1 |
***************************************************************************** |
2 |
INTEGER FUNCTION CALOL2TR() |
3 |
c |
4 |
IMPLICIT NONE |
5 |
C |
6 |
INCLUDE 'INTEST.TXT' |
7 |
C |
8 |
DOUBLE PRECISION al_p(5), |
9 |
& xout(nplav),yout(nplav),zin(nplav) |
10 |
C |
11 |
REAL PIANO(NPLAV), VARFIT(2) |
12 |
REAL TX, TY, SHIFT |
13 |
REAL BAR(2,NPLAV), DISTY |
14 |
REAL DISTX, Y(NPLAV), YY(NPLAV) |
15 |
REAL RIG, PPLANEMAX, RMASS |
16 |
REAL RNSS, QTOTT, RQT, MX, MY |
17 |
REAL CHECK, ENER, CX, CY |
18 |
REAL EINF, ESUP, RPIANO(2) |
19 |
REAL hmemor(9000000), X01PL |
20 |
C |
21 |
REAL ax,bx,eax,ebx,chi2x |
22 |
REAL ay,by,eay,eby,chi2y |
23 |
REAL parzen3, TMISD |
24 |
INTEGER Nfitx,Nfity, MNPLA |
25 |
C |
26 |
INTEGER INDEX, NTOT(2), NPIANI, GTR |
27 |
INTEGER j, m, i, IWPL(2), timpx, timpy, T, nn |
28 |
INTEGER IPLANE, NNX, NNY, INFX, INFY, ISUPX, ISUPY |
29 |
INTEGER IBAR(2,NPLAV), NPFIT(2), CHTRACK,IWPLU |
30 |
INTEGER Iquest(100), ICONTROL5, nin, IFAIL |
31 |
C |
32 |
PARAMETER (X01PL=0.74) |
33 |
C |
34 |
|
35 |
C |
36 |
COMMON / slftrig / tmisd,ax,bx,eax,ebx,chi2x,Nfitx,ay,by,eay,eby, |
37 |
& chi2y,Nfity,parzen3 |
38 |
SAVE / slftrig / |
39 |
C |
40 |
COMMON / TAGLIOEN / EINF, ESUP, ENER(2) |
41 |
SAVE / TAGLIOEN / |
42 |
C |
43 |
COMMON / SHIFT / SHIFT |
44 |
SAVE / SHIFT / |
45 |
C |
46 |
COMMON / ANGOLO / BAR, IBAR |
47 |
SAVE / ANGOLO / |
48 |
C |
49 |
COMMON / WHERE / CX, CY, PIANO |
50 |
SAVE / WHERE / |
51 |
C |
52 |
COMMON / GENERAL / RIG, RMASS |
53 |
SAVE / GENERAL / |
54 |
C |
55 |
COMMON / CH / CHECK |
56 |
SAVE / CH / |
57 |
C |
58 |
COMMON / CALOFIT / VARFIT, NPFIT, IWPL,CHTRACK |
59 |
SAVE / CALOFIT / |
60 |
C |
61 |
COMMON / pawcd / hmemor |
62 |
save / pawcd / |
63 |
C |
64 |
Common / QUESTd / Iquest |
65 |
save / questd / |
66 |
C |
67 |
C Begin ! |
68 |
C |
69 |
c print *,' sono qui' |
70 |
CALOL2TR = 0; |
71 |
NCORE = 0. |
72 |
QCORE = 0. |
73 |
NOINT = 0. |
74 |
QCYL = 0. |
75 |
NCYL = 0. |
76 |
QLOW = 0. |
77 |
NLOW = 0. |
78 |
QTR = 0. |
79 |
NTR = 0. |
80 |
QLAST = 0. |
81 |
QTRACK = 0. |
82 |
QPRESH = 0. |
