(upper-lower==211.5))&&!insm) npasm = true; |
2565 |
|
2566 |
|
2567 |
if (R10u&&insm) hole=0; // best event R10 |
2568 |
if ((upper-lower<=5)&&(!insm)&&R10l&&R10u) hole = 1; // when first of 6 quaternions in array is correct |
2569 |
if (((!R10u)&&insm)||((!insm)&&(!R10u)&&(!R10l)&&((upper-lower==210+(6-NCQl)*30)||(upper-lower==30)))) hole = 2; //non R10 |
2570 |
if (npasm&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 3; //normall pass from R10 to non R10 or from non R10 to R10 |
2571 |
if ((!npasm)&&(upper-lower<=300)&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 4; // eliminable hole between R10 and non R10 or between non R10 and R10 |
2572 |
if ((upper-lower>=300)&&(!insm)&&((R10l&&!R10u)||(R10u&&!R10l))) hole = 5; //uneliminable hole between R10 and non R10 or between non R10 and R10 |
2573 |
if ((upper-lower>5)&&(upper-lower<=300)&&R10u&&R10l) hole = 6; // eliminable hole inside R10 |
2574 |
if ((upper-lower>300)&&R10u&&R10l) hole = 7; //uneliminable hole inside R10 |
2575 |
if ((upper-lower>210)&&(upper-lower<=1200)&&(!R10u)&&(!R10l)) hole = 8; //eliminable hole inside non R10 |
2576 |
if ((upper-lower>1200)&&!R10u&&!R10l) hole = 9; // uneliminable hole inside non R10 |
2577 |
return hole; |
2578 |
} |
2579 |
|
2580 |
void inclresize(vector<Double_t>& t,vector<Float_t>& q0,vector<Float_t>& q1,vector<Float_t>& q2,vector<Float_t>& q3,vector<Int_t>& mode,vector<Float_t>& Roll,vector<Float_t>& Pitch,vector<Float_t>& Yaw){ |
2581 |
Int_t sizee = t.size()+1; |
2582 |
t.resize(sizee); |
2583 |
q0.resize(sizee); |
2584 |
q1.resize(sizee); |
2585 |
q2.resize(sizee); |
2586 |
q3.resize(sizee); |
2587 |
mode.resize(sizee); |
2588 |
Roll.resize(sizee); |
2589 |
Pitch.resize(sizee); |
2590 |
Yaw.resize(sizee); |
2591 |
} |
2592 |
|
2593 |
// geomagnetic calculation staff |
2594 |
|
2595 |
void GM_ScanIGRF(TSQLServer *dbc, GMtype_Data *G0, GMtype_Data *G1, GMtype_Data *H1) |
2596 |
{ |
2597 |
GL_PARAM *glp = new GL_PARAM(); |
2598 |
Int_t parerror=glp->Query_GL_PARAM(1,304,dbc); // parameters stored in DB in GL_PRAM table |
2599 |
if ( parerror<0 ) { |
2600 |
throw -902; |
2601 |
} |
2602 |
/*This function scans inputs G0, G1, and H1 of the IGRF table into 3 data arrays*/ |
2603 |
// TString SATH="/data03/Malakhov/pam9Malakhov/installed10/calib/orb-param/"; |
2604 |
int i; |
2605 |
double temp; |
2606 |
char buffer[200]; |
2607 |
FILE *IGRF; |
2608 |
IGRF = fopen((glp->PATH+glp->NAME).Data(), "r"); |
2609 |
// IGRF = fopen(PATH+"IGRF.tab", "r"); |
2610 |
G0->size = 25; |
2611 |
G1->size = 25; |
2612 |
H1->size = 25; |
2613 |
for( i = 0; i < 4; i++) |
2614 |
{ |
2615 |
fgets(buffer, 200, IGRF); |
2616 |
} |
2617 |
fscanf(IGRF, "g 1 0 %lf ", &G0->element[0]); |
2618 |
for(i = 1; i <= 22; i++) |
2619 |
{ |
2620 |
fscanf(IGRF ,"%lf ", &G0->element[i]); |
2621 |
} |
2622 |
fscanf(IGRF ,"%lf\n", &temp); |
2623 |
G0->element[23] = temp * 5 + G0->element[22]; |
2624 |
G0->element[24] = G0->element[23] + 5 * temp; |
2625 |
fscanf(IGRF, "g 1 1 %lf ", &G1->element[0]); |
2626 |
for(i = 1; i <= 22; i++) |
2627 |
{ |
