| 1 | mocchiut | 1.1 | C | 
| 2 |  |  | C--------------------------------------------------------------------- | 
| 3 |  |  | SUBROUTINE SELFTRIG | 
| 4 |  |  | C--------------------------------------------------------------------- | 
| 5 |  |  | C | 
| 6 |  |  | IMPLICIT NONE | 
| 7 |  |  | C | 
| 8 |  |  | INCLUDE 'INTEST.TXT' | 
| 9 |  |  | C | 
| 10 |  |  | REAL PI,calwidth,ztopx,ztopy,zbotx,zboty,MIP2GEV | 
| 11 |  |  | real wcorr | 
| 12 |  |  | parameter (wcorr=1.0) | 
| 13 |  |  | PARAMETER (MIP2GEV=0.0001059994) | 
| 14 |  |  | PARAMETER (PI=3.14159265358979324) | 
| 15 | mocchiut | 1.2 | CC      PARAMETER (calwidth=24.2) | 
| 16 |  |  | PARAMETER (calwidth=24.1) | 
| 17 | mocchiut | 1.1 | PARAMETER (ztopx=-26.18) | 
| 18 |  |  | PARAMETER (ztopy=-26.76) | 
| 19 |  |  | PARAMETER (zbotx=-45.17) | 
| 20 |  |  | PARAMETER (zboty=-45.75) | 
| 21 |  |  | C | 
| 22 |  |  | INTEGER i,j,it | 
| 23 |  |  | INTEGER ifin,finpar,finpar1,plent,plentx,plenty | 
| 24 |  |  | INTEGER xncnt(22),yncnt(22),Nfitx,Nfity | 
| 25 |  |  | INTEGER xncnt2(5,22),yncnt2(5,22) | 
| 26 |  |  | C | 
| 27 |  |  | REAL xecnt2(5,22),xwght2(5,22),xcorr2(5,22) | 
| 28 |  |  | REAL yecnt2(5,22),ywght2(5,22),ycorr2(5,22) | 
| 29 |  |  | REAL ax2(4),bx2(4),eax2(4),ebx2(4) | 
| 30 |  |  | REAL ay2(4),by2(4),eay2(4),eby2(4) | 
| 31 |  |  | REAL xEmax3(22),yEmax3(22),xmax(22),ymax(22),zx(22),zy(22) | 
| 32 |  |  | REAL xecnt(22),xwght(22),xcorr(22) | 
| 33 |  |  | REAL yecnt(22),ywght(22),ycorr(22) | 
| 34 |  |  | REAL ax,bx,eax,ebx,chi2x,qxp,posixmd | 
| 35 |  |  | REAL ay,by,eay,eby,chi2y,qyp,posiymd | 
| 36 |  |  | REAL thxm,thym,tmisd,dthxm,dthym,dtmisd,pmisd,pmid | 
| 37 |  |  | REAL enet,parze,parz(2,22),ffla,zetamx,zetamy,fflaco,parzen2 | 
| 38 |  |  | REAL parzen3,funcor2 | 
| 39 |  |  | REAL CORRANG,ENCORR | 
| 40 |  |  | C | 
| 41 |  |  | COMMON / slftrig / tmisd,ax,bx,eax,ebx,chi2x,Nfitx,ay,by,eay,eby, | 
| 42 |  |  | &     chi2y,Nfity,parzen3 | 
| 43 |  |  | SAVE / slftrig / | 
| 44 |  |  | C | 
| 45 |  |  | COMMON / debug / xncnt2,yncnt2,xecnt2,xwght2,xcorr2,yecnt2,ywght2, | 
| 46 |  |  | &     ycorr2,ax2,bx2,eax2,ebx2,ay2,by2,eay2,eby2,zx,zy | 
| 47 |  |  | SAVE / debug / | 
| 48 |  |  | C | 
| 49 |  |  | c     Energy calculation | 
| 50 |  |  | C | 
| 51 |  |  | enet = 0. | 
| 52 |  |  | parze = 0. | 
| 53 |  |  | finpar = 1 | 
| 54 |  |  | finpar1 = 1 | 
| 55 |  |  | CALL VZERO(parz,2*22) | 
| 56 |  |  | DO i = 1,22 | 
| 57 |  |  | DO j = 1,96 | 
| 58 |  |  | parz(1,i) = parz(1,i) + ESTRIP(1,i,j) ! sum up the energy in each x-plane | 
| 59 |  |  | parz(2,i) = parz(2,i) + ESTRIP(2,i,j) ! sum up the energy in each y-plane | 
| 60 |  |  | enet = enet + ESTRIP(1,i,j) + ESTRIP(2,i,j) ! sum up the total energy | 
| 61 |  |  | ENDDO | 
| 62 |  |  | IF (parz(1,i).GE.parze) THEN ! find plane with max energy | 
| 63 |  |  | parze = parz(1,i)   ! the energy | 
| 64 |  |  | finpar = i          ! the plane number | 
| 65 |  |  | finpar1 = 1         ! set x or y indicator | 
| 66 |  |  | ENDIF | 
| 67 |  |  | IF (parz(2,i).GE.parze) THEN | 
| 68 |  |  | parze = parz(2,i) | 
| 69 |  |  | finpar = i | 