83 |
NPRESH = 0. |
84 |
QTRACKX = 0. |
85 |
QTRACKY = 0. |
86 |
DXTRACK = 0. |
87 |
DYTRACK = 0. |
88 |
QPRE = 0. |
89 |
NPRE = 0. |
90 |
NLAST = 0. |
91 |
PLANETOT = 0. |
92 |
QMEAN = 0. |
93 |
C SELFTRIGGER = 0 |
94 |
C |
95 |
C BEGIN WITH THE FIRST TRACK IF WE HAVE A TRACK FROM TRACKER |
96 |
C |
97 |
T = 1 |
98 |
C |
99 |
10 CONTINUE |
100 |
C |
101 |
IF (GOOD2.EQ.1) THEN |
102 |
C |
103 |
CHTRACK = 0 |
104 |
C |
105 |
CALL VZERO(IWPL,2) |
106 |
CALL VZERO(BAR,2*NPLAV) |
107 |
CALL VZERO(IBAR,2*NPLAV) |
108 |
CALL VZERO(TBAR,2*NPLAV) |
109 |
CALL VZERO(TIBAR,2*NPLAV) |
110 |
CALL VZERO(Y,NPLAV) |
111 |
CALL VZERO(YY,NPLAV) |
112 |
CALL VZERO(XOUT,NPLAV) |
113 |
CALL VZERO(YOUT,NPLAV) |
114 |
do m = 1, 5 |
115 |
al_p(m) = al_pp(t,m) |
116 |
c print *,' al_p(',m,') = ',al_p(m) |
117 |
enddo |
118 |
if (al_p(5).eq.0.) THEN |
119 |
PRINT *,' CALORIMETER - WARNING F77: track with R = 0, discarded' |
120 |
GOOD2 = 0 |
121 |
GOTO 969 |
122 |
ENDIF |
123 |
DO M = 1,2 |
124 |
DO I = 1,NPLA |
125 |
XOUT(I) = 0. |
126 |
YOUT(I) = 0. |
127 |
IF (MOD(M,2).EQ.0) THEN |
128 |
DISTX = PIANO(I) + ZALIG |
129 |
c print *,'T Y PLANE I= ',I,' Z = ',DISTX |
130 |
ELSE |
131 |
DISTX = PIANO(I) - 5.81 + ZALIG |
132 |
c print *,'T X PLANE I= ',I,' Z = ',DISTX |
133 |
ENDIF |
134 |
ZIN(I) = distx / 10. |
135 |
c print *,' ZIN(',I,') = ',ZIN(I) |
136 |
TBAR(M,I) = 0. |
137 |
TIBAR(M,I) = 0 |
138 |
enddo |
139 |
IFAIL = 0 |
140 |
call DOTRACK(NPLA,ZIN,XOUT,YOUT,AL_P,IFAIL) |
141 |
if(IFAIL.ne.0)then |
142 |
GOOD2 = 0 |
143 |
c print *,' CALORIMETER - WARNING F77: tracking failed ' |
144 |
goto 969 |
145 |
endif |
146 |
TX = TAN(ASIN(AL_P(3))) * COS(AL_P(4)) |
147 |
TY = TAN(ASIN(AL_P(3))) * SIN(AL_P(4)) |
148 |
DO I = 1, NPLA |
149 |
NN = 0 |
150 |
c IF (M.EQ.2) NN = 1 |
151 |
IF (MOD(I,2).EQ.NN) THEN |
152 |
IF (REVERSE.EQ.0) THEN |
153 |
SHIFT = -0.5 |
154 |
ELSE |
155 |
SHIFT = +0.5 |
156 |
ENDIF |
157 |
ELSE |
158 |
IF (REVERSE.EQ.0) THEN |
159 |
SHIFT = +0.5 |
160 |
ELSE |
161 |
SHIFT = -0.5 |
162 |
ENDIF |
163 |
ENDIF |
164 |
C |
165 |