2628 |
fscanf( IGRF, "%lf ", &G1->element[i]); |
2629 |
} |
2630 |
fscanf(IGRF, "%lf\n", &temp); |
2631 |
G1->element[23] = temp * 5 + G1->element[22]; |
2632 |
G1->element[24] = temp * 5 + G1->element[23]; |
2633 |
fscanf(IGRF, "h 1 1 %lf ", &H1->element[0]); |
2634 |
for(i = 1; i <= 22; i++) |
2635 |
{ |
2636 |
fscanf( IGRF, "%lf ", &H1->element[i]); |
2637 |
} |
2638 |
fscanf(IGRF, "%lf\n", &temp); |
2639 |
H1->element[23] = temp * 5 + H1->element[22]; |
2640 |
H1->element[24] = temp * 5 + H1->element[23]; |
2641 |
if ( glp ) delete glp; |
2642 |
/* |
2643 |
printf("############################## SCAN IGRF ######################################\n"); |
2644 |
printf(" G0 G1 H1\n"); |
2645 |
printf(" size %10i %10i %10i \n",G0->size,G1->size,H1->size); |
2646 |
for ( i = 0; i < 30; i++){ |
2647 |
printf("%5i %10.2f %10.2f %10.2f \n",i,G0->element[i],G1->element[i],H1->element[i]); |
2648 |
} |
2649 |
printf("###############################################################################\n"); |
2650 |
*/ |
2651 |
} /*GM_ScanIGRF*/ |
2652 |
|
2653 |
|
2654 |
|
2655 |
|
2656 |
void GM_SetIGRF(Int_t isSecular, TString ifile1, TString ifile2, GMtype_Data *G0, GMtype_Data *G1, GMtype_Data *H1) |
2657 |
{ |
2658 |
/*This function scans inputs G0, G1, and H1 of the IGRF table into 3 data arrays*/ |
2659 |
int i; |
2660 |
double temp,temp2; |
2661 |
int it1,it2; |
2662 |
char buffer[200]; |
2663 |
FILE *IGRF; |
2664 |
G0->size = 2; |
2665 |
G1->size = 2; |
2666 |
H1->size = 2; |
2667 |
|
2668 |
for( i = 0; i < 30; i++){ |
2669 |
G0->element[i] = 0.; |
2670 |
G1->element[i] = 0.; |
2671 |
H1->element[i] = 0.; |
2672 |
} |
2673 |
|
2674 |
IGRF = fopen(ifile1.Data(), "r"); |
2675 |
for( i = 0; i < 2; i++){ |
2676 |
fgets(buffer, 200, IGRF); |
2677 |
} |
2678 |
fscanf(IGRF, "%3i%3i%12lf%11lf",&it1,&it2, &G0->element[0],&temp); |
2679 |
fscanf(IGRF, "%3i%3i%12lf%11lf",&it1,&it2, &G1->element[0],&H1->element[0]); |
2680 |
fclose(IGRF); |
2681 |
|
2682 |
IGRF = fopen(ifile2.Data(), "r"); |
2683 |
for( i = 0; i < 2; i++){ |
2684 |
fgets(buffer, 200, IGRF); |
2685 |
} |
2686 |
if ( isSecular ){ |
2687 |
fscanf(IGRF, "%3i%3i%12lf%11lf",&it1,&it2,&temp,&temp2); |
2688 |
G0->element[1] = temp * 5. + G0->element[0]; |
2689 |
fscanf(IGRF, "%3i%3i%12lf%11lf",&it1,&it2,&temp,&temp2); |
2690 |
G1->element[1] = temp * 5. + G1->element[0]; |
2691 |
H1->element[1] = temp2 * 5. + H1->element[0]; |
2692 |
} else { |
2693 |
fscanf(IGRF, "%3i%3i%12lf%11lf",&it1,&it2, &G0->element[1],&temp); |
2694 |
fscanf(IGRF, "%3i%3i%12lf%11lf",&it1,&it2, &G1->element[1],&H1->element[1]); |
2695 |
} |
2696 |
fclose(IGRF); |
2697 |
/* |
2698 |
printf("############################## SCAN IGRF ######################################\n"); |
2699 |
printf(" G0 G1 H1\n"); |
2700 |
printf(" size %10i %10i %10i \n",G0->size,G1->size,H1->size); |
2701 |
for ( i = 0; i < 30; i++){ |
2702 |
printf("%5i %10.2f %10.2f %10.2f \n",i,G0->element[i],G1->element[i],H1->element[i]); |
2703 |
} |
2704 |
printf("###############################################################################\n"); |
