| 6 |
#include <OrbitalInfoStruct.h> |
#include <OrbitalInfoStruct.h> |
| 7 |
#include <TClonesArray.h> |
#include <TClonesArray.h> |
| 8 |
#include <TMatrixD.h> |
#include <TMatrixD.h> |
| 9 |
|
#include <TVector3.h> |
| 10 |
|
|
| 11 |
class OrbitalInfoTrkVar : public TObject { |
class OrbitalInfoTrkVar : public TObject { |
| 12 |
private: |
private: |
| 16 |
Int_t trkseqno; // tof sequ. number: -1=ToF standalone, 0=first Tracker track, ... |
Int_t trkseqno; // tof sequ. number: -1=ToF standalone, 0=first Tracker track, ... |
| 17 |
// |
// |
| 18 |
Float_t pitch; ///< Pitch angle |
Float_t pitch; ///< Pitch angle |
| 19 |
|
Float_t sunangle; |
| 20 |
|
Float_t sunmagangle; |
| 21 |
// |
// |
| 22 |
TMatrixD Eij; ///< vector of incoming particle respect to cartesian geographic coordinates |
TMatrixD Eij; ///< vector of incoming particle respect to cartesian geographic coordinates |
| 23 |
TMatrixD Sij; ///< vector of incoming particle respect to flight coordinates |
TMatrixD Sij; ///< vector of incoming particle respect to flight coordinates |
| 55 |
Float_t lat; ///< degrees from -90 to 90 |
Float_t lat; ///< degrees from -90 to 90 |
| 56 |
Float_t alt; ///< meters asl |
Float_t alt; ///< meters asl |
| 57 |
|
|
| 58 |
|
TVector3 V; /// velocity |
| 59 |
|
|
| 60 |
// B components. |
// B components. |
| 61 |
Float_t Bnorth; ///< gauss |
Float_t Bnorth; ///< gauss |
| 62 |
Float_t Beast; ///< gauss |
Float_t Beast; ///< gauss |
| 64 |
|
|
| 65 |
Float_t Babs; ///< abs value (guass) |
Float_t Babs; ///< abs value (guass) |
| 66 |
|
|
| 67 |
|
Float_t M; ///< M |
| 68 |
|
|
| 69 |
Float_t BB0; ///< B abs over the B minimum on this field line |
Float_t BB0; ///< B abs over the B minimum on this field line |
| 70 |
|
|
| 71 |
Float_t L; ///< McIlwain's L shell (in earth radii) |
Float_t L; ///< McIlwain's L shell (in earth radii) |
| 72 |
|
|
| 73 |
/* // Dipolar magnetic coordinates (not used). */ |
/* // Dipolar magnetic coordinates (not used). */ |
| 74 |
/* Float_t londip; ///< degrees from -180 to 180 */ |
Float_t londip; ///< degrees from -180 to 180 |
| 75 |
/* Float_t latdip; ///< degrees from -90 to 90 */ |
Float_t latdip; ///< degrees from -90 to 90 |
|
/* Float_t altdip; ///< meters */ |
|
|
|
|
|
/* // Corrected magnetic coordinates (not used). */ |
|
|
/* Float_t loncgm; ///< degrees from -180 to 180 */ |
|
|
/* Float_t latcgm; ///< degrees from -90 to 90 */ |
|
|
/* Float_t altcgm; ///< meters */ |
|
|
|
|
|
/* // Corrected B min magnetic coordinates (not used). */ |
|
|
/* Float_t loncbm; ///< degrees from -180 to 180 */ |
|
|
/* Float_t latcbm; ///< degrees from -90 to 90 */ |
|
|
/* Float_t altcbm; ///< meters */ |
|
| 76 |
|
|
| 77 |
// Float_t cutoff[17]; |
// Float_t cutoff[17]; |
| 78 |
Float_t cutoffsvl; |
Float_t cutoffsvl; |
| 79 |
|
Float_t igrf_icode; |
| 80 |
|
|
| 81 |
// Quaternions |
// linear Quaternions |
| 82 |
Float_t q0; ///< Quaternion 0 |
Float_t q0; ///< Quaternion 0 |
| 83 |
Float_t q1; ///< Quaternion 1 |
Float_t q1; ///< Quaternion 1 |
| 84 |
Float_t q2; ///< Quaternion 2 |
Float_t q2; ///< Quaternion 2 |
| 90 |
Float_t etha; ///< Euler angle etha in the velocity reference frame (roll) |
Float_t etha; ///< Euler angle etha in the velocity reference frame (roll) |
| 91 |
|
|
| 92 |
// Pitch angles |
// Pitch angles |
| 93 |
// Float_t pamzenitangle; |
|
|
// Float_t pamBangle; |
|
| 94 |
// |
// |
| 95 |
TMatrixD Iij; ///< Angle between PAMELA Z direction and cartesian geographic coordinates |
TMatrixD Iij; ///< Angle between PAMELA Z direction and cartesian geographic coordinates |
| 96 |
|
|
| 109 |
// 8 - means that we have eliminable hole inside non R10 |
// 8 - means that we have eliminable hole inside non R10 |
| 110 |
// 9 - means that we have uneliminable hole inside non R10 |
// 9 - means that we have uneliminable hole inside non R10 |
| 111 |
// 10 - means other unknown problems |
// 10 - means other unknown problems |
| 112 |
|
// -10 - means we use recovered quaternions |
| 113 |
|
|
| 114 |
|
Int_t qkind; // How matrix Qij was got. |
| 115 |
|
// 0 means that it was calculated from flight quaternion |
| 116 |
|
// 1 means that it was calculated from Euler angles from Rotation Table |
| 117 |
|
|
| 118 |
|
Float_t TimeGap; //Time gap between two points where interpolation have done. |
| 119 |
|
|
| 120 |
|
Int_t errq; // flag, if errq == 1 then real flight quaternion (not interpolated) incorrect |
| 121 |
|
Int_t azim; // 0 - means everything is ok |
| 122 |
|
// 1 - means azimutal rotations were performed in this moment and in case of absense of flight quaternions orientation calculated here incorrect |
| 123 |
|
// >1 No flight quaternions, no azimuthal rotations, no adequate data from RotationTable, unaccuracy equals to Bank angle of rotetion in this moment |
| 124 |
|
|
| 125 |
Int_t ntrk(){return OrbitalInfoTrk->GetEntries();}; |
Int_t ntrk(){return OrbitalInfoTrk->GetEntries();}; |
| 126 |
/** |
/** |
| 149 |
|
|
| 150 |
void Clear(Option_t *t=""); // emiliano |
void Clear(Option_t *t=""); // emiliano |
| 151 |
// |
// |
| 152 |
ClassDef(OrbitalInfo, 7); |
ClassDef(OrbitalInfo, 10); |
| 153 |
}; |
}; |
| 154 |
#endif |
#endif |