| 5 |
#include <algorithm> // EMILIANO |
#include <algorithm> // EMILIANO |
| 6 |
#include <OrbitalInfoStruct.h> |
#include <OrbitalInfoStruct.h> |
| 7 |
#include <TClonesArray.h> |
#include <TClonesArray.h> |
| 8 |
|
#include <TMatrixD.h> |
| 9 |
|
#include <TVector3.h> |
| 10 |
|
#include <string.h>//ELENA |
| 11 |
|
|
| 12 |
class OrbitalInfoTrkVar : public TObject { |
class OrbitalInfoTrkVar : public TObject { |
| 13 |
private: |
private: |
| 16 |
// |
// |
| 17 |
Int_t trkseqno; // tof sequ. number: -1=ToF standalone, 0=first Tracker track, ... |
Int_t trkseqno; // tof sequ. number: -1=ToF standalone, 0=first Tracker track, ... |
| 18 |
// |
// |
| 19 |
Float_t pitch; |
Float_t pitch; ///< Pitch angle |
| 20 |
|
Float_t sunangle; |
| 21 |
|
Float_t sunmagangle; |
| 22 |
|
// |
| 23 |
|
TMatrixD Eij; ///< vector of incoming particle respect to cartesian geographic coordinates |
| 24 |
|
TMatrixD Sij; ///< vector of incoming particle respect to flight coordinates |
| 25 |
|
// |
| 26 |
|
Float_t cutoff; ///< Calculated cutoff for the incoming particle taking into account particle direction |
| 27 |
// |
// |
| 28 |
OrbitalInfoTrkVar(); |
OrbitalInfoTrkVar(); |
| 29 |
|
OrbitalInfoTrkVar(const OrbitalInfoTrkVar&); |
| 30 |
OrbitalInfoTrkVar* GetOrbitalInfoTrkVar(){return this;}; |
OrbitalInfoTrkVar* GetOrbitalInfoTrkVar(){return this;}; |
| 31 |
// |
// |
| 32 |
void Clear(Option_t *t=""); |
void Clear(Option_t *t=""); |
| 33 |
|
void Delete(Option_t *t=""); //ELENA |
| 34 |
// |
// |
| 35 |
ClassDef(OrbitalInfoTrkVar, 1); |
ClassDef(OrbitalInfoTrkVar, 3); |
| 36 |
// |
// |
| 37 |
}; |
}; |
| 38 |
|
|
| 56 |
Float_t lat; ///< degrees from -90 to 90 |
Float_t lat; ///< degrees from -90 to 90 |
| 57 |
Float_t alt; ///< meters asl |
Float_t alt; ///< meters asl |
| 58 |
|
|
| 59 |
|
TVector3 V; /// velocity |
| 60 |
|
|
| 61 |
// B components. |
// B components. |
| 62 |
Float_t Bnorth; ///< gauss |
Float_t Bnorth; ///< gauss |
| 63 |
Float_t Beast; ///< gauss |
Float_t Beast; ///< gauss |
| 65 |
|
|
| 66 |
Float_t Babs; ///< abs value (guass) |
Float_t Babs; ///< abs value (guass) |
| 67 |
|
|
| 68 |
|
Float_t M; ///< M |
| 69 |
|
|
| 70 |
Float_t BB0; ///< B abs over the B minimum on this field line |
Float_t BB0; ///< B abs over the B minimum on this field line |
| 71 |
|
|
| 72 |
Float_t L; ///< McIlwain's L shell (in earth radii) |
Float_t L; ///< McIlwain's L shell (in earth radii) |
| 73 |
|
|
| 74 |
// Dipolar magnetic coordinates (not used). |
/* // Dipolar magnetic coordinates. */ |
| 75 |
Float_t londip; ///< degrees from -180 to 180 |
Float_t londip; ///< degrees from -180 to 180 |
| 76 |
Float_t latdip; ///< degrees from -90 to 90 |
Float_t latdip; ///< degrees from -90 to 90 |
| 77 |
Float_t altdip; ///< meters |
|
| 78 |
|
// Float_t cutoff[17]; |
| 79 |
// Corrected magnetic coordinates (not used). |
Float_t cutoffsvl; |
| 80 |
Float_t loncgm; ///< degrees from -180 to 180 |
Float_t igrf_icode; |
|
Float_t latcgm; ///< degrees from -90 to 90 |
|
|
Float_t altcgm; ///< meters |
|
|
|
|
|
// Corrected B min magnetic coordinates (not used). |
|
|
Float_t loncbm; ///< degrees from -180 to 180 |
|
|
Float_t latcbm; ///< degrees from -90 to 90 |
|
|
Float_t altcbm; ///< meters |
|
|
|
|
|
Float_t cutoff[17]; |
|
| 81 |
|
|
| 82 |
// Quaternions |
// linear Quaternions |
| 83 |
Float_t q0; ///< Quaternion 0 |
Float_t q0; ///< Quaternion 0 |
| 84 |
Float_t q1; ///< Quaternion 1 |
Float_t q1; ///< Quaternion 1 |
| 85 |
Float_t q2; ///< Quaternion 2 |
Float_t q2; ///< Quaternion 2 |
| 91 |
Float_t etha; ///< Euler angle etha in the velocity reference frame (roll) |
Float_t etha; ///< Euler angle etha in the velocity reference frame (roll) |
| 92 |
|
|
| 93 |
// Pitch angles |
// Pitch angles |
| 94 |
Float_t pamzenitangle; |
|
| 95 |
Float_t pamBangle; |
// |
| 96 |
|