2705 |
*/ |
2706 |
} /*GM_ScanIGRF*/ |
2707 |
|
2708 |
void GM_SetEllipsoid(GMtype_Ellipsoid *Ellip) |
2709 |
{ |
2710 |
/*This function sets the WGS84 reference ellipsoid to its default values*/ |
2711 |
Ellip->a = 6378.137; /*semi-major axis of the ellipsoid in */ |
2712 |
Ellip->b = 6356.7523142;/*semi-minor axis of the ellipsoid in */ |
2713 |
Ellip->fla = 1/298.257223563;/* flattening */ |
2714 |
Ellip->eps = sqrt(1- ( Ellip->b * Ellip->b) / (Ellip->a * Ellip->a )); /*first eccentricity */ |
2715 |
Ellip->epssq = (Ellip->eps * Ellip->eps); /*first eccentricity squared */ |
2716 |
Ellip->re = 6371.2;/* Earth's radius */ |
2717 |
} /*GM_SetEllipsoid*/ |
2718 |
|
2719 |
|
2720 |
void GM_EarthCartToDipoleCartCD(GMtype_Pole Pole, GMtype_CoordCartesian EarthCoord, GMtype_CoordCartesian *DipoleCoords) |
2721 |
{ |
2722 |
/*This function converts from Earth centered cartesian coordinates to dipole centered cartesian coordinates*/ |
2723 |
double X, Y, Z, CosPhi, SinPhi, CosLambda, SinLambda; |
2724 |
CosPhi = cos(TMath::DegToRad()*Pole.phi); |
2725 |
SinPhi = sin(TMath::DegToRad()*Pole.phi); |
2726 |
CosLambda = cos(TMath::DegToRad()*Pole.lambda); |
2727 |
SinLambda = sin(TMath::DegToRad()*Pole.lambda); |
2728 |
X = EarthCoord.x; |
2729 |
Y = EarthCoord.y; |
2730 |
Z = EarthCoord.z; |
2731 |
|
2732 |
/*These equations are taken from a document by Wallace H. Campbell*/ |
2733 |
DipoleCoords->x = X * CosPhi * CosLambda + Y * CosPhi * SinLambda - Z * SinPhi; |
2734 |
DipoleCoords->y = -X * SinLambda + Y * CosLambda; |
2735 |
DipoleCoords->z = X * SinPhi * CosLambda + Y * SinPhi * SinLambda + Z * CosPhi; |
2736 |
} /*GM_EarthCartToDipoleCartCD*/ |
2737 |
|
2738 |
void GM_GeodeticToSpherical(GMtype_Ellipsoid Ellip, GMtype_CoordGeodetic CoordGeodetic, GMtype_CoordSpherical *CoordSpherical) |
2739 |
{ |
2740 |
double CosLat, SinLat, rc, xp, zp; /*all local variables */ |
2741 |
/* |
2742 |
** Convert geodetic coordinates, (defined by the WGS-84 |
2743 |
** reference ellipsoid), to Earth Centered Earth Fixed Cartesian |
2744 |
** coordinates, and then to spherical coordinates. |
2745 |
*/ |
2746 |
|
2747 |
CosLat = cos(TMath::DegToRad()*CoordGeodetic.phi); |
2748 |
SinLat = sin(TMath::DegToRad()*CoordGeodetic.phi); |
2749 |
|
2750 |
/* compute the local radius of curvature on the WGS-84 reference ellipsoid */ |
2751 |
|
2752 |
rc = Ellip.a / sqrt(1.0 - Ellip.epssq * SinLat * SinLat); |
2753 |
|
2754 |
/* compute ECEF Cartesian coordinates of specified point (for longitude=0) */ |
2755 |
|
2756 |
xp = (rc + CoordGeodetic.HeightAboveEllipsoid) * CosLat; |
2757 |
zp = (rc*(1.0 - Ellip.epssq) + CoordGeodetic.HeightAboveEllipsoid) * SinLat; |
2758 |
|
2759 |
/* compute spherical radius and angle lambda and phi of specified point */ |
2760 |
|
2761 |
CoordSpherical->r = sqrt(xp * xp + zp * zp); |
2762 |
CoordSpherical->phig = TMath::RadToDeg()*asin(zp / CoordSpherical->r); /* geocentric latitude */ |
2763 |
CoordSpherical->lambda = CoordGeodetic.lambda; /* longitude */ |
2764 |
} /*GM_GeodeticToSpherical*/ |
2765 |
