6 |
#include <OrbitalInfoStruct.h> |
#include <OrbitalInfoStruct.h> |
7 |
#include <TClonesArray.h> |
#include <TClonesArray.h> |
8 |
#include <TMatrixD.h> |
#include <TMatrixD.h> |
9 |
|
#include <TVector3.h> |
10 |
|
|
11 |
class OrbitalInfoTrkVar : public TObject { |
class OrbitalInfoTrkVar : public TObject { |
12 |
private: |
private: |
16 |
Int_t trkseqno; // tof sequ. number: -1=ToF standalone, 0=first Tracker track, ... |
Int_t trkseqno; // tof sequ. number: -1=ToF standalone, 0=first Tracker track, ... |
17 |
// |
// |
18 |
Float_t pitch; ///< Pitch angle |
Float_t pitch; ///< Pitch angle |
19 |
|
Float_t sunangle; |
20 |
|
Float_t sunmagangle; |
21 |
// |
// |
22 |
TMatrixD Eij; ///< vector of incoming particle respect to cartesian geographic coordinates |
TMatrixD Eij; ///< vector of incoming particle respect to cartesian geographic coordinates |
23 |
TMatrixD Sij; ///< vector of incoming particle respect to flight coordinates |
TMatrixD Sij; ///< vector of incoming particle respect to flight coordinates |
55 |
Float_t lat; ///< degrees from -90 to 90 |
Float_t lat; ///< degrees from -90 to 90 |
56 |
Float_t alt; ///< meters asl |
Float_t alt; ///< meters asl |
57 |
|
|
58 |
|
TVector3 V; /// velocity |
59 |
|
|
60 |
// B components. |
// B components. |
61 |
Float_t Bnorth; ///< gauss |
Float_t Bnorth; ///< gauss |
62 |
Float_t Beast; ///< gauss |
Float_t Beast; ///< gauss |
64 |
|
|
65 |
Float_t Babs; ///< abs value (guass) |
Float_t Babs; ///< abs value (guass) |
66 |
|
|
67 |
|
Float_t M; ///< M |
68 |
|
|
69 |
Float_t BB0; ///< B abs over the B minimum on this field line |
Float_t BB0; ///< B abs over the B minimum on this field line |
70 |
|
|
71 |
Float_t L; ///< McIlwain's L shell (in earth radii) |
Float_t L; ///< McIlwain's L shell (in earth radii) |
72 |
|
|
73 |
/* // Dipolar magnetic coordinates (not used). */ |
/* // Dipolar magnetic coordinates (not used). */ |
74 |
/* Float_t londip; ///< degrees from -180 to 180 */ |
Float_t londip; ///< degrees from -180 to 180 |
75 |
/* Float_t latdip; ///< degrees from -90 to 90 */ |
Float_t latdip; ///< degrees from -90 to 90 |
|
/* Float_t altdip; ///< meters */ |
|
|
|
|
|
/* // Corrected magnetic coordinates (not used). */ |
|
|
/* Float_t loncgm; ///< degrees from -180 to 180 */ |
|
|
/* Float_t latcgm; ///< degrees from -90 to 90 */ |
|
|
/* Float_t altcgm; ///< meters */ |
|
|
|
|
|
/* // Corrected B min magnetic coordinates (not used). */ |
|
|
/* Float_t loncbm; ///< degrees from -180 to 180 */ |
|
|
/* Float_t latcbm; ///< degrees from -90 to 90 */ |
|
|
/* Float_t altcbm; ///< meters */ |
|
76 |
|
|
77 |
// Float_t cutoff[17]; |
// Float_t cutoff[17]; |
78 |
Float_t cutoffsvl; |
Float_t cutoffsvl; |
79 |
|
Float_t igrf_icode; |
80 |
|
|
81 |
// linear Quaternions |
// linear Quaternions |
82 |
Float_t q0; ///< Quaternion 0 |
Float_t q0; ///< Quaternion 0 |
83 |
Float_t q1; ///< Quaternion 1 |
Float_t q1; ///< Quaternion 1 |
84 |
Float_t q2; ///< Quaternion 2 |
Float_t q2; ///< Quaternion 2 |
85 |
Float_t q3; ///< Quaternion 3 |
Float_t q3; ///< Quaternion 3 |
|
|
|
|
//tested sine quaternions |
|
|
|
|
|
//Float_t q0t; |
|
|
//Float_t q1t; |
|
|
//Float_t q2t; |
|
|
//Float_t q3t; |
|
86 |
|
|
87 |
// Euler angles (Resurs velocity reference frame) |
// Euler angles (Resurs velocity reference frame) |
88 |
Float_t theta; ///< Euler angle theta in the velocity reference frame (pitch) |
Float_t theta; ///< Euler angle theta in the velocity reference frame (pitch) |
90 |
Float_t etha; ///< Euler angle etha in the velocity reference frame (roll) |
Float_t etha; ///< Euler angle etha in the velocity reference frame (roll) |
91 |
|
|
92 |
// Pitch angles |
// Pitch angles |
93 |
// Float_t pamzenitangle; |
|
|
// Float_t pamBangle; |
|
94 |
// |
// |
95 |
TMatrixD Iij; ///< Angle between PAMELA Z direction and cartesian geographic coordinates |
TMatrixD Iij; ///< Angle between PAMELA Z direction and cartesian geographic coordinates |
96 |
|
|
111 |
// 10 - means other unknown problems |
// 10 - means other unknown problems |
112 |
// -10 - means we use recovered quaternions |
// -10 - means we use recovered quaternions |
113 |
|
|
114 |
//Int_t R10f; //if 1 we recognize R10 mode using flight data if 0 - no R10 mode if -1 we know nothing about R10 mode |
Int_t qkind; // How matrix Qij was got. |
115 |
//Bool_t R10r; //if true we recognize R10 mode using recovered data |
// 0 means that it was calculated from flight quaternion |
116 |
|
// 1 means that it was calculated from Euler angles from Rotation Table |
117 |
|
|
118 |
Float_t TimeGap; //Time gap between two points where interpolation have done. |
Float_t TimeGap; //Time gap between two points where interpolation have done. |
119 |
|
|
120 |
|
Int_t errq; // flag, if errq == 1 then real flight quaternion (not interpolated) incorrect |
121 |
|
Int_t azim; // 0 - means everything is ok |
122 |
|
// 1 - means azimutal rotations were performed in this moment and in case of absense of flight quaternions orientation calculated here incorrect |
123 |
|
// >1 No flight quaternions, no azimuthal rotations, no adequate data from RotationTable, unaccuracy equals to Bank angle of rotetion in this moment |
124 |
|
|
125 |
Int_t ntrk(){return OrbitalInfoTrk->GetEntries();}; |
Int_t ntrk(){return OrbitalInfoTrk->GetEntries();}; |
126 |
/** |
/** |
149 |
|
|
150 |
void Clear(Option_t *t=""); // emiliano |
void Clear(Option_t *t=""); // emiliano |
151 |
// |
// |
152 |
ClassDef(OrbitalInfo, 8); |
ClassDef(OrbitalInfo, 10); |
153 |
}; |
}; |
154 |
#endif |
#endif |