/*************************************************************************** * Copyright (C) 2006 by pamelaprod * * pamelaprod@P1.pamela * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #include #include #include using namespace std; // InclinationInfoI()::InclinationInfoI() { // // memset(time,0,6*sizeof(double)); // // memset(quad,0,6*4*sizeof(double)); // }; void InclinationInfoI::fill(TArrayC* data){ short extIndex = 0; short innIndex = 0; long tempData = 0; for (int i = 0; i < 6; i++){ extIndex = 20*i; time[i] = (((data->At(extIndex) << 24) & 0xFF000000) + ((data->At(extIndex + 1) << 16) & 0x00FF0000) + ((data->At(extIndex + 2) << 8) & 0x0000FF00) + (data->At(extIndex + 3) & 0x000000FF))/128.0; for (int j = 0; j < 4; j++){ innIndex = extIndex + 4*j; tempData = ((data->At(innIndex + 4) << 24) & 0xFF000000) + ((data->At(innIndex + 5) << 16) & 0x00FF0000) + ((data->At(innIndex + 6) << 8) & 0x0000FF00) + (data->At(innIndex + 7) & 0x000000FF); if (data->At(innIndex + 4) >> 8) { quat[i][j] = (~tempData * -1.0)/1073741824.0; } else { quat[i][j] = tempData / 1073741824.0; } } } } // const char* InclinationInfoItem::toXML(char* tab = ""){ // stringstream oss; // oss.str(""); // for (int i = 0; i < 6; i++){ // oss << tab << "\n"; // oss << tab << "\t " << time[i] << "\n"; // oss << tab << "\t " << quat[i][0] << "\n"; // oss << tab << "\t " << quat[i][1] << "\n"; // oss << tab << "\t " << quat[i][2] << "\n"; // oss << tab << "\t " << quat[i][3] << "\n"; // oss << tab << "\n"; // } // return oss.str().c_str(); // } Quaternions::Quaternions() : InclinationInfoI() { } Quaternions::~Quaternions() { } InclinationInfo::InclinationInfo() : TObject() { } InclinationInfo::~InclinationInfo() { } short int Sign_1(double_t a, Int_t b){ if(a>0){b=1;} if(a<0){b=-1;} else{b=0;} return b; } void InclinationInfo::QuaternionstoAngle(Quaternions Qua){ double_t a11 = pow(Qua.quat[0][0],2.)+pow(Qua.quat[0][1],2.)-pow(Qua.quat[0][2],2.)-pow(Qua.quat[0][3],2.); double_t a12 = 2*(Qua.quat[0][1]*Qua.quat[0][2]+Qua.quat[0][0]*Qua.quat[0][3]); double_t a13 = 2*(Qua.quat[0][1]*Qua.quat[0][3]-Qua.quat[0][0]*Qua.quat[0][2]); double_t a21 = 2*(Qua.quat[0][1]*Qua.quat[0][2]-Qua.quat[0][0]*Qua.quat[0][3]); double_t a22 = pow(Qua.quat[0][0],2.)+pow(Qua.quat[0][2],2.)-pow(Qua.quat[0][1],2.)