| 70 |  |  | finpar1 = 2 | 
| 71 |  |  | ENDIF | 
| 72 |  |  | ENDDO | 
| 73 |  |  | ffla = FLOAT(finpar) | 
| 74 |  |  | IF (finpar1.EQ.1) THEN | 
| 75 |  |  | ffla = ffla - 1. | 
| 76 |  |  | ENDIF | 
| 77 |  |  | C | 
| 78 |  |  | c     Find the center of the 3 strips with maximum total energy in a plane | 
| 79 |  |  | C | 
| 80 |  |  | CALL VZERO(xemax3,22) | 
| 81 |  |  | CALL VZERO(xncnt,22) | 
| 82 |  |  | CALL VZERO(yemax3,22) | 
| 83 |  |  | CALL VZERO(yncnt,22) | 
| 84 |  |  | DO i = 1,22 | 
| 85 |  |  | DO j = 1,94 | 
| 86 |  |  |  | 
| 87 |  |  | IF ((ESTRIP(1,i,j)+ | 
| 88 |  |  | &           ESTRIP(1,i,j+1)+ | 
| 89 |  |  | &           ESTRIP(1,i,j+2)).GT.xemax3(i)) THEN | 
| 90 |  |  | xemax3(i)=ESTRIP(1,i,j)+ | 
| 91 |  |  | &                   ESTRIP(1,i,j+1)+ | 
| 92 |  |  | &                   ESTRIP(1,i,j+2) | 
| 93 |  |  | xncnt(i)=j+1 | 
| 94 |  |  | ENDIF | 
| 95 |  |  | IF ((ESTRIP(2,i,j)+ | 
| 96 |  |  | &           ESTRIP(2,i,j+1)+ | 
| 97 |  |  | &           ESTRIP(2,i,j+2)).GT.yemax3(i)) THEN | 
| 98 |  |  | yemax3(i)=ESTRIP(2,i,j)+ | 
| 99 |  |  | &                   ESTRIP(2,i,j+1)+ | 
| 100 |  |  | &                   ESTRIP(2,i,j+2) | 
| 101 |  |  | yncnt(i)=j+1 | 
| 102 |  |  | ENDIF | 
| 103 |  |  |  | 
| 104 |  |  | ENDDO | 
| 105 |  |  | ENDDO | 
| 106 |  |  | C | 
| 107 |  |  | c     Calculate the position of the center strip and the center of | 
| 108 |  |  | c     energy (CoE) of 4 surrounding strips | 
| 109 |  |  | C | 
| 110 |  |  | DO i=1,22 | 
| 111 |  |  | CALL STRIP2POS(1,i,xncnt(i),xmax(i),zx(i)) | 
| 112 |  |  | CALL STRIP2POS(2,i,yncnt(i),ymax(i),zy(i)) | 
| 113 |  |  | CALL ENCENT2(1,xncnt(i),i,4,xecnt(i),xwght(i)) | 
| 114 |  |  | CALL ENCENT2(2,yncnt(i),i,4,yecnt(i),ywght(i)) | 
| 115 |  |  | xecnt2(1,i)=xecnt(i) | 
| 116 |  |  | xwght2(1,i)=xwght(i) | 
| 117 |  |  | xncnt2(1,i)=xncnt(i) | 
| 118 |  |  | yecnt2(1,i)=yecnt(i) | 
| 119 |  |  | ywght2(1,i)=ywght(i) | 
| 120 |  |  | yncnt2(1,i)=yncnt(i) | 
| 121 |  |  | ENDDO | 
| 122 |  |  | C | 
| 123 |  |  | dtmisd=1.0 | 
| 124 |  |  | dthxm=1.0 | 
| 125 |  |  | dthym=1.0 | 
| 126 |  |  | tmisd=0 | 
| 127 |  |  | thxm=0 | 
| 128 |  |  | thym=0 | 
| 129 |  |  | C | 
| 130 |  |  | c     Iterative procedure starts here | 
| 131 |  |  | C | 
| 132 |  |  | DO it=1,4 | 
| 133 |  |  | C | 
| 134 |  |  | c     Fit the CoEs with a linear function | 
| 135 |  |  | C | 
| 136 |  |  | CALL LEASTSQR(22,zx,xecnt,xwght,ax,bx,eax,ebx,chi2x,Nfitx) !<----- LINEAR FIT | 
| 137 |  |  | CALL LEASTSQR(22,zy,yecnt,ywght,ay,by,eay,eby,chi2y,Nfity) | 
| 138 |  |  | ax2(it)=ax | 
| 139 |  |  | ay2(it)=ay | 
| 140 |  |  | eax2(it)=eax | 
| 141 |  |  | eay2(it)=eay | 
| 142 |  |  | bx2(it)=bx | 
| 143 |  |  | by2(it)=by | 
| 144 |  |  | ebx2(it)=ebx | 
| 145 |  |  | eby2(it)=eby | 
| 146 |  |  | C | 
| 147 |  |  | c     Calculate theta and phi | 
| 148 |  |  | C | 
| 149 |  |  | dtmisd=ABS(tmisd-ATAN(SQRT((bx*bx)+(by*by)))) | 
| 150 |  |  | dthxm=ABS(thxm-ABS(ATAN(bx))) | 
| 151 |  |  | dthym=ABS(thym-ABS(ATAN(by))) | 
| 152 |  |  | tmisd=ATAN(SQRT((bx*bx)+(by*by))) | 
| 153 |  |  | thxm=ABS(ATAN(bx)) | 