|
2766 |
void GM_PoleLocation(GMtype_Model Model, GMtype_Pole *Pole) |
2767 |
{ |
2768 |
/*This function finds the location of the north magnetic pole in spherical coordinates. The equations are |
2769 |
**from Wallace H. Campbell's Introduction to Geomagnetic Fields*/ |
2770 |
|
2771 |
Pole->phi = TMath::RadToDeg()*-atan(sqrt(Model.h1 * Model.h1 + Model.g1 * Model.g1)/Model.g0); |
2772 |
Pole->lambda = TMath::RadToDeg()*atan(Model.h1/Model.g1); |
2773 |
} /*GM_PoleLocation*/ |
2774 |
|
2775 |
void GM_SphericalToCartesian(GMtype_CoordSpherical CoordSpherical, GMtype_CoordCartesian *CoordCartesian) |
2776 |
{ |
2777 |
/*This function converts spherical coordinates into Cartesian coordinates*/ |
2778 |
double CosPhi = cos(TMath::DegToRad()*CoordSpherical.phig); |
2779 |
double SinPhi = sin(TMath::DegToRad()*CoordSpherical.phig); |
2780 |
double CosLambda = cos(TMath::DegToRad()*CoordSpherical.lambda); |
2781 |
double SinLambda = sin(TMath::DegToRad()*CoordSpherical.lambda); |
2782 |
|
2783 |
CoordCartesian->x = CoordSpherical.r * CosPhi * CosLambda; |
2784 |
CoordCartesian->y = CoordSpherical.r * CosPhi * SinLambda; |
2785 |
CoordCartesian->z = CoordSpherical.r * SinPhi; |
2786 |
} /*GM_SphericalToCartesian*/ |
2787 |
|
2788 |
void GM_TimeAdjustCoefs(Float_t year, Float_t jyear, GMtype_Data g0d, GMtype_Data g1d, GMtype_Data h1d, GMtype_Model *Model) |
2789 |
{ |
2790 |
/*This function calls GM_LinearInterpolation for the coefficients to estimate the value of the |
2791 |
**coefficient for the given date*/ |
2792 |
int index; |
2793 |
double x; |
2794 |
index = (year - GM_STARTYEAR) / 5; |
2795 |
x = (jyear - GM_STARTYEAR) / 5.; |
2796 |
Model->g0 = GM_LinearInterpolation(index, index+1, g0d.element[index], g0d.element[index+1], x); |
2797 |
Model->g1 = GM_LinearInterpolation(index, index+1, g1d.element[index], g1d.element[index+1], x); |
2798 |
Model->h1 = GM_LinearInterpolation(index, index+1, h1d.element[index], h1d.element[index+1], x); |
2799 |
} /*GM_TimeAdjustCoefs*/ |
2800 |
|
2801 |
double GM_LinearInterpolation(double x1, double x2, double y1, double y2, double x) |
2802 |
{ |
2803 |
/*This function takes a linear interpolation between two given points for x*/ |
2804 |
double weight, y; |
2805 |
weight = (x - x1) / (x2 - x1); |
2806 |
y = y1 * (1. - weight) + y2 * weight; |
2807 |
// printf(" x1 %f x2 %f y1 %f y2 %f x %f ==> y %f \n",x1,x2,y1,y2,x,y); |
2808 |
return y; |
2809 |
}/*GM_LinearInterpolation*/ |
2810 |
|
2811 |
void GM_CartesianToSpherical(GMtype_CoordCartesian CoordCartesian, GMtype_CoordSpherical *CoordSpherical) |
2812 |
{ |
2813 |
/*This function converts a point from Cartesian coordinates into spherical coordinates*/ |
2814 |
double X, Y, Z; |
2815 |
|
2816 |
X = CoordCartesian.x; |
2817 |
Y = CoordCartesian.y; |
2818 |
Z = CoordCartesian.z; |
2819 |
|
2820 |
CoordSpherical->r = sqrt(X * X + Y * Y + Z * Z); |
2821 |
CoordSpherical->phig = TMath::RadToDeg()*asin(Z / (CoordSpherical->r)); |
2822 |
CoordSpherical->lambda = TMath::RadToDeg()*atan2(Y, X); |
2823 |
} /*GM_CartesianToSpherical*/ |