C CHECK IF XOUT OR YOUT ARE NaN |
166 |
C |
167 |
IF (XOUT(I).NE.XOUT(I).OR.YOUT(I).NE.YOUT(I)) THEN |
168 |
c print *, |
169 |
c & ' CALORIMETER - WARNING F77: tracking error (NaN values)' |
170 |
GOOD2 = 0 |
171 |
GOTO 969 |
172 |
ENDIF |
173 |
C |
174 |
CX = XOUT(I)*10. + XALIG |
175 |
CY = YOUT(I)*10. + YALIG |
176 |
C |
177 |
IF (I.EQ.1) THEN |
178 |
TIMPX = CX |
179 |
TIMPY = CY |
180 |
ENDIF |
181 |
IF (M.EQ.1) THEN |
182 |
Y(I) = CX |
183 |
BAR(M,I) = Y(I) |
184 |
TBAR(M,I) = (Y(I) - XALIG)/10. |
185 |
IF (I.EQ.NPLA) MX=ABS(Y(1)-Y(NPLA))/ |
186 |
& ABS(ZIN(1)-ZIN(NPLA)) |
187 |
ELSE |
188 |
YY(I) = CY |
189 |
BAR(M,I) = YY(I) |
190 |
TBAR(M,I) = (-YALIG + YY(I))/10. |
191 |
IF (I.EQ.NPLA) MY=ABS(Y(1)-Y(NPLA))/ |
192 |
& ABS(ZIN(1)-ZIN(NPLA)) |
193 |
ENDIF |
194 |
CALL LASTRISCIA(BAR(M,I),IBAR(M,I)) |
195 |
tibar(M,I) = ibar(m,i) |
196 |
IF (ibar(m,i).EQ.-1) THEN |
197 |
CHTRACK = CHTRACK + 1 |
198 |
ELSE |
199 |
IWPL(M) = IWPL(M) + 1 |
200 |
ENDIF |
201 |
ENDDO |
202 |
ENDDO |
203 |
969 continue |
204 |
cC |
205 |
cC IF WE HAVE A GOOD CALORIMETER FIT DOES IT MATCH WITH TRACKER FIT? |
206 |
cC |
207 |
c IF (GOOD2.EQ.1.AND.NPFIT(2).GT.15.AND.VARFIT(2).LT.1000 |
208 |
c & .AND.TRKCHI2.EQ.1) THEN |
209 |
c IF (ABS(TBAR(2,1)-CBAR(2,1))<40.) THEN |
210 |
cC |
211 |
cC GOOD, THE TWO TRACKS COINCIDE |
212 |
cC |
213 |
c IF (T.EQ.2) TRKCHI2 = 2 |
214 |
c GOTO 6996 |
215 |
c ELSE |
216 |
cC |
217 |
cC IT IS NOT A GOOD FIT BUT WE HAVE AN IMAGE AND IT IS THE FIRST TRACK |
218 |
cC |
219 |
c IF (T.EQ.1) THEN |
220 |
c T = 2 |
221 |
c GOTO 10 |
222 |
c ENDIF |
223 |
c IF (T.EQ.2) THEN |
224 |
c TRKCHI2 = -1 |
225 |
c T = 1 |
226 |
c GOTO 10 |
227 |
c ENDIF |
228 |
c ENDIF |
229 |
c ENDIF |
230 |
C |
231 |
IF (GOOD2.EQ.0) THEN |
232 |
c IF (T.EQ.1.AND.TRKCHI2.EQ.1) THEN |
233 |
c GOOD2 = 1 |
234 |
c T = 2 |
235 |
c GOTO 10 |
236 |
c ENDIF |
237 |
GOTO 50 |
238 |
ENDIF |
239 |
C |
240 |
GOTO 6996 |
241 |
C |
242 |
ENDIF |
243 |
C |
244 |
C WE MUST PROCESS A SELFTRIGGER EVENT |
245 |
C |
246 |
IF (TRIGTY.GE.2.AND.HZN.EQ.0) THEN |
247 |
C |
248 |
