4 |
#include <TObject.h> |
#include <TObject.h> |
5 |
#include <algorithm> // EMILIANO |
#include <algorithm> // EMILIANO |
6 |
#include <OrbitalInfoStruct.h> |
#include <OrbitalInfoStruct.h> |
7 |
|
#include <TClonesArray.h> |
8 |
|
#include <TMatrixD.h> |
9 |
|
|
10 |
|
class OrbitalInfoTrkVar : public TObject { |
11 |
|
private: |
12 |
|
|
13 |
|
public: |
14 |
|
// |
15 |
|
Int_t trkseqno; // tof sequ. number: -1=ToF standalone, 0=first Tracker track, ... |
16 |
|
// |
17 |
|
Float_t pitch; ///< Pitch angle |
18 |
|
// |
19 |
|
TMatrixD Eij; ///< vector of incoming particle respect to cartesian geographic coordinates |
20 |
|
TMatrixD Sij; ///< vector of incoming particle respect to flight coordinates |
21 |
|
// |
22 |
|
Float_t cutoff; ///< Calculated cutoff for the incoming particle taking into account particle direction |
23 |
|
// |
24 |
|
OrbitalInfoTrkVar(); |
25 |
|
OrbitalInfoTrkVar(const OrbitalInfoTrkVar&); |
26 |
|
OrbitalInfoTrkVar* GetOrbitalInfoTrkVar(){return this;}; |
27 |
|
// |
28 |
|
void Clear(Option_t *t=""); |
29 |
|
void Delete(Option_t *t=""); //ELENA |
30 |
|
// |
31 |
|
ClassDef(OrbitalInfoTrkVar, 3); |
32 |
|
// |
33 |
|
}; |
34 |
|
|
35 |
|
|
36 |
|
|
37 |
/** |
/** |
38 |
* Class that stores position, time, inclination, magnetic field and |
* Class that stores position, time, inclination, magnetic field and |
39 |
* cutoff informations. |
* cutoff informations. |
40 |
*/ |
*/ |
41 |
class OrbitalInfo : public TObject { |
class OrbitalInfo : public TObject { |
42 |
|
private: |
43 |
|
|
44 |
public: |
public: |
45 |
OrbitalInfo(); |
TClonesArray *OrbitalInfoTrk; |
|
OrbitalInfo* GetOrbitalInfo(){return this;}; // Elena |
|
46 |
|
|
47 |
UInt_t absTime; ///< Absolute Time (seconds) |
UInt_t absTime; ///< Absolute Time (seconds) |
48 |
UInt_t OBT; ///< On Board Time (ms) |
UInt_t OBT; ///< On Board Time (ms) |
59 |
|
|
60 |
Float_t Babs; ///< abs value (guass) |
Float_t Babs; ///< abs value (guass) |
61 |
|
|
62 |
|
Float_t M; ///< M |
63 |
|
|
64 |
Float_t BB0; ///< B abs over the B minimum on this field line |
Float_t BB0; ///< B abs over the B minimum on this field line |
65 |
|
|
66 |
Float_t L; ///< McIlwain's L shell (in earth radii) |
Float_t L; ///< McIlwain's L shell (in earth radii) |
67 |
|
|
68 |
// Dipolar magnetic coordinates (not used). |
/* // Dipolar magnetic coordinates (not used). */ |
69 |
Float_t londip; ///< degrees from -180 to 180 |
/* Float_t londip; ///< degrees from -180 to 180 */ |
70 |
Float_t latdip; ///< degrees from -90 to 90 |
/* Float_t latdip; ///< degrees from -90 to 90 */ |
71 |
Float_t altdip; ///< meters |
/* Float_t altdip; ///< meters */ |
72 |
|
|
73 |
// Corrected magnetic coordinates (not used). |
/* // Corrected magnetic coordinates (not used). */ |
74 |
Float_t loncgm; ///< degrees from -180 to 180 |
/* Float_t loncgm; ///< degrees from -180 to 180 */ |
75 |
Float_t latcgm; ///< degrees from -90 to 90 |
/* Float_t latcgm; ///< degrees from -90 to 90 */ |
76 |
Float_t altcgm; ///< meters |
/* Float_t altcgm; ///< meters */ |
77 |
|
|
78 |
// Corrected B min magnetic coordinates (not used). |
/* // Corrected B min magnetic coordinates (not used). */ |
79 |
Float_t loncbm; ///< degrees from -180 to 180 |
/* Float_t loncbm; ///< degrees from -180 to 180 */ |
80 |
Float_t latcbm; ///< degrees from -90 to 90 |
/* Float_t latcbm; ///< degrees from -90 to 90 */ |
81 |
Float_t altcbm; ///< meters |
/* Float_t altcbm; ///< meters */ |
82 |
|
|
83 |
|
// Float_t cutoff[17]; |
84 |
|
Float_t cutoffsvl; |
85 |
|
Float_t igrf_icode; |
86 |
|
|
87 |
Float_t cutoff[20]; |
