#ifndef OrbitalInfo_h #define OrbitalInfo_h #include #include // EMILIANO #include #include #include class OrbitalInfoTrkVar : public TObject { private: public: // Int_t trkseqno; // tof sequ. number: -1=ToF standalone, 0=first Tracker track, ... // Float_t pitch; ///< Pitch angle // TMatrixD Eij; ///< vector of incoming particle respect to cartesian geographic coordinates TMatrixD Sij; ///< vector of incoming particle respect to flight coordinates // Float_t cutoff; ///< Calculated cutoff for the incoming particle taking into account particle direction // OrbitalInfoTrkVar(); OrbitalInfoTrkVar(const OrbitalInfoTrkVar&); OrbitalInfoTrkVar* GetOrbitalInfoTrkVar(){return this;}; // void Clear(Option_t *t=""); void Delete(Option_t *t=""); //ELENA // ClassDef(OrbitalInfoTrkVar, 3); // }; /** * Class that stores position, time, inclination, magnetic field and * cutoff informations. */ class OrbitalInfo : public TObject { private: public: TClonesArray *OrbitalInfoTrk; UInt_t absTime; ///< Absolute Time (seconds) UInt_t OBT; ///< On Board Time (ms) UInt_t pkt_num; ///< CPU packet number Float_t lon; ///< degrees from -180 to 180 Float_t lat; ///< degrees from -90 to 90 Float_t alt; ///< meters asl // B components. Float_t Bnorth; ///< gauss Float_t Beast; ///< gauss Float_t Bdown; ///< gauss Float_t Babs; ///< abs value (guass) Float_t M; ///< M Float_t BB0; ///< B abs over the B minimum on this field line Float_t L; ///< McIlwain's L shell (in earth radii) /* // Dipolar magnetic coordinates (not used). */ /* Float_t londip; ///< degrees from -180 to 180 */ /* Float_t latdip; ///< degrees from -90 to 90 */ /* Float_t altdip; ///< meters */ /* // Corrected magnetic coordinates (not used). */ /* Float_t loncgm; ///< degrees from -180 to 180 */ /* Float_t latcgm; ///< degrees from -90 to 90 */ /* Float_t altcgm; ///< meters */ /* // Corrected B min magnetic coordinates (not used). */ /* Float_t loncbm; ///< degrees from -180 to 180 */ /* Float_t latcbm; ///< degrees from -90 to 90 */ /* Float_t altcbm; ///< meters */ // Float_t cutoff[17]; Float_t cutoffsvl; Float_t igrf_icode; // linear Quaternions Float_t q0; ///< Quaternion 0 Float_t q1; ///< Quaternion 1 Float_t q2; ///< Quaternion 2 Float_t q3; ///< Quaternion 3 //tested sine quaternions //Float_t q0t; //Float_t q1t; //Float_t q2t; //Float_t q3t; // Euler angles (Resurs velocity reference frame) Float_t theta; ///< Euler angle theta in the velocity reference frame (pitch) Float_t phi; ///< Euler angle phi in the velocity reference frame (yaw) Float_t etha; ///< Euler angle etha in the velocity reference frame (roll) // Pitch angles // Float_t pamzenitangle; // Float_t pamBangle; // TMatrixD Iij; ///< Angle between PAMELA Z direction and cartesian geographic coordinates /** * The variable mode means a character time distant between two quaternions, inside which stay every events */ Int_t mode; // 0 - means that time different pair of quaternions exuals to 0.25 seconds in R10 mode // (it mean that all quaternions in array is correct) // 1 - means that we have R10 mode and use just first value of quaternions array // 2 - means that we have non R10 mode and use every quaternions from array. // 3 - means normal transition from R10 to non R10 or from non R10 to R10. // 4 - means that we have eliminable hole between R10 and non R10 or between non R10 and R10 // 5 - means that we have uneliminable hole between R10 and non R10 or between non R10 and R10 // 6 - means that we have eliminable hole inside R10 (in such keys eliminable depends from other factors also) // 7 - means that we have uneliminable hole inside R10 // 8 - means that we have eliminable hole inside non R10 // 9 - means that we have uneliminable hole inside non R10 // 10 - means other unknown problems // -10 - means we use recovered quaternions //Int_t R10f; //if 1 we recognize R10 mode using flight data if 0 - no R10 mode if -1 we know nothing about R10 mode //Bool_t R10r; //if true we recognize R10 mode using recovered data Float_t TimeGap; //Time gap between two points where interpolation have done. Int_t ntrk(){return OrbitalInfoTrk->GetEntries();}; /** \return Returns the B minimum along the field line. */ Float_t GetB0() { return Babs/BB0; }; /** \return Returns the Stormer vertical cutoff using L shell: 14.9/L^2 (GV/c). */ Float_t GetCutoffSVL() { return cutoffsvl; }; void SetFromLevel2Struct(cOrbitalInfo *l2); void GetLevel2Struct(cOrbitalInfo *l2) const; OrbitalInfoTrkVar *GetOrbitalInfoTrkVar(Int_t notrack); // OrbitalInfo(); ~OrbitalInfo(){Delete();}; //ELENA // OrbitalInfo* GetOrbitalInfo(){return this;}; // Elena void Delete(Option_t *t=""); //ELENA void Set();//ELENA // // void Clear(Option_t *t=""); // emiliano // ClassDef(OrbitalInfo, 9); }; #endif