TMatrixD Iij; ///< Angle between PAMELA Z direction and cartesian geographic coordinates |
| 97 |
|
|
| 98 |
/** |
/** |
| 99 |
* The variable mode means a character time distant between two quaternions, inside which stay every events |
* The variable mode means a character time distant between two quaternions, inside which stay every events |
| 110 |
// 8 - means that we have eliminable hole inside non R10 |
// 8 - means that we have eliminable hole inside non R10 |
| 111 |
// 9 - means that we have uneliminable hole inside non R10 |
// 9 - means that we have uneliminable hole inside non R10 |
| 112 |
// 10 - means other unknown problems |
// 10 - means other unknown problems |
| 113 |
|
// -10 - means we use recovered quaternions |
| 114 |
|
|
| 115 |
|
Int_t qkind; // How matrix Qij was got. |
| 116 |
|
// 0 means that it was calculated from flight quaternion |
| 117 |
|
// 1 means that it was calculated from Euler angles from Rotation Table |
| 118 |
|
|
| 119 |
|
Float_t TimeGap; //Time gap between two points where interpolation have done. |
| 120 |
|
|
| 121 |
|
Int_t errq; // flag, if errq == 1 then real flight quaternion (not interpolated) incorrect |
| 122 |
|
Int_t azim; // 0 - means everything is ok |
| 123 |
|
// 1 - means azimutal rotations were performed in this moment and in case of absense of flight quaternions orientation calculated here incorrect |
| 124 |
|
// >1 - No flight quaternions, no azimuthal rotations, no adequate data from RotationTable, unaccuracy equals to Bank angle of rotetion in this moment |
| 125 |
|
// -1 - Very Strange flight data, I don't know how to understand them |
| 126 |
|
|
| 127 |
|
Int_t rtqual; // 0 - means orientation data for period whe this event registered is in agreement with fligh orioentation data, one can fully trust such event when it calculated using Rotation Table (qkind=1) |
| 128 |
|
// 1 - means orientation data was not compared with flight data (during of absence of them), one should check them somehow |
| 129 |
|
// 2 - means orientation data calculated with flight data has disagreement with rotation table data and thre were not enough of flight data to correct RT. |
| 130 |
|
|
| 131 |
Int_t ntrk(){return OrbitalInfoTrk->GetEntries();}; |
Int_t ntrk(){return OrbitalInfoTrk->GetEntries();}; |
| 132 |
/** |
/** |
| 138 |
\return Returns the Stormer vertical cutoff using L shell: |
\return Returns the Stormer vertical cutoff using L shell: |
| 139 |
14.9/L^2 (GV/c). |
14.9/L^2 (GV/c). |
| 140 |
*/ |
*/ |
| 141 |
Float_t GetCutoffSVL() { return cutoff[0]; }; |
Float_t GetCutoffSVL() { return cutoffsvl; }; |
| 142 |
|
|
| 143 |
void SetFromLevel2Struct(cOrbitalInfo *l2); |
void SetFromLevel2Struct(cOrbitalInfo *l2); |
| 144 |
void GetLevel2Struct(cOrbitalInfo *l2) const; |
void GetLevel2Struct(cOrbitalInfo *l2) const; |
| 145 |
OrbitalInfoTrkVar *GetOrbitalInfoTrkVar(Int_t notrack); |
OrbitalInfoTrkVar *GetOrbitalInfoTrkVar(Int_t notrack); |
| 146 |
|
OrbitalInfoTrkVar * GetOrbitalInfoStoredTrack(Int_t seqno);///< returns pointer to the track set related to the seqno number |
| 147 |
|
|
| 148 |
// |
// |
| 149 |
OrbitalInfo(); |
OrbitalInfo(); |
| 150 |
~OrbitalInfo(){Delete();}; //ELENA |
~OrbitalInfo(){Delete();}; //ELENA |
| 154 |
void Set();//ELENA |
void Set();//ELENA |
| 155 |
// |
// |
| 156 |
// |
// |
| 157 |
|
TClonesArray *GetTrackArray(){return OrbitalInfoTrk;} ///< returns a pointer to the track related variables array |
| 158 |
|
TClonesArray** GetPointerToTrackArray(){return &OrbitalInfoTrk;}///< returns pointer to pointer to the track array |
| 159 |
|
void SetTrackArray(TClonesArray *track);///<set pointer to the track array |
| 160 |
|
|
| 161 |
void Clear(Option_t *t=""); // emiliano |
void Clear(Option_t *t=""); // emiliano |
| 162 |
// |
// |
| 163 |
ClassDef(OrbitalInfo, 6); |
ClassDef(OrbitalInfo, 11); |
| 164 |
}; |
}; |
| 165 |
#endif |
#endif |