| 154 |  |  | thym=ABS(ATAN(by)) | 
| 155 |  |  | IF (bx.EQ.0..AND.by.GT.0.) pmisd = 90.*(PI/180.) | 
| 156 |  |  | IF (bx.EQ.0..AND.by.LT.0.) pmisd = 270.*(PI/180.) | 
| 157 |  |  | IF (by.EQ.0..AND.bx.GE.0.) pmisd = 0.*(PI/180.) | 
| 158 |  |  | IF (by.EQ.0..AND.bx.LT.0.) pmisd = 180.*(PI/180.) | 
| 159 |  |  | IF (by.NE.0..AND.bx.NE.0.) THEN | 
| 160 |  |  | pmid = ATAN(by/bx) | 
| 161 |  |  | IF (by.LT.0..AND.bx.GT.0.) pmisd = pmid + 360.*(PI/180.) | 
| 162 |  |  | IF (bx.LT.0.) pmisd = pmid + 180.*(PI/180.) | 
| 163 |  |  | IF (by.GT.0..AND.bx.GT.0.) pmisd = pmid | 
| 164 |  |  | ENDIF | 
| 165 |  |  | C | 
| 166 |  |  | c     Calculate the position of the strip closest to the fitted line and | 
| 167 |  |  | c     the CoE of 4 surrounding strips. | 
| 168 |  |  | C | 
| 169 |  |  | DO i=1,22 | 
| 170 |  |  | CALL POS2STRIP(1,i,ax+bx*zx(i),xncnt(i)) | 
| 171 |  |  | CALL POS2STRIP(2,i,ay+by*zy(i),yncnt(i)) | 
| 172 |  |  | IF (xncnt(i).GE.1.AND.xncnt(i).LE.96) THEN | 
| 173 |  |  | CALL ENCENT2(1,xncnt(i),i,4,xecnt(i),xwght(i)) | 
| 174 |  |  | ELSE | 
| 175 |  |  | xecnt(i)=-99. | 
| 176 |  |  | xwght(i)=1.0e5 | 
| 177 |  |  | ENDIF | 
| 178 |  |  | C | 
| 179 |  |  | IF (yncnt(i).GE.1.AND.yncnt(i).LE.96) THEN | 
| 180 |  |  | CALL ENCENT2(2,yncnt(i),i,4,yecnt(i),ywght(i)) | 
| 181 |  |  | ELSE | 
| 182 |  |  | yecnt(i)=-99. | 
| 183 |  |  | ywght(i)=1.0e5 | 
| 184 |  |  | ENDIF | 
| 185 |  |  | xncnt2(it+1,i)=xncnt(i) | 
| 186 |  |  | yncnt2(it+1,i)=yncnt(i) | 
| 187 |  |  | xecnt2(it+1,i)=xecnt(i) | 
| 188 |  |  | xwght2(it+1,i)=xwght(i) | 
| 189 |  |  | yecnt2(it+1,i)=yecnt(i) | 
| 190 |  |  | ywght2(it+1,i)=ywght(i) | 
| 191 |  |  | ENDDO | 
| 192 |  |  | C | 
| 193 |  |  | c     Calculate at which plane the particle has entered the calorimeter | 
| 194 |  |  | c     according to the fit | 
| 195 |  |  | C | 
| 196 |  |  | IF (bx.GT.0.) CALL POS2PLANE((calwidth/2)/bx-ax/bx,plentx) | 
| 197 |  |  | IF (bx.LT.0.) CALL POS2PLANE(-(calwidth/2)/bx-ax/bx,plentx) | 
| 198 |  |  | IF (bx.EQ.0.) plentx=1 | 
| 199 |  |  | IF (by.GT.0.) CALL POS2PLANE((calwidth/2)/by-ay/by,plenty) | 
| 200 |  |  | IF (by.LT.0.) CALL POS2PLANE(-(calwidth/2)/by-ay/by,plenty) | 
| 201 |  |  | IF (by.EQ.0.) plenty=1 | 
| 202 |  |  | plent=MAX(plentx,plenty) | 
| 203 |  |  | C | 
| 204 |  |  | c     Calculate the projection in the bottom plane | 
| 205 |  |  | C | 
| 206 |  |  | qxp=ax+bx*ztopx | 
| 207 |  |  | qyp=ay+by*ztopy | 
| 208 |  |  | zetamx=ztopx-zbotx | 
| 209 |  |  | zetamy=ztopy-zboty | 
| 210 |  |  | C | 
| 211 |  |  | IF (qxp.GT.calwidth/2) THEN | 
| 212 |  |  | zetamx = zetamx-(qxp-calwidth/2)/bx | 
| 213 |  |  | qxp = calwidth/2 | 
| 214 |  |  | ENDIF | 
| 215 |  |  | IF (qxp.LT.-calwidth/2) THEN | 
| 216 |  |  | zetamx = zetamx-(qxp+calwidth/2)/bx | 
| 217 |  |  | qxp = -calwidth/2 | 
| 218 |  |  | ENDIF | 
| 219 |  |  | IF (qyp.GT.calwidth/2) THEN | 
| 220 |  |  | zetamy = zetamy-(qyp-calwidth/2)/by | 
| 221 |  |  | qyp = calwidth/2 | 
| 222 |  |  | ENDIF | 
| 223 |  |  | IF (qyp.LT.-calwidth/2) THEN | 
| 224 |  |  | zetamy = zetamy-(qyp+calwidth/2)/by | 