C CALL SELFTRIGGER SUBROUTINE |
249 |
C |
250 |
CALL VZERO(IWPL,2) |
251 |
CALL VZERO(VARCFIT,2) |
252 |
CALL VZERO(NPCFIT,2) |
253 |
CALL VZERO(TBAR,2*NPLAV) |
254 |
CALL VZERO(TIBAR,2*NPLAV) |
255 |
CALL VZERO(BAR,2*NPLAV) |
256 |
CALL VZERO(IBAR,2*NPLAV) |
257 |
CALL VZERO(Y,NPLAV) |
258 |
CALL VZERO(YY,NPLAV) |
259 |
CALL VZERO(XOUT,NPLAV) |
260 |
CALL VZERO(YOUT,NPLAV) |
261 |
C |
262 |
CALL SELFTRIG() |
263 |
ELEN = PARZEN3 |
264 |
SELEN = ABS(ELEN) * (11.98*1E-2 + 7.6 * EXP(-5736/ABS(ELEN))) |
265 |
C |
266 |
NPCFIT(1) = NFITX |
267 |
NPCFIT(2) = NFITY |
268 |
C |
269 |
DO M = 1,2 |
270 |
C |
271 |
c print *,' ax ',ax,' ay ',ay |
272 |
c print *,' bx ',bx,' by ',by |
273 |
IF (NPCFIT(M).GE.2) THEN |
274 |
IF (M.EQ.1) THEN |
275 |
VARCFIT(1) = CHI2X |
276 |
IMPX = AX + BX * (ZALIG/10.) ! PAMELA REF |
277 |
TANX = BX |
278 |
ELSE |
279 |
VARCFIT(2) = CHI2Y |
280 |
IMPY = AY + BY * (ZALIG/10.) ! PAMELA REF |
281 |
TANY = BY |
282 |
ENDIF |
283 |
C |
284 |
DO I = 1,NPLA |
285 |
NN = 0 |
286 |
c IF (M.EQ.2) NN = 1 |
287 |
IF (MOD(I,2).EQ.NN) THEN |
288 |
IF (REVERSE.EQ.0) THEN |
289 |
SHIFT = -0.5 |
290 |
ELSE |
291 |
SHIFT = +0.5 |
292 |
ENDIF |
293 |
ELSE |
294 |
IF (REVERSE.EQ.0) THEN |
295 |
SHIFT = +0.5 |
296 |
ELSE |
297 |
SHIFT = -0.5 |
298 |
ENDIF |
299 |
ENDIF |
300 |
C |
301 |
IF (M.EQ.1) THEN |
302 |
DISTX = PIANO(I) - 5.81 |
303 |
Y(I) = (DISTX * TANX) + IMPX*10. !- XALIG |
304 |
c CBAR(M,I) = Y(I) |
305 |
BAR(M,I) = Y(I) + XALIG |
306 |
CBAR(M,I) = Y(I) / 10. |
307 |
IF (I.EQ.NPLA) MX=ABS(Y(1)-Y(NPLA))/ |
308 |
& ABS(ZIN(1)-ZIN(NPLA)) |
309 |
C |
310 |
ELSE |
311 |
DISTY = PIANO(I) |
312 |
YY(I) = (DISTY * TANY) + IMPY*10. !- YALIG |
313 |
c print *,' I ',i,' YY ',YY(I) |
314 |
c CBAR(M,I) = YY(I) |
315 |
BAR(M,I) = YY(I) + YALIG |
316 |
CBAR(M,I) = YY(I) / 10. |
317 |
IF (I.EQ.NPLA) MY=ABS(Y(1)-Y(NPLA))/ |
318 |
& ABS(ZIN(1)-ZIN(NPLA)) |
319 |
C |
320 |
ENDIF |
321 |
CALL LASTRISCIA(BAR(M,I),IBAR(M,I)) |
322 |
cibar(M,I) = ibar(m,i) |
323 |
IF (ibar(m,i).EQ.-1) THEN |
324 |
CHTRACK = CHTRACK + 1 |
325 |
ELSE |
326 |
IWPL(M) = IWPL(M) + 1 |
