4 |
#include <TObject.h> |
#include <TObject.h> |
5 |
#include <OrbitalInfoStruct.h> |
#include <OrbitalInfoStruct.h> |
6 |
|
|
7 |
|
/** |
8 |
|
* Class that stores position, time, inclination, magnetic field and |
9 |
|
* cutoff informations. |
10 |
|
*/ |
11 |
class OrbitalInfo : public TObject { |
class OrbitalInfo : public TObject { |
12 |
public: |
public: |
13 |
OrbitalInfo(); |
OrbitalInfo(); |
14 |
OrbitalInfo* GetOrbitalInfo(){return this;}; // Elena |
OrbitalInfo* GetOrbitalInfo(){return this;}; // Elena |
15 |
|
|
16 |
UInt_t absTime; //< Absolute Time |
UInt_t absTime; ///< Absolute Time (seconds) |
17 |
// EM: added On Board Time and CPU Packet Number |
UInt_t OBT; ///< On Board Time (ms) |
18 |
UInt_t OBT; //< On Board Time |
UInt_t pkt_num; ///< CPU packet number |
19 |
UInt_t pkt_num; //< CPU packet number |
|
20 |
|
Float_t lon; ///< degrees from -180 to 180 |
21 |
// Position |
Float_t lat; ///< degrees from -90 to 90 |
22 |
Float_t lon; // degrees from -180 to 180 |
Float_t alt; ///< meters asl |
23 |
Float_t lat; // degrees from -90 to 90 |
|
24 |
Float_t alt; // meters |
// B components. |
25 |
|
Float_t Bnorth; ///< gauss |
26 |
// Magnetic field |
Float_t Beast; ///< gauss |
27 |
|
Float_t Bdown; ///< gauss |
28 |
// components (gauss) |
|
29 |
Float_t Bnorth; |
Float_t Babs; ///< abs value (guass) |
30 |
Float_t Beast; |
|
31 |
Float_t Bdown; |
Float_t BB0; ///< B abs over the B minimum on this field line |
32 |
|
|
33 |
// abs value (guass) |
Float_t L; ///< McIlwain's L shell (in earth radii) |
34 |
Float_t Babs; |
|
35 |
|
// Dipolar magnetic coordinates (not used). |
36 |
// Minimum along the field line (that is at the magnetic equator) |
Float_t londip; ///< degrees from -180 to 180 |
37 |
Float_t BB0; |
Float_t latdip; ///< degrees from -90 to 90 |
38 |
|
Float_t altdip; ///< meters |
39 |
// L shell (in earth radii) |
|
40 |
Float_t L; |
// Corrected magnetic coordinates (not used). |
41 |
|
Float_t loncgm; ///< degrees from -180 to 180 |
42 |
// Dipolar magnetic coordinates |
Float_t latcgm; ///< degrees from -90 to 90 |
43 |
Float_t londip; // degrees from -180 to 180 |
Float_t altcgm; ///< meters |
44 |
Float_t latdip; // degrees from -90 to 90 |
|
45 |
Float_t altdip; // meters |
// Corrected B min magnetic coordinates (not used). |
46 |
|
Float_t loncbm; ///< degrees from -180 to 180 |
47 |
// Corrected magnetic coordinates |
Float_t latcbm; ///< degrees from -90 to 90 |
48 |
Float_t loncgm; // degrees from -180 to 180 |
Float_t altcbm; ///< meters |
|
Float_t latcgm; // degrees from -90 to 90 |
|
|
Float_t altcgm; // meters |
|
|
|
|
|
// Corrected B min magnetic coordinates |
|
|
Float_t loncbm; // degrees from -180 to 180 |
|
|
Float_t latcbm; // degrees from -90 to 90 |
|
|
Float_t altcbm; // meters |
|
49 |
|
|
50 |
Float_t cutoff[20]; |
Float_t cutoff[20]; |
51 |
|
|
52 |
// Quaternions |
// Quaternions |
53 |
Float_t q0, q1, q2, q3; |
Float_t q0; ///< Quaternion 0 |
54 |
|
Float_t q1; ///< Quaternion 1 |
55 |
// Euler angles (nadir reference frame) |
Float_t q2; ///< Quaternion 2 |
56 |
Float_t theta, phi, etha; |
Float_t q3; ///< Quaternion 3 |
57 |
|
|
58 |
// Euler angles (local field reference frame) |
// Euler angles (Resurs velocity reference frame) |
59 |
Float_t thetamag, phimag, ethamag; |
Float_t theta; ///< Euler angle theta in the velocity reference frame (pitch) |
60 |
|
Float_t phi; ///< Euler angle phi in the velocity reference frame (yaw) |
61 |
// Useful? |
Float_t etha; ///< Euler angle etha in the velocity reference frame (roll) |
62 |
Int_t goodAttitude[5]; |
|
63 |
|
/** |
64 |
|
* The variable mode means a character time distant between two quaternions, inside which stay every events |
65 |
|
*/ |
66 |
|
Int_t mode; // 0 - means that time different pair of quaternions exuals to 0.25 seconds in R10 mode |
67 |
|
// (it mean that all quaternions in array is correct) |
68 |
|
// 1 - means that we have R10 mode and use just first value of quaternions array |
69 |
|
// 2 - means that we have non R10 mode and use every quaternions from array. |
70 |
|
// 3 - means normal transition from R10 to non R10 or from non R10 to R10. |
71 |
|
// 4 - means that we have eliminable hole between R10 and non R10 or between non R10 and R10 |
72 |
|
// 5 - means that we have uneliminable hole between R10 and non R10 or between non R10 and R10 |
73 |
|
// 6 - means that we have eliminable hole inside R10 (in such keys eliminable depends from other factors also) |
74 |
|
// 7 - means that we have uneliminable hole inside R10 |
75 |
|
// 8 - means that we have eliminable hole inside non R10 |
76 |
|
// 9 - means that we have uneliminable hole inside non R10 |
77 |
|
|
78 |
|
/** |
79 |
|
\return Returns the B minimum along the field line. |
80 |
|
*/ |
81 |
Float_t GetB0() { return Babs/BB0; }; |
Float_t GetB0() { return Babs/BB0; }; |
82 |
|
|
83 |
// Stormer vertical cutoff using L shell: 14.9/L^2 (GeV). |
/** |
84 |
|
\return Returns the Stormer vertical cutoff using L shell: |
85 |
|
14.9/L^2 (GV/c). |
86 |
|
*/ |
87 |
Float_t GetCutoffSVL() { return cutoff[0]; }; |
Float_t GetCutoffSVL() { return cutoff[0]; }; |
88 |
|
|
89 |
void SetFromLevel2Struct(cOrbitalInfo *l2); |
void SetFromLevel2Struct(cOrbitalInfo *l2); |
91 |
|
|
92 |
void Clear(); // emiliano |
void Clear(); // emiliano |
93 |
// |
// |
94 |
ClassDef(OrbitalInfo, 2) |
ClassDef(OrbitalInfo, 3) |
95 |
}; |
}; |
96 |
#endif |
#endif |