| 225 |  |  | qyp = -calwidth/2 | 
| 226 |  |  | ENDIF | 
| 227 |  |  | C | 
| 228 |  |  | posixmd = qxp - zetamx*TAN(tmisd)*COS(pmisd) | 
| 229 |  |  | posiymd = qyp - zetamy*TAN(tmisd)*SIN(pmisd) | 
| 230 |  |  | C | 
| 231 |  |  | c     Energy correction | 
| 232 |  |  | C | 
| 233 |  |  | IF ((ABS(ax+bx*zbotx).LE.10.1).AND. | 
| 234 |  |  | &        (ABS(ay+by*zboty).LE.10.1)) THEN | 
| 235 |  |  | ifin = finpar + 3 | 
| 236 |  |  | IF (ifin.GT.22) ifin = 22 | 
| 237 |  |  | ELSE | 
| 238 |  |  | ifin = finpar | 
| 239 |  |  | ENDIF | 
| 240 |  |  |  | 
| 241 |  |  | parzen2 = 0.0 | 
| 242 |  |  | DO i=1,ifin | 
| 243 |  |  | parzen2=parzen2+parz(1,i)+parz(2,i) !Sum up energy until 'ifin' | 
| 244 |  |  | ENDDO | 
| 245 |  |  |  | 
| 246 |  |  | fflaco = ifin-plent | 
| 247 |  |  | funcor2=parzen2/ENCORR(fflaco/COS(tmisd)) | 
| 248 |  |  |  | 
| 249 |  |  | IF ((ABS(ax+bx*zbotx).LE.10.1).AND. | 
| 250 |  |  | &        (ABS(ay+by*zboty).LE.10.1)) THEN | 
| 251 |  |  | parzen3 = funcor2*(1.-.01775-funcor2*(.2096E-4)+ | 
| 252 |  |  | &           funcor2*funcor2*funcor2*(.2865E-9)) | 
| 253 |  |  | ELSE | 
| 254 |  |  | parzen3 = funcor2*(1.-.124+funcor2*(.24E-3)+ | 
| 255 |  |  | &           funcor2*funcor2*funcor2*(.25E-9))/.7 | 
| 256 |  |  | ENDIF | 
| 257 |  |  | C | 
| 258 |  |  | c     Angle correction | 
| 259 |  |  | C | 
| 260 |  |  | DO i=1,22 | 
| 261 |  |  | C | 
| 262 |  |  | c           x view | 
| 263 |  |  | C | 
| 264 |  |  | IF (xecnt(i).GT.-97.) THEN | 
| 265 |  |  | IF (parzen3.GE.250.) THEN | 
| 266 |  |  | xcorr(i) = wcorr*CORRANG(FLOAT(i)/ffla,(thxm*180./PI)+ | 
| 267 |  |  | &                 (parzen3-250)*1.764705E-2) | 
| 268 |  |  | ELSE | 
| 269 |  |  | xcorr(i) = wcorr*CORRANG(FLOAT(i)/ffla,thxm*180./PI) | 
| 270 |  |  | ENDIF | 
| 271 |  |  | ELSE | 
| 272 |  |  | xcorr(i) = 0.0 | 
| 273 |  |  | ENDIF | 
| 274 |  |  | xecnt(i) = xecnt(i) + xcorr(i) | 
| 275 |  |  | C | 
| 276 |  |  | c           y view | 
| 277 |  |  | C | 
| 278 |  |  | IF (yecnt(i).GT.-97.) THEN | 
| 279 |  |  | IF (parzen3.GE.250.) THEN | 
| 280 |  |  | ycorr(i) = wcorr*CORRANG(FLOAT(i)/ffla,thym*180./PI+ | 
| 281 |  |  | &                 (parzen3-250)*1.764705E-2) | 
| 282 |  |  | ELSE | 
| 283 |  |  | ycorr(i) = wcorr*CORRANG(FLOAT(i)/ffla,thym*180./PI) | 
| 284 |  |  | ENDIF | 
| 285 |  |  | ELSE | 
| 286 |  |  | ycorr(i) = 0.0 | 
| 287 |  |  | ENDIF | 
| 288 |  |  | yecnt(i) = yecnt(i) + ycorr(i) | 
| 289 |  |  | C | 
| 290 |  |  | xcorr2(it,i)=xcorr(i) | 
| 291 |  |  | ycorr2(it,i)=ycorr(i) | 
| 292 |  |  | C | 
| 293 |  |  | ENDDO | 
| 294 |  |  | C | 
| 295 |  |  | ENDDO | 
| 296 |  |  | C | 
| 297 |  |  | RETURN | 
| 298 |  |  | C | 
| 299 |  |  | END | 
| 300 |  |  |  | 
| 301 |  |  | C | 
| 302 |  |  | C----------------------------------------------------------------------- | 
| 303 |  |  | SUBROUTINE ENCENT(view,nsmax,nplane,nit,ecnt,weight) | 
| 304 |  |  | c | 
| 305 |  |  | c Calculates the center of energy in a cluster | 
| 306 |  |  | c | 
| 307 |  |  | C----------------------------------------------------------------------- | 
| 308 |  |  | C | 
| 309 |  |  | IMPLICIT NONE | 