327 |
ENDIF |
328 |
ENDDO |
329 |
ENDIF |
330 |
C |
331 |
ENDDO |
332 |
C |
333 |
ENDIF |
334 |
C |
335 |
IF (TRIGTY.GE.2.AND.HZN.NE.0) THEN |
336 |
IF (GOOD2.EQ.1) THEN |
337 |
PRINT *,' CALORIMETER - WARNING F77: unknown request' |
338 |
GOOD2 = 1 |
339 |
GOTO 50 |
340 |
ENDIF |
341 |
IF ( NPCFIT(1).EQ.0.OR.NPCFIT(2).EQ.0 ) THEN |
342 |
GOOD2 = 1 |
343 |
GOTO 50 |
344 |
ENDIF |
345 |
ENDIF |
346 |
C |
347 |
6996 CONTINUE |
348 |
C |
349 |
DX0L = 0. |
350 |
C |
351 |
C IF THE TRACK IS OUTSIDE THE CALORIMETER GO OUT, IF NOT CALCULATE DX0L |
352 |
C |
353 |
IF (CHTRACK.EQ.44) THEN ! CHTRACK is the number of planes not touched by the track |
354 |
GOOD2 = 0 |
355 |
c PRINT *,' CALORIMETER - WARNING F77: track outside calorimeter' |
356 |
GOTO 50 |
357 |
ELSE |
358 |
IF ( IWPL(1).LE.IWPL(2) ) THEN |
359 |
IWPLU = IWPL(1) |
360 |
ELSE |
361 |
IWPLU = IWPL(2) |
362 |
ENDIF |
363 |
C |
364 |
DX0L = IWPLU * SQRT((BAR(2,1)-(2.66*MY+BAR(2,1)))**2 |
365 |
& + (BAR(1,1)-(2.66*MX+BAR(1,1)))**2 + 2.66**2) / |
366 |
& 3.6 |
367 |
C |
368 |
ENDIF |
369 |
C |
370 |
C |
371 |
C RIG IS RIGIDITY AS DETERMINED BY THE TRACKER |
372 |
C OR by CALORIMETER IF IN SELFTRIGGER MODE |
373 |
C |
374 |
IF (GOOD2.EQ.1) THEN |
375 |
GTR = 1 |
376 |
IF (TRKCHI2.LT.0) GTR = 2 |
377 |
IF ( AL_PP(GTR,5).NE.0. ) THEN |
378 |
RIG = 1./(AL_PP(GTR,5)) |
379 |
ELSE |
380 |
GOOD2 = 0 |
381 |
PRINT *,' CALORIMETER - WARNING F77: track with R = 0' |
382 |
GOTO 50 |
383 |
ENDIF |
384 |
ENDIF |
385 |
IF (TRIGTY.GE.2.AND.HZN.EQ.0.AND.GOOD2.EQ.0) THEN |
386 |
RIG = ELEN ! SELFTRIGGER RIGIDITY |
387 |
IF ( RIG.EQ.0. ) THEN |
388 |
GOOD2 = 1 |
389 |
PRINT *,' CALORIMETER - WARNING F77: ST track with R = 0' |
390 |
GOTO 50 |
391 |
ENDIF |
392 |
ENDIF |
393 |
C |
394 |
IF (GOOD2.EQ.0.AND.(TRIGTY.LT.2.OR.HZN.EQ.1)) THEN |
395 |
RIG = RIGINPUT |
396 |
ENDIF |
397 |
C |
398 |
RNSS = 0. |
399 |
QTOTT = 0. |
400 |
C |
401 |
PPLANEMAX = 1.01*(LOG(ABS(RIG)/0.0081)-1.) / 0.74 |
402 |
C |
403 |
IPLANE = INT(ANINT(PPLANEMAX)) + 5 |
404 |
C |
405 |
IF (IPLANE.GT.NPLA) IPLANE=NPLA |
406 |