-pow(Qua.quat[0][3],2.); double_t a23 = 2*(Qua.quat[0][2]*Qua.quat[0][3]+Qua.quat[0][0]*Qua.quat[0][1]); double_t a31 = 2*(Qua.quat[0][1]*Qua.quat[0][3]+Qua.quat[0][0]*Qua.quat[0][2]); double_t a32 = 2*(Qua.quat[0][2]*Qua.quat[0][3]-Qua.quat[0][0]*Qua.quat[0][1]); double_t a33 = pow(Qua.quat[0][0],2.)+pow(Qua.quat[0][3],2.)-pow(Qua.quat[0][1],2.)-pow(Qua.quat[0][2],2.); double_t a = 360/(2*TMath::Pi()); double_t eksi = 0.0000001; double_t eteta = 0.0000001; double_t ksteta = a22*a22/(a12*a12+a22*a22); double_t ksksi = a33*a33/(a33*a33+a31*a31); Int_t kj1; if (a33<0){kj1=1; } else {kj1=0;}; Int_t kj2; if (ksksi>eksi){kj2=1; } else {kj2=0;}; Int_t kj3; if (ksksi<=eksi){kj3=1; } else {kj3=0;}; Int_t kj4; if (a22<0){kj4=1; } else {kj4=0;}; Int_t kj5; if (ksteta>eteta){kj5=1; } else {kj5=0;}; Int_t kj6; if (ksteta<=eteta){kj6=1; } else {kj6=0;}; if (abs((int)a32)>1){exit(1);}; Int_t fr; Double_t gamar = -atan(a32/sqrt(1-pow(a32,2.))); Double_t ksir = (-atan(a31/a33)-TMath::Pi()*kj1*Sign_1(a31, fr))*kj2-0.5*TMath::Pi()*kj3*Sign_1(a31, fr); Double_t tetar = -(-atan(a12/a22)-TMath::Pi()*kj4*Sign_1(a12, fr))*kj5+0.5*TMath::Pi()*kj6*Sign_1(a12, fr); // if (gamar<0){A11=gamar*a+360;}else{A11=gamar*a;}; // if (ksir<0){A11=ksir*a+360;}else{A11=ksir*a;}; // if (tetar<0){A13=tetar*a+360;}else{A13=tetar*a;}; // gamar = acos(pow(Qua.quat[0][0],2.)+pow(Qua.quat[0][3],2.)-pow(Qua.quat[0][1],2.)-pow(Qua.quat[0][2],2.)); // tetar = atan((Qua.quat[0][2]*Qua.quat[0][3]+Qua.quat[0][0]*Qua.quat[0][2])/(Qua.quat[0][2]*Qua.quat[0][3]+Qua.quat[0][1]*Qua.quat[0][0])); // ksir = atan((Qua.quat[0][1]*Qua.quat[0][3]-Qua.quat[0][0]*Qua.quat[0][2])/(Qua.quat[0][2]*Qua.quat[0][3]-Qua.quat[0][1]*Qua.quat[0][0])); A13=tetar*a; A12=ksir*a; A11=gamar*a; return ; } /******************************************************************************************************************/ /******************************************************************************************************************/ //********************* ***************************************************************/ //********************* COORDINATE SYSTEMS ***************************************************************/ //********************* ***************************************************************/ //*****************************************************************************************************************/ //*****************************************************************************************************************/ // // ZISK // + // / \ YOSK ZOSK (Directed by Radius) // | _ _. // | |\ /| // | \ / // | \ / // |.