| 310 |  |  | C | 
| 311 |  |  | INCLUDE 'INTEST.TXT' | 
| 312 |  |  | C | 
| 313 |  |  | REAL ecnt,weight,esumw,esum,strip1,strip2,xypos,zpos,xymean, | 
| 314 |  |  | &     xystd | 
| 315 |  |  | INTEGER nsmax,st0,st1,st2,st3,nplane,nit,view,npos,p | 
| 316 |  |  | C | 
| 317 |  |  | PARAMETER (strip1=17.,strip2=9.) | 
| 318 |  |  | C | 
| 319 |  |  | st0 = NINT(strip1)                ! =17 cluster width for iteration 1 | 
| 320 |  |  | st1 = NINT(strip1-strip2)         ! =8 | 
| 321 |  |  | st2 = NINT((strip1-1.)/2. + 1.)   ! =9 cluster width for iteration 2 | 
| 322 |  |  | st3 = NINT(FLOAT(st1)/2.)         ! =4 | 
| 323 |  |  | C | 
| 324 |  |  | IF (nsmax.GT.0.) THEN | 
| 325 |  |  | esumw = 0. | 
| 326 |  |  | esum = 0. | 
| 327 |  |  | xymean = 0. | 
| 328 |  |  | xystd = 0. | 
| 329 |  |  | DO P = 1, (st0-(nit-1)*st1) ! loop to 17(9) for iteration 1(2) | 
| 330 |  |  | C | 
| 331 |  |  | c     Calculate strip number | 
| 332 |  |  | C | 
| 333 |  |  | IF (nsmax.LT.(st2-st3*(nit-1))) THEN ! if nsmax < 9(5) for iteration 1(2) | 
| 334 |  |  | npos = P | 
| 335 |  |  | IF (npos.GT.(st0-ABS(nsmax-st2-st3*(nit-1)))) | 
| 336 |  |  | &              GO TO 7100  ! quit loop after the 8th(4th) strip to the right of nsmax for iteration 1(2) | 
| 337 |  |  | ELSE | 
| 338 |  |  | npos = nsmax+P-st2+st3*(nit-1) ! npos=nsmax-8,-7, ... +7,+8(nsmax-4,-3, ... +3,+4) for iteration 1(2) | 
| 339 |  |  | IF (npos.GT.96) | 
| 340 |  |  | &              GO TO 7100 ! quit loop after the 96th strip | 
| 341 |  |  | ENDIF | 
| 342 |  |  | C | 
| 343 |  |  | c     Get the position for npos | 
| 344 |  |  | C | 
| 345 |  |  | CALL STRIP2POS(view,nplane,npos,xypos,zpos) | 
| 346 |  |  | C | 
| 347 |  |  | c     Sum up energies | 
| 348 |  |  | C | 
| 349 |  |  | esumw = esumw + xypos*ESTRIP(view,nplane,npos) | 
| 350 |  |  | esum = esum + ESTRIP(view,nplane,npos) | 
| 351 |  |  | ENDDO | 
| 352 |  |  | C | 
| 353 |  |  | 7100    CONTINUE | 
| 354 |  |  | C | 
| 355 |  |  | c     Calculate CoE and wieghts | 
| 356 |  |  | C | 
| 357 |  |  | IF (esum.GT.0.) THEN | 
| 358 |  |  | ecnt = esumw/esum | 
| 359 |  |  | weight = ecnt/(esum**.79) | 
| 360 |  |  | ELSE | 
| 361 |  |  | ecnt = -98. | 
| 362 |  |  | weight = 1E5 | 
| 363 |  |  | ENDIF | 
| 364 |  |  | ELSE | 
| 365 |  |  | ecnt = -97. | 
| 366 |  |  | weight = 1E5 | 
| 367 |  |  | ENDIF | 
| 368 |  |  | C | 
| 369 |  |  | RETURN | 
| 370 |  |  | C | 
| 371 |  |  | END | 
| 372 |  |  | C | 
| 373 |  |  | C----------------------------------------------------------------------- | 
| 374 |  |  | SUBROUTINE ENCENT2(view,nsmax,nplane,width,ecnt,weight) | 
| 375 |  |  | C----------------------------------------------------------------------- | 
| 376 |  |  | C | 
| 377 |  |  | IMPLICIT NONE | 
| 378 |  |  | C | 
| 379 |  |  | INCLUDE 'INTEST.TXT' | 
| 380 |  |  | C | 
| 381 |  |  | INTEGER i,nplane,view,nsmax,width,nrec | 
| 382 |  |  | REAL mx,mx2,s1,s2,xypos,ecnt,weight,zpos | 
| 383 |  |  | C | 
| 384 |  |  | mx=0.0 | 
| 385 |  |  | mx2=0.0 | 
| 386 |  |  | s2=0.0 | 
| 387 |  |  | nrec=0 | 
| 388 |  |  | DO i=nsmax-width,nsmax+width | 