IF (IPLANE.LT.1) IPLANE = 1 |
407 |
c print *,' calcolo...' |
408 |
C |
409 |
C CALCULATE QLOW AND NLOW |
410 |
C |
411 |
DO J = IPLANE,NPLA |
412 |
DO I = 1,NCHA |
413 |
IF (DEXY(1,J,I).GE.EMIN) THEN |
414 |
NLOW = NLOW + 1 |
415 |
QLOW = QLOW + DEXY(1,J,I) |
416 |
ENDIF |
417 |
IF (DEXY(2,J,I).GE.EMIN) THEN |
418 |
NLOW = NLOW + 1 |
419 |
QLOW = QLOW + DEXY(2,J,I) |
420 |
ENDIF |
421 |
ENDDO |
422 |
ENDDO |
423 |
C |
424 |
C CALCULATE QCORE AND NCORE |
425 |
C |
426 |
C |
427 |
C 8 STRIPS ARE 2.88 cm , A MOLIERE RADIUS IS ABOUT 0.7 cm . |
428 |
C |
429 |
DO J = 1,IPLANE |
430 |
NNX = IBAR(1,J) |
431 |
RNSS = 0. ! BACO!! |
432 |
QTOTT = 0. ! BACO!! |
433 |
IF (NNX.NE.-1) THEN |
434 |
IF (NNX.LT.9) NNX = 9 |
435 |
IF (NNX.GT.88) NNX = 88 |
436 |
INFX = NNX - 8 |
437 |
ISUPX = NNX + 8 |
438 |
DO I = INFX,ISUPX |
439 |
IF (DEXY(1,J,I).GE.EMIN) THEN |
440 |
RNSS = RNSS + 1 |
441 |
QTOTT = QTOTT + DEXY(1,J,I) |
442 |
ENDIF |
443 |
ENDDO |
444 |
ENDIF |
445 |
C |
446 |
NNY = IBAR(2,J) |
447 |
IF (NNY.NE.-1) THEN |
448 |
IF (NNY.LT.9) NNY = 9 |
449 |
IF (NNY.GT.88) NNY = 88 |
450 |
INFY = NNY - 8 |
451 |
ISUPY = NNY + 8 |
452 |
DO I = INFY,ISUPY |
453 |
IF (DEXY(2,J,I).GE.EMIN) THEN |
454 |
RNSS = RNSS + 1 |
455 |
QTOTT = QTOTT + DEXY(2,J,I) |
456 |
ENDIF |
457 |
ENDDO |
458 |
ENDIF |
459 |
NCORE = RNSS * FLOAT(J) + NCORE |
460 |
QCORE = QTOTT * FLOAT(J) + QCORE |
461 |
ENDDO |
462 |
C |
463 |
C CALCULATE NOINT |
464 |
C |
465 |
CALL NOINTER(NIN) |
466 |
NOINT = FLOAT(NIN) |
467 |
C |
468 |
C |
469 |
C QCYL = DETECTED ENERGY AND NCYL = NUMBER OF HIT STRIPS IN A CYLINDER oF |
470 |
C RADIUS 8.5 STRIPS WITH AXIS DEFINED BY THE DIRECTION OF THE INCOMING |
471 |
C PARTICLE . |
472 |
C |
473 |
C 8 STRIPS ARE 2.88 cm , A MOLIERE RADIUS IS ABOUT 0.7 cm . |
474 |
C |
475 |
DO J = 1,NPLA |
476 |
NNX = IBAR(1,J) |
477 |
IF (NNX.NE.-1) THEN |
478 |
IF (NNX.LT.9) NNX = 9 |
479 |
IF (NNX.GT.88) NNX = 88 |
480 |
INFX = NNX - 8 |
481 |
ISUPX = NNX + 8 |
482 |
DO I = INFX,ISUPX |
483 |
IF (DEXY(1,J,I).LT.EMIN) GO TO 710 |
484 |
NCYL = NCYL + 1 |
485 |
QCYL = QCYL + DEXY(1,J,I) |
486 |
710 ENDDO |
487 |
ENDIF |
488 |
NNY = IBAR(2,J) |
489 |
IF (NNY.NE.-1) THEN |
490 |
IF (NNY.LT.9) NNY = 9 |
491 |
IF (NNY.GT.88) NNY = 88 |
492 |
INFY = NNY - 8 |
493 |
ISUPY = NNY + 8 |
494 |
DO I=INFY,ISUPY |
495 |
IF (DEXY(2,J,I).LT.EMIN) GO TO 810 |
496 |
NCYL = NCYL + 1 |
497 |
QCYL = QCYL + DEXY(2,J,I) |
498 |
810 ENDDO |
499 |
ENDIF |
500 |
C |
501 |
C QTR = DETECTED ENERGY AND NTR = NUMBER OF HIT STRIPS IN A CYLINDER oF |
502 |
C RADIUS 4.5 STRIPS WITH AXIS DEFINED BY THE DIRECTION OF THE INCOMING |
503 |
C PARTICLE . |
504 |
C |
505 |
NNX = IBAR(1,J) |
506 |
IF (NNX.NE.-1) THEN |
507 |
IF (NNX.LT.5) NNX = 5 |
508 |
IF (NNX.GT.92) NNX = 92 |
509 |
INFX = NNX - 4 |
510 |
ISUPX = NNX + 4 |
511 |
DO I = INFX,ISUPX |
512 |
IF (DEXY(1,J,I).GT.EMIN) THEN |
513 |
NTR = NTR + 1 |
514 |
QTR = QTR + DEXY(1,J,I) |
515 |
ENDIF |
516 |
ENDDO |
517 |
ENDIF |
518 |
C |
519 |
NNY = IBAR(2,J) |
520 |
IF (NNY.NE.-1) THEN |
521 |
IF (NNY.LT.5) NNY = 5 |
522 |
IF (NNY.GT.92) NNY = 92 |
523 |
INFY = NNY - 4 |
524 |
ISUPY = NNY + 4 |
525 |
DO I = INFY, ISUPY |
526 |
IF (DEXY(2,J,I).GT.EMIN) THEN |
527 |
NTR = NTR + 1 |
528 |
QTR = QTR + DEXY(2,J,I) |
529 |
ENDIF |
530 |
ENDDO |
531 |
ENDIF |
532 |
ENDDO |
533 |
C |
534 |
C CALCULATE QTRACK |
535 |
C |
536 |
CALL LATERALE(QTRACK,RQT) |
537 |
|
538 |
C |
539 |
C CALCULATE NPRESH AND QPRESH |
540 |
C |
541 |
DO I = 1,4 |
542 |
NNX = IBAR(1,I) |
543 |
IF (NNX.NE.-1) THEN |
544 |
IF (NNX.LT.3) NNX = 3 |
545 |
IF (NNX.GT.94) NNX = 94 |
546 |
INFX = NNX - 2 |
547 |
ISUPX = NNX + 2 |
548 |
DO J = INFX,ISUPX |
549 |
IF (DEXY(1,I,J).GE.EMIN) THEN |
550 |
NPRESH = NPRESH + 1 |
551 |
QPRESH = QPRESH + DEXY(1,I,J) |
552 |
ENDIF |
553 |
ENDDO |
554 |
ENDIF |
555 |
C |
556 |
NNY = IBAR(2,I) |
557 |
IF (NNY.NE.-1) THEN |
558 |
IF (NNY.LT.3) NNY = 3 |
559 |
IF (NNY.GT.94) NNY = 94 |
560 |
INFY = NNY - 2 |
561 |
ISUPY = NNY + 2 |
562 |
DO J = INFY,ISUPY |
563 |
IF (DEXY(2,I,J).GE.EMIN) THEN |
564 |
NPRESH = NPRESH + 1 |
565 |
QPRESH = QPRESH + DEXY(2,I,J) |
566 |
ENDIF |
567 |
ENDDO |
568 |
ENDIF |
569 |