// linear Quaternions |
|
|
|
|
// Quaternions |
|
88 |
Float_t q0; ///< Quaternion 0 |
Float_t q0; ///< Quaternion 0 |
89 |
Float_t q1; ///< Quaternion 1 |
Float_t q1; ///< Quaternion 1 |
90 |
Float_t q2; ///< Quaternion 2 |
Float_t q2; ///< Quaternion 2 |
91 |
Float_t q3; ///< Quaternion 3 |
Float_t q3; ///< Quaternion 3 |
92 |
|
|
93 |
|
//tested sine quaternions |
94 |
|
|
95 |
|
//Float_t q0t; |
96 |
|
//Float_t q1t; |
97 |
|
//Float_t q2t; |
98 |
|
//Float_t q3t; |
99 |
|
|
100 |
// Euler angles (Resurs velocity reference frame) |
// Euler angles (Resurs velocity reference frame) |
101 |
Float_t theta; ///< Euler angle theta in the velocity reference frame (pitch) |
Float_t theta; ///< Euler angle theta in the velocity reference frame (pitch) |
102 |
Float_t phi; ///< Euler angle phi in the velocity reference frame (yaw) |
Float_t phi; ///< Euler angle phi in the velocity reference frame (yaw) |
103 |
Float_t etha; ///< Euler angle etha in the velocity reference frame (roll) |
Float_t etha; ///< Euler angle etha in the velocity reference frame (roll) |
104 |
|
|
105 |
|
// Pitch angles |
106 |
|
// Float_t pamzenitangle; |
107 |
|
// Float_t pamBangle; |
108 |
|
// |
109 |
|
TMatrixD Iij; ///< Angle between PAMELA Z direction and cartesian geographic coordinates |
110 |
|
|
111 |
/** |
/** |
112 |
* The variable mode means a character time distant between two quaternions, inside which stay every events |
* The variable mode means a character time distant between two quaternions, inside which stay every events |
113 |
*/ |
*/ |
122 |
// 7 - means that we have uneliminable hole inside R10 |
// 7 - means that we have uneliminable hole inside R10 |
123 |
// 8 - means that we have eliminable hole inside non R10 |
// 8 - means that we have eliminable hole inside non R10 |
124 |
// 9 - means that we have uneliminable hole inside non R10 |
// 9 - means that we have uneliminable hole inside non R10 |
125 |
|
// 10 - means other unknown problems |
126 |
|
// -10 - means we use recovered quaternions |
127 |
|
|
128 |
|
//Int_t R10f; //if 1 we recognize R10 mode using flight data if 0 - no R10 mode if -1 we know nothing about R10 mode |
129 |
|
//Bool_t R10r; //if true we recognize R10 mode using recovered data |
130 |
|
|
131 |
|
Float_t TimeGap; //Time gap between two points where interpolation have done. |
132 |
|
|
133 |
|
Int_t ntrk(){return OrbitalInfoTrk->GetEntries();}; |
134 |
/** |
/** |
135 |
\return Returns the B minimum along the field line. |
\return Returns the B minimum along the field line. |
136 |
*/ |
*/ |
140 |
\return Returns the Stormer vertical cutoff using L shell: |
\return Returns the Stormer vertical cutoff using L shell: |
141 |
14.9/L^2 (GV/c). |
14.9/L^2 (GV/c). |
142 |
*/ |
*/ |
143 |
Float_t GetCutoffSVL() { return cutoff[0]; }; |
Float_t GetCutoffSVL() { return cutoffsvl; }; |
144 |
|
|
145 |
void SetFromLevel2Struct(cOrbitalInfo *l2); |
void SetFromLevel2Struct(cOrbitalInfo *l2); |
146 |
void GetLevel2Struct(cOrbitalInfo *l2) const; |
void GetLevel2Struct(cOrbitalInfo *l2) const; |
147 |
|
OrbitalInfoTrkVar *GetOrbitalInfoTrkVar(Int_t notrack); |
148 |
|
// |
149 |
|
OrbitalInfo(); |
150 |
|
~OrbitalInfo(){Delete();}; //ELENA |
151 |
|
// |
152 |
|
OrbitalInfo* GetOrbitalInfo(){return this;}; // Elena |
153 |
|
void Delete(Option_t *t=""); //ELENA |
154 |
|
void Set();//ELENA |
155 |
|
// |
156 |
|
// |
157 |
|
|
158 |
void Clear(); // emiliano |
void Clear(Option_t *t=""); // emiliano |
159 |
// |
// |
160 |
ClassDef(OrbitalInfo, 3) |
ClassDef(OrbitalInfo, 9); |
161 |
}; |
}; |
162 |
#endif |
#endif |