| 389 |  |  | C | 
| 390 |  |  | IF(i.GT.0.AND.i.LT.97.AND.ESTRIP(view,nplane,i).GT.0.0) THEN | 
| 391 |  |  | C | 
| 392 |  |  | nrec=nrec+1 | 
| 393 |  |  | C | 
| 394 |  |  | CALL STRIP2POS(view,nplane,i,xypos,zpos) | 
| 395 |  |  | C | 
| 396 |  |  | s1=s2 | 
| 397 |  |  | s2=s2+ESTRIP(view,nplane,i) | 
| 398 |  |  | mx=(mx*s1+xypos*ESTRIP(view,nplane,i))/s2 | 
| 399 |  |  | mx2=(mx2*s1+(xypos**2)*ESTRIP(view,nplane,i))/s2 | 
| 400 |  |  | C | 
| 401 |  |  | ENDIF | 
| 402 |  |  | C | 
| 403 |  |  | ENDDO | 
| 404 |  |  | C | 
| 405 |  |  | IF (nrec.GT.0) THEN | 
| 406 |  |  | ecnt=mx | 
| 407 |  |  | IF (nrec.EQ.1) weight=0.244/sqrt(12*s2) | 
| 408 |  |  | IF (nrec.NE.1) weight=sqrt(mx2-mx**2)/sqrt(s2) | 
| 409 |  |  | ELSE | 
| 410 |  |  | ecnt=-99.0 | 
| 411 |  |  | weight=100000.0 | 
| 412 |  |  | ENDIF | 
| 413 |  |  | C | 
| 414 |  |  | RETURN | 
| 415 |  |  | C | 
| 416 |  |  | END | 
| 417 |  |  |  | 
| 418 |  |  | C--------------------------------------------------------------------------- | 
| 419 |  |  | SUBROUTINE POS2PLANE(pos,plane) | 
| 420 |  |  | c | 
| 421 |  |  | c Find the plane closest to a certain z position | 
| 422 |  |  | C--------------------------------------------------------------------------- | 
| 423 |  |  |  | 
| 424 |  |  | IMPLICIT NONE | 
| 425 |  |  |  | 
| 426 |  |  | REAL pos, npos, pdiff, xy | 
| 427 |  |  | INTEGER view, plane, nplane | 
| 428 |  |  |  | 
| 429 |  |  | pdiff=1000. | 
| 430 |  |  | plane=1 | 
| 431 |  |  | DO view=1,2 | 
| 432 |  |  | DO nplane=1,22 | 
| 433 |  |  | CALL STRIP2POS(view,nplane,1,xy,npos) | 
| 434 |  |  | IF (ABS(pos-npos).LT.pdiff) THEN | 
| 435 |  |  | pdiff=ABS(pos-npos) | 
| 436 |  |  | plane=nplane | 
| 437 |  |  | ENDIF | 
| 438 |  |  | ENDDO | 
| 439 |  |  | ENDDO | 
| 440 |  |  | C | 
| 441 |  |  | RETURN | 
| 442 |  |  | C | 
| 443 |  |  | END | 
| 444 |  |  |  | 
| 445 |  |  | C--------------------------------------------------------------------------- | 
| 446 |  |  | SUBROUTINE POS2STRIP(view,nplane,pos,strip) | 
| 447 |  |  | c | 
| 448 |  |  | c Find the strip closest to a certain x or y position | 
| 449 |  |  | C--------------------------------------------------------------------------- | 
| 450 |  |  | C | 
| 451 |  |  | IMPLICIT NONE | 
| 452 |  |  | C | 
| 453 |  |  | REAL pos, npos, minpos, maxpos, pdiff, z | 
| 454 |  |  | INTEGER view, nplane, strip, i | 
| 455 |  |  | C | 
| 456 |  |  | pdiff=1000. | 
| 457 |  |  | strip=-1 | 
| 458 |  |  | CALL STRIP2POS(view,nplane,1,minpos,z) | 
| 459 |  |  | CALL STRIP2POS(view,nplane,96,maxpos,z) | 
| 460 |  |  | IF (pos.LT.minpos) THEN | 
| 461 |  |  | strip=0 | 
| 462 |  |  | ELSEIF (pos.GT.maxpos) THEN | 
| 463 |  |  | strip=97 | 
| 464 |  |  | ELSE | 
| 465 |  |  | DO i=1,96 | 
| 466 |  |  | CALL STRIP2POS(view,nplane,i,npos,z) | 
| 467 |  |  | IF (ABS(pos-npos).LT.pdiff) THEN | 
| 468 |  |  | pdiff=ABS(pos-npos) | 
| 469 |  |  | strip=i | 
| 470 |  |  | ENDIF | 
| 471 |  |  | ENDDO | 
| 472 |  |  | ENDIF | 
| 473 |  |  | C | 
| 474 |  |  | RETURN | 
| 475 |  |  | C | 
| 476 |  |  | END | 
| 477 |  |  |  | 