__..__ \ / // Orbit _._.***| **.\/_ XOSK (Directed by velocity) // .* | (X0,Y0,Z0) **--.___\ // _** | / *. / // .* | * * // * ..****|***.. / R * // .* | .*. // .* | / *. // * EARTH | / * YISK // * | /_ _ _*_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\ // * / * / // * / .* // *. / .* // **/******* // / // / // / // / // / // / // |/ // *-- // XISK // //****************************************************************************************************/ //****************************************************************************************************/ //void OrbitalInfo::coefplane(Double_t x1,Double_t y1,Double_t z1,Double_t x2, Double_t y2, Double_t z2){ // k1 = ((z1/y1)*((x2*y1 - x1*y2)/(z2*y1 - z1*y2)) - x1/y1); // k2 = (x1*y2 - x2*y1)/(z2*y1 - z1*y2); // } //Double_t OrbitalInfo::AngBetAxes(Double_t x1,Double_t y1,Double_t z1,Double_t x2, Double_t y2, Double_t z2){ // return acos((x1*x2+y1*y2+z1*z2)/sqrt(pow(x1,2)+pow(y1,2)+pow(z1,2))/sqrt(pow(x2,2)+pow(y2,2)+pow(z2,2))); // } //Double_t OrbitalInfo::ValueT(Double_t x1, Double_t y1, Double_t z1, Double_t n1, Double_t n2){ // return -(x1+n1*y1+n2*z1)/(1+pow(n1,2)+pow(n2,2)); // } //Double_t OrbitalInfo::AngBetPlan(Double_t x1, Double_t y1, Double_t z1, Double_t n1, Double_t n2){ // return asin((x1+n1*y1+n2*z1)/(sqrt(pow(x1,2)+pow(y1,2)+pow(z1,2))*sqrt(1+pow(n1,2)+pow(n2,2)))); // } void InclinationInfo::TransAngle(Double_t x0, Double_t y0, Double_t z0, Double_t Vx0, Double_t Vy0, Double_t Vz0, Double_t gamar, Double_t ksir, Double_t tetar, Double_t q0, Double_t q1, Double_t q2, Double_t q3){ double_t a = 360/(2*TMath::Pi()); // Points on three axes of Resurs' coordinate system (RCS) Int_t XRCS[3]; Int_t YRCS[3]; Int_t ZRCS[3]; // Angles between our Axes(RCS) and planes of Orbital Coordinate System (OCS); // Double_t AboAa0ZX[3]; // Double_t AboAa0XY[3]; // Double_t AboAa0YZ[3]; // Angles between our Axes(RCS) and Axes of OCS // Double_t AboA0X[3]; // Double_t AboA0Y[3]; // Double_t AboA0Z[3]; //Angles between Proection of our axes on every plane of OCS and axes of it plane. // Double_t AbPoAaAoP0ZX[3]; // Double_t AbPoAaAoP0XY[3]; // Double_t AbPoAaAoP0YZ[3]; XRCS[0] = 1; YRCS[0] = 0; ZRCS[0] = 