| 478 |  |  | C--------------------------------------------------------------------- | 
| 479 |  |  | SUBROUTINE STRIP2POS(view,nplane,nstrip,xy,z) | 
| 480 |  |  | c | 
| 481 |  |  | c Calculates the x (or y) and z position of a strip in PAMELA coordinates | 
| 482 |  |  | c | 
| 483 |  |  | c Arguments | 
| 484 |  |  | c --------- | 
| 485 |  |  | c view:   x=1 and y=2 | 
| 486 |  |  | c nplane: plane number 1-22 | 
| 487 |  |  | c nstrip: strip number 1-96 | 
| 488 |  |  | c | 
| 489 |  |  | c Return values | 
| 490 |  |  | c ------------- | 
| 491 |  |  | c xy: x or y position of the strip-center in PAMELA coordinates | 
| 492 |  |  | c z:  z position of the plane in PMAELA coordinates | 
| 493 |  |  | C--------------------------------------------------------------------- | 
| 494 |  |  |  | 
| 495 |  |  | IMPLICIT NONE | 
| 496 |  |  |  | 
| 497 |  |  | INTEGER view,isy,iseven,nplane,nstrip,nwaf,wstr,npl | 
| 498 |  |  | REAL wpos,pos,x,y,z,xy | 
| 499 |  |  |  | 
| 500 |  |  | c     Calculate the x- or y-position in a plane | 
| 501 |  |  |  | 
| 502 |  |  | nwaf=int((nstrip-1)/32) !what wafer (0-2) | 
| 503 |  |  | wstr=mod(nstrip-1,32) !what strip in the wafer (0-31) | 
| 504 |  |  | wpos=0.096+0.122+wstr*0.244 !the position of the strip center in the wafer | 
| 505 | mocchiut | 1.2 | c      pos=wpos+nwaf*8.0005-12.0005 !the position in the plane (oigo shifted to center of plane) | 
| 506 |  |  | pos=wpos+nwaf*8.0505-12.0005 !the position in the plane (oigo shifted to center of plane) | 
| 507 | mocchiut | 1.1 |  | 
| 508 |  |  | c     Calculate z position and add x-y-offset depending on the plane number | 
| 509 |  |  |  | 
| 510 |  |  | isy=view-1 !isy=0 for x and 1 for y | 
| 511 |  |  | iseven=mod(nplane,2)! iseven=0 for odd and 1 for even planes | 
| 512 |  |  | npl=nplane-1 | 
| 513 |  |  | IF (isy.EQ.0) THEN | 
| 514 |  |  | IF (iseven.EQ.0) THEN | 
| 515 |  |  | c            print *,'CALCULATING X-ODD' | 
| 516 |  |  | x = pos+0.05 !x-odd | 
| 517 |  |  | y = pos-0.2 | 
| 518 |  |  | z = -26.762-0.809*npl-0.2*(npl-1)/2 | 
| 519 |  |  | ELSE | 
| 520 |  |  | c            print *,'CALCULATING X-EVEN' | 
| 521 |  |  | x = pos-0.05 !x-even | 
| 522 |  |  | y = pos+0.0 | 
| 523 |  |  | z = -26.762-0.809*npl-0.2*npl/2 | 
| 524 |  |  | ENDIF | 
| 525 |  |  | xy=x | 
| 526 |  |  | ELSE | 
| 527 |  |  | IF (iseven.EQ.0) THEN | 
| 528 |  |  | c            print *,'CALCULATING Y-ODD' | 
| 529 |  |  | x = pos-0.1 ! y-odd | 
| 530 |  |  | y = pos-0.15 | 
| 531 |  |  | z = -26.181-0.809*npl-0.2*(npl-1)/2 | 
| 532 |  |  | ELSE | 
| 533 |  |  | c            print *,'CALCULATING Y-EVEN' | 
| 534 |  |  | x =  pos+0.1 ! y-even | 
| 535 |  |  | y =  pos-0.05 | 
| 536 |  |  | z = -26.181-0.809*npl-0.2*npl/2 | 
| 537 |  |  | ENDIF | 
| 538 |  |  | xy=y | 
| 539 |  |  | ENDIF | 
| 540 |  |  | C | 
| 541 |  |  | RETURN | 
| 542 |  |  | END | 
| 543 |  |  |  | 
| 544 |  |  | C--------------------------------------------------------------------------- | 
| 545 |  |  | SUBROUTINE LEASTSQR(N,x,y,sy,a,b,ea,eb,chi2,Nfit) | 
| 546 |  |  | c | 
| 547 |  |  | c Linear least square fit (method is described in "Taylor" chapter 8) | 
| 548 |  |  | c | 
| 549 |  |  | c | 
| 550 |  |  | c | 
| 551 |  |  | C--------------------------------------------------------------------------- | 
| 552 |  |  | C | 
| 553 |  |  | INTEGER N,Nfit | 
| 554 |  |  | REAL x(N),y(N),sy(N),w(N),Swx2,Swx,Swy,Swxy,Sw,a,b,ea,eb,chi2 | 
| 555 |  |  | C | 
| 556 |  |  | Swx2=0 | 
| 557 |  |  | Swx=0 | 
| 558 |  |  | Swy=0 | 
| 559 |  |  | Swxy=0 | 
| 560 |  |  | Sw=0 | 
| 561 |  |  | Nfit=0 | 
| 562 |  |  | DO i=1,N | 
| 563 |  |  | IF (y(i).GT.-97.) THEN | 
| 564 |  |  | Nfit=Nfit+1 | 
| 565 |  |  | w(i)=1/(sy(i)**2) ! the weight | 
| 566 |  |  | Swx2=Swx2+w(i)*(x(i)**2)! some sums | 
| 567 |  |  | Swx=Swx+w(i)*x(i) | 
| 568 |  |  | Swy=Swy+w(i)*y(i) | 
| 569 |  |  | Swxy=Swxy+w(i)*x(i)*y(i) | 
| 570 |  |  | Sw=Sw+w(i) | 
| 571 |  |  | c           print *,'FIT LOOP:',sy(i),w(i),x(i),y(i),Swx2,Swx,Swy,Swxy,Sw | 
| 572 |  |  | ENDIF | 
| 573 |  |  | ENDDO | 
| 574 |  |  |  | 
| 575 |  |  | delta=Sw*Swx2-(Swx**2) | 
| 576 |  |  | a=(Swx2*Swy-Swx*Swxy)/delta ! offset | 
| 577 |  |  | b=(Sw*Swxy-Swx*Swy)/delta ! slope | 
| 578 |  |  | ea=sqrt(Swx2/delta) ! offset standard deviation | 
| 579 |  |  | eb=sqrt(Sw/delta) ! slope standard deviation | 
| 580 |  |  |  | 
| 581 |  |  | chi2=0.0 | 
| 582 |  |  | DO i=1,N | 
| 583 |  |  | IF (y(i).GT.-97.) THEN | 
| 584 |  |  | chi2=chi2+((a+b*x(i))-y(i))**2/sy(i)**2 | 
| 585 |  |  | ENDIF | 
| 586 |  |  | ENDDO | 
| 587 |  |  |  | 
| 588 |  |  | c      print *,'FIT RESULT:',a,b,chi2,Nfit | 
| 589 |  |  | RETURN | 
| 590 |  |  | END | 
| 591 |  |  |  | 
| 592 |  |  | C--------------------------------------------------------------------------- | 
| 593 |  |  | REAL FUNCTION ENCORR(X) | 
| 594 |  |  | C--------------------------------------------------------------------------- | 
| 595 |  |  |  | 
| 596 |  |  | REAL FFUN | 
| 597 |  |  | PARAMETER (CALIB=0.0001059994) | 
| 598 |  |  | PARAMETER (P1=.8993962E-2) | 
| 599 |  |  | PARAMETER (P2=-.449717) | 
| 600 |  |  | PARAMETER (P3=10.90797) | 
| 601 |  |  | PARAMETER (P4=-.6768349E-2) | 
| 602 |  |  |  | 
| 603 |  |  |  | 
| 604 |  |  | FFUN = P1 + P4 * ATAN((X - P3) * P2) | 
| 605 |  |  |  | 
| 606 |  |  | IF (FFUN.EQ.0.) THEN | 
| 607 |  |  | FFUN = 1.E-10 | 
| 608 |  |  | ENDIF | 
| 609 |  |  |  | 
| 610 |  |  | ENCORR = FFUN/CALIB | 
| 611 |  |  |  | 
| 612 |  |  | RETURN | 
| 613 |  |  | END | 
| 614 |  |  |  | 
| 615 |  |  | C--------------------------------------------------------------------------- | 
| 616 |  |  | REAL FUNCTION CORRANG(X,ANGX) | 
| 617 |  |  | C--------------------------------------------------------------------------- | 
| 618 |  |  |  | 
| 619 |  |  | REAL A,B,X,ANGX | 
| 620 |  |  |  | 
| 621 |  |  | A = -0.017695 + ANGX * 0.0016963 | 
| 622 |  |  | B = -0.049583 + ANGX * 0.0050639 | 
| 623 |  |  | CORRANG = 0. | 
| 624 |  |  | IF (X.LE..9) CORRANG = A * (X - .9) | 
| 625 |  |  | IF (X.GE..9.AND.X.LE.1.1) CORRANG = 0. | 
| 626 |  |  | IF (X.GE.1.1) CORRANG = B * (X - 1.1) | 
| 627 |  |  | IF (ANGX.LT.10.) CORRANG = 0. | 
| 628 |  |  |  | 
| 629 |  |  | RETURN | 
| 630 |  |  | END | 
| 631 |  |  |  |