0; // Points on X-axis RCS. XRCS[1] = 0; YRCS[1] = 1; ZRCS[1] = 0; // Points on Y-axis RCS. XRCS[2] = 0; YRCS[2] = 0; ZRCS[2] = 1; // Points on Z-axis // Transition matrix RCS -> Inertial Coordinate System (ICS) TMatrixD Bij(3,3); Bij(0,0) = cos(tetar)*cos(ksir)-sin(tetar)*sin(gamar)*sin(ksir); Bij(0,1) = -sin(tetar)*cos(gamar); Bij(0,2) = cos(tetar)*sin(ksir)+sin(tetar)*sin(gamar)*cos(ksir); Bij(1,0) = sin(tetar)*cos(ksir)+cos(tetar)*sin(gamar)*sin(ksir); Bij(1,1) = cos(tetar)*cos(gamar); Bij(1,2) = sin(tetar)*sin(ksir)-cos(tetar)*sin(gamar)*cos(ksir); Bij(2,0) = -sin(ksir)*cos(gamar); Bij(2,1) = sin(gamar); Bij(2,2) = cos(ksir)*cos(gamar); //********************************************************************************************/ //*********************** OTHER METHOD OF GETING COORDINATE IN OCS****************************/ //********************************************************************************************/ TMatrixD Pij(3,3); Pij(0,0) = pow(q0,2)+pow(q1,2)-pow(q2,2)-pow(q3,2); Pij(0,1) = 2*(q1*q2+q0*q3); Pij(0,2) = 2*(q1*q3-q0*q2); Pij(1,0) = 2*(q1*q2-q0*q3); Pij(1,1) = pow(q0,2)-pow(q1,2)+pow(q2,2)-pow(q3,2); Pij(1,2) = 2*(q2*q3+q0*q1); Pij(2,0) = 2*(q1*q3+q0*q2); Pij(2,1) = 2*(q2*q3-q0*q1); Pij(2,2) = pow(q0,2)-pow(q1,2)-pow(q2,2)+pow(q3,2); TMatrixD Aij(3,3); // Double_t AbPoAaAoP0ZX_2m[3]; Double_t AboAa0ZX_2m[3]; // Double_t AbPoAaAoP0XY_2m[3]; Double_t AboAa0XY_2m[3]; // Double_t AbPoAaAoP0YZ_2m[3]; Double_t AboAa0YZ_2m[3]; Double_t C1 = y0*Vz0 - z0*Vy0; Double_t C2 = z0*Vx0 - x0*Vz0; Double_t C3 = x0*Vy0 - y0*Vx0; Double_t C = sqrt(pow(C1,2) + pow(C2,2) + pow(C3,2)); Double_t V0 = sqrt(pow(Vx0,2)+pow(Vy0,2) + pow(Vz0,2)); //cout<<"C1= "<<(Vy0*C3-Vz0*C2)/(V0*C)<<", C2= "<<(Vz0*C1-Vx0*C3)/(V0*C)<<", C3="<<(Vx0*C2-Vy0*C1)/(V0*C)<<"\n"; Double_t R0 = sqrt(pow(x0,2)+pow(y0,2) + pow(z0,2)); Aij(0,0) = /*(C2*z0-C3*y0)/(C*R0);/*/Vx0/V0; Aij(0,1) = C1/C; Aij(0,2) = /*x0/R0;/*/(Vy0*C3-Vz0*C2)/(V0*C); Aij(1,0) = /*(C3*x0-C1*z0)/(C*R0);/*/Vy0/V0; Aij(1,1) = C2/C; Aij(1,2) = /*y0/R0;/*/(Vz0*C1-Vx0*C3)/(V0*C); Aij(2,0) = /*(C1*y0-C2*x0)/(C*R0);/*/Vz0/V0; Aij(2,1) = C3/C; Aij(2,2) = /*x0/R0;/*/(Vx0*C2-Vy0*C1)/(V0*C); Aij.Invert(); // Double_t Xnew = Aij(0,0)*(X-x0)+Aij(0,1)*(Y-y0)+Aij(0,2)*(Z-z0); // Double_t Ynew = Aij(1,0)*(X-x0)+Aij(1,1)*(Y-y0)+Aij(1,2)*(Z-z0); // Double_t Znew = Aij(2,0)*(X-x0)+Aij(2,1)*(Y-y0)+Aij(2,2)*(Z-z0); /*********************************************************************************************/ Double_t Azim = atan(R0*C3/(y0*C1-x0*C2)); Double_t Sa = sin(Azim); Double_t Ca = cos(Azim); Double_t R1 = sqrt(pow(x0,2)+pow(y0,2)); Double_t Sb = z0/R0; Double_t Cb = R1/R0; Double_t Sl = y0/R1; Double_t Cl = x0/R1; TMatrixD Tij(3,3); Tij(0,0) = -Cl*Sb*Ca-Sa*Sl; Tij(0,1) = Sa*Cl-Ca*Sl*Sb; Tij(0,2) = Ca*Cb; Tij(1,0) = Ca*Sl-Sa*Sb*Cl; Tij(1,1) = -Sa*Sl*Sb-Ca*Cl; Tij(1,2) = Sa*Cb; Tij(2,0) = Cb*Cl; Tij(2,1) = Cb*Sl; Tij(2,2) = Sb; //cout<<"Tij\n"; //cout< x+k1*y+k2*z=0; // Double_t k1y; // Double_t k2y; //cout<>uchu; // Next we must find equation of Y-axis of OCS. For it we must find equation of line passing through // point (0,0,0) perpendicularly by 0ZX plane of OCS // generaly equation is: // x = x0 + At; // y = y0 + Bt; // z = z0 + Ct; // But we have point (x0,y0,z0) is (0,0,0) and other plane equation. For us it's: // x = t; // y = (B/A)*t => y = (B/A)*x; or x/x1=y/y1=z/z1 where // z = (C/A)*t z = (C/A)*x; y1=B/A,z1=C/A and x1 we must find // if ((YonX<0 && ZonZ>0)||(YonX>0 && ZonZ<0)) XonY = 1; // if ((YonX>0 && ZonZ>0)||(YonX>0 && ZonZ<0)) XonY = 1; // Double_t XonY = 1; Double_t YonY = -k1; Double_t ZonY = k2; // coefficients for equations of 0XY plane of OCS. // coefplane(XonX,YonX,ZonX,XonY,YonY,ZonY); // Double_t k1XY = k1; Double_t k2XY = k2; //cout<<"P3= "<<(XonY+k1XY*YonY+k2XY*ZonY)<<"\n"; //cout<<"P3= "<<(XonX+k1XY*YonX+k2XY*ZonX)<<"\n"; //cout<<"k1XY= "<>yuip; for (Int_t i = 0; i<3; i++) { // Values of points on axes of RCS in ICS Double_t XICS = Pij(0,0)*XRCS[i] + Pij(0,1)*YRCS[i] + Pij(0,2)*ZRCS[i];// + x0; Double_t YICS = Pij(1,0)*XRCS[i] + Pij(1,1)*YRCS[i] + Pij(1,2)*ZRCS[i];// + y0; Double_t ZICS = Pij(2,0)*XRCS[i] + Pij(2,1)*YRCS[i] + Pij(2,2)*ZRCS[i];// + z0; //cout<<"XICS= "<>oiu; // Angles between our Axis and Z,Y,X-axes of OCS // AboA0Z[i] = AngBetAxes(XICS,YICS,ZICS,XonZ,YonZ,ZonZ); // AboA0Y[i] = AngBetAxes(XICS,YICS,ZICS,XonY,YonY,ZonY); // AboA0X[i] = AngBetAxes(XICS,YICS,ZICS,XonX,YonX,ZonX); //Find coordinate of our point in OCS // Double_t XOCS; // Double_t YOCS; // Double_t ZOCS; // Double_t T = ValueT(XICS,YICS,ZICS,k1y,k2y); // Double_t XonXZ = XICS + T; // Double_t YonXZ = YICS + k1y*T; // Double_t ZonXZ = ZICS + k2y*T; // Double_t R = T*sqrt(1+pow(k1y,2)+pow(k2y,2)); // YOCS = R; //cout<<"CHECK= "<>alsdj; //Find Angles between RCS-axes and OCS-planes; // AboAa0ZX[i] = AngBetPlan(XICS,YICS,ZICS,k1y,k2y); // AboAa0XY[i] = AngBetPlan(XICS,YICS,ZICS,k1XY,k2XY); // AboAa0YZ[i] = AngBetPlan(XICS,YICS,ZICS,k1YZ,k2YZ); //AbPoAaAoP0ZX[i] = atan(ZOCS/XOCS); AbPoAaAoP0ZX_2m[i] = atan(ZOCS_2m/XOCS_2m); //AbPoAaAoP0XY[i] = atan(XOCS/YOCS); AbPoAaAoP0XY_2m[i] = atan(YOCS_2m/XOCS_2m); //AbPoAaAoP0YZ[i] = atan(ZOCS/YOCS); AbPoAaAoP0YZ_2m[i] = atan(ZOCS_2m/YOCS_2m); // if (XOCS_2m>0) AbPoAaAoP0ZX_2m[i] = atan(ZOCS_2m/XOCS_2m); // if ((XOCS_2m<0)&&(ZOCS_2m>=0)) AbPoAaAoP0ZX_2m[i] = 180/a + atan(ZOCS_2m/XOCS_2m); // if ((XOCS_2m<0)&&(ZOCS_2m<0)) AbPoAaAoP0ZX_2m[i] = atan(ZOCS_2m/XOCS_2m) - 180/a; // if ((XOCS_2m=0)&&(ZOCS_2m>0)) AbPoAaAoP0ZX_2m[i] = 90/a; // if ((XOCS_2m=0)&&(ZOCS_2m<0)) AbPoAaAoP0ZX_2m[i] = -90/a; // if ((XOCS_2m=0)&&(ZOCS_2m=0)) AbPoAaAoP0ZX_2m[i] = 0; // if (XOCS_2m>0) AbPoAaAoP0XY_2m[i] = atan(YOCS_2m/XOCS_2m); // if ((XOCS_2m<0)&&(YOCS_2m>=0)) AbPoAaAoP0XY_2m[i] = 180/a + atan(YOCS_2m/XOCS_2m); // if ((XOCS_2m<0)&&(YOCS_2m<0)) AbPoAaAoP0XY_2m[i] = atan(YOCS_2m/XOCS_2m) - 180/a; // if ((XOCS_2m=0)&&(YOCS_2m>0)) AbPoAaAoP0XY_2m[i] = 90/a; // if ((XOCS_2m=0)&&(YOCS_2m<0)) AbPoAaAoP0XY_2m[i] = -90/a; // if ((XOCS_2m=0)&&(YOCS_2m=0)) AbPoAaAoP0XY_2m[i] = 0; // if (YOCS_2m>0) AbPoAaAoP0YZ_2m[i] = atan(ZOCS_2m/YOCS_2m); // if ((YOCS_2m<0)&&(ZOCS_2m>=0)) AbPoAaAoP0YZ_2m[i] = 180/a + atan(ZOCS_2m/YOCS_2m); // if ((YOCS_2m<0)&&(ZOCS_2m<0)) AbPoAaAoP0YZ_2m[i] = atan(ZOCS_2m/YOCS_2m) - 180/a; // if ((YOCS_2m=0)&&(ZOCS_2m>0)) AbPoAaAoP0YZ_2m[i] = 90/a; // if ((YOCS_2m=0)&&(ZOCS_2m<0)) AbPoAaAoP0YZ_2m[i] = -90/a; // if ((YOCS_2m=0)&&(ZOCS_2m=0)) AbPoAaAoP0YZ_2m[i] = 0; //if (i==0) cout<<"AbPoAaAoP0ZX_2m[i]"<0) Ryskanie = a*atan(u21/u22); //cout<=0)) Ryskanie = 180 + a*atan(u21/u22); if ((u22<0)&&(u21<0)) Ryskanie = a*atan(u21/u22) - 180; if ((u22=0)&&(u21>0)) Ryskanie = 90; if ((u22=0)&&(u21<0)) Ryskanie = -90; if ((u22=0)&&(u21=0)) Ryskanie = 0; // AXrXo = AboA0X[0]*a; AXrZXo = AboAa0ZX[0]*a; ApXrZXoZ = AbPoAaAoP0ZX[0]*a; // AXrYo = AboA0Y[0]*a; AXrXYo = AboAa0XY[0]*a; ApXrXYoZ = AbPoAaAoP0XY[0]*a; // AXrZo = AboA0Z[0]*a; AXrYZo = AboAa0YZ[0]*a; ApXrYZoZ = AbPoAaAoP0YZ[0]*a; // AYrXo = AboA0X[1]*a; AYrZXo = AboAa0ZX[1]*a; ApYrZXoZ = AbPoAaAoP0ZX[1]*a; // AYrYo = AboA0Y[1]*a; AYrXYo = AboAa0XY[1]*a; ApYrXYoZ = AbPoAaAoP0XY[1]*a; // AYrZo = AboA0Z[1]*a; AYrYZo = AboAa0YZ[1]*a; ApYrYZoZ = AbPoAaAoP0YZ[1]*a; // AZrXo = AboA0X[2]*a; AZrZXo = AboAa0ZX[2]*a; ApZrZXoZ = AbPoAaAoP0ZX[2]*a; // AZrYo = AboA0Y[2]*a; AZrXYo = AboAa0XY[2]*a; ApZrXYoZ = AbPoAaAoP0XY[2]*a; // AZrZo = AboA0Z[2]*a; AZrYZo = AboAa0YZ[2]*a; ApZrYZoZ = AbPoAaAoP0YZ[2]*a; // AXrZXo_2m = AboAa0ZX_2m[0]*a; ApXrZXoZ_2m = AbPoAaAoP0ZX_2m[0]*a; // AXrXYo_2m = AboAa0XY_2m[0]*a; ApXrXYoZ_2m = AbPoAaAoP0XY_2m[0]*a; // AXrYZo_2m = AboAa0YZ_2m[0]*a; ApXrYZoZ_2m = AbPoAaAoP0YZ_2m[0]*a; // AYrZXo_2m = AboAa0ZX_2m[1]*a; ApYrZXoZ_2m = AbPoAaAoP0ZX_2m[1]*a; // AYrXYo_2m = AboAa0XY_2m[1]*a; ApYrXYoZ_2m = AbPoAaAoP0XY_2m[1]*a; // AYrYZo_2m = AboAa0YZ_2m[1]*a; ApYrYZoZ_2m = AbPoAaAoP0YZ_2m[1]*a; // AZrZXo_2m = AboAa0ZX_2m[2]*a; ApZrZXoZ_2m = AbPoAaAoP0ZX_2m[2]*a; // AZrXYo_2m = AboAa0XY_2m[2]*a; ApZrXYoZ_2m = AbPoAaAoP0XY_2m[2]*a; // AZrYZo_2m = AboAa0YZ_2m[2]*a; ApZrYZoZ_2m = AbPoAaAoP0YZ_2m[2]*a; /* //Int_t Y=2;Int_t X=2;Int_t Z=4;Int_t Vx=5;Int_t Vz=9;Int_t Vy=5; Double_t X[2]; Double_t Y[2]; Double_t Z[2]; Double_t Vx[2]; Double_t Vy[2]; Double_t Vz[2]; TMatrixD Aij(3,3); TMatrixD Bij(3,3); Bij(0,0) = cos(tetar)*cos(ksir)-sin(tetar)*sin(gamar)*sin(ksir); Bij(0,1) = -sin(tetar)*cos(gamar); Bij(0,2) = cos(tetar)*sin(ksir)+sin(tetar)*sin(gamar)*cos(ksir); Bij(1,0) = sin(tetar)*cos(ksir)+cos(tetar)*sin(gamar)*sin(ksir); Bij(1,1) = cos(tetar)*cos(gamar); Bij(1,2) = sin(tetar)*sin(ksir)-cos(tetar)*sin(gamar)*cos(ksir); Bij(2,0) = -sin(ksir)*cos(gamar); Bij(2,1) = sin(gamar); Bij(2,2) = cos(ksir)*cos(gamar); Double_t C1 = Y[0]*Vz[0] - Z[0]*Vy[0]; Double_t C2 = Z[0]*Vx[0] - X[0]*Vz[0]; Double_t C3 = X[0]*Vy[0] - Y[0]*Vx[0]; Double_t C = sqrt(pow(C1,2) + pow(C2,2) + pow(C3,2)); Double_t V0 = sqrt(pow(Vx0,2)+pow(Vy0,2) + pow(Vz0,2)); Aij(0,0) = Vx0/V0; Aij(0,1) = C1/C; Aij(0,2) = (Vy0*C3-Vz0*C2)/(V0*C); Aij(1,0) = Vy0/V0; Aij(1,1) = C2/C; Aij(1,2) = (Vz0*C1-Vx0*C3)/(V0*C); Aij(2,0) = Vz0/V0; Aij(2,1) = C3/C; Aij(2,2) = (Vx0*C2-Vy0*C1)/(V0*C); Aij.Invert(); Double_t Xnew = Aij(0,0)*(X-x0)+Aij(0,1)*(Y-y0)+Aij(0,2)*(Z-z0); Double_t Ynew = Aij(1,0)*(X-x0)+Aij(1,1)*(Y-y0)+Aij(1,2)*(Z-z0); Double_t Znew = Aij(2,0)*(X-x0)+Aij(2,1)*(Y-y0)+Aij(2,2)*(Z-z0); */ //A21 = NewTetar; //A22 = NewGamar; //A23 = NewKsir; return ; } //ClassImp(McmdItem) ClassImp(InclinationInfoI) ClassImp(Quaternions) ClassImp(InclinationInfo)