ENDDO |
570 |
C |
571 |
C CALCULATE DXTRACK, DYTRACK, QTRACKX AND QTRACKY |
572 |
C |
573 |
ICONTROL5 = 0 |
574 |
CALL NSHOWER(ICONTROL5,DXTRACK,DYTRACK,QTRACKX,QTRACKY) |
575 |
C |
576 |
C CALCULATE QPRE AND NPRE |
577 |
C |
578 |
DO J = 1,3 |
579 |
NNX = IBAR(1,J) |
580 |
IF (NNX.NE.-1) THEN |
581 |
IF (NNX.LT.9) NNX = 9 |
582 |
IF (NNX.GT.88) NNX = 88 |
583 |
INFX = NNX - 8 |
584 |
ISUPX = NNX + 8 |
585 |
DO I = INFX,ISUPX |
586 |
IF (DEXY(1,J,I).GE.EMIN) THEN |
587 |
NPRE = NPRE + 1 |
588 |
QPRE = QPRE + DEXY(1,J,I) |
589 |
ENDIF |
590 |
ENDDO |
591 |
ENDIF |
592 |
C |
593 |
NNY = IBAR(2,J) |
594 |
IF (NNY.NE.-1) THEN |
595 |
IF (NNY.LT.9) NNY = 9 |
596 |
IF (NNY.GT.88) NNY = 88 |
597 |
INFY = NNY - 8 |
598 |
ISUPY = NNY + 8 |
599 |
DO I=INFY,ISUPY |
600 |
IF (DEXY(2,J,I).GE.EMIN) THEN |
601 |
NPRE = NPRE + 1 |
602 |
QPRE = QPRE + DEXY(2,J,I) |
603 |
ENDIF |
604 |
ENDDO |
605 |
ENDIF |
606 |
ENDDO |
607 |
C |
608 |
C CALCULATE NLAST AND QLAST |
609 |
C |
610 |
MNPLA = NPLA -4 |
611 |
IF ( MNPLA .LT. 1 ) MNPLA = 1 |
612 |
DO J = MNPLA,NPLA |
613 |
NNX = IBAR(1,J) |
614 |
IF (NNX.NE.-1) THEN |
615 |
IF (NNX.LT.5) NNX = 5 |
616 |
IF (NNX.GT.92) NNX = 92 |
617 |
c IF (NNX.LT.9) NNX = 9 |
618 |
c IF (NNX.GT.88) NNX = 88 |
619 |
INFX = NNX - 4 |
620 |
ISUPX = NNX + 4 |
621 |
c INFX = NNX - 8 |
622 |
c ISUPX = NNX + 8 |
623 |
DO I = INFX,ISUPX |
624 |
IF (DEXY(1,J,I).GE.EMIN) THEN |
625 |
NLAST = NLAST + 1 |
626 |
QLAST = QLAST + DEXY(1,J,I) |
627 |
ENDIF |
628 |
ENDDO |
629 |
ENDIF |
630 |
C |
631 |
NNY = IBAR(2,J) |
632 |
IF (NNY.NE.-1) THEN |
633 |
IF (NNY.LT.5) NNY = 5 |
634 |
IF (NNY.GT.92) NNY = 92 |
635 |
c IF (NNY.LT.9) NNY = 9 |
636 |
c IF (NNY.GT.88) NNY = 88 |
637 |
INFY = NNY - 4 |
638 |
ISUPY = NNY + 4 |
639 |
c INFY = NNY - 8 |
640 |
c ISUPY = NNY + 8 |
641 |
DO I=INFY,ISUPY |
642 |
IF (DEXY(2,J,I).GE.EMIN) THEN |
643 |
NLAST = NLAST + 1 |
644 |
QLAST = QLAST + DEXY(2,J,I) |
645 |
ENDIF |
646 |
ENDDO |
647 |
ENDIF |
648 |
ENDDO |
649 |
C |
650 |
C |
651 |
C CALCULATE PLANETOT AND QMEAN |
652 |
C |
653 |
DO M = 1,2 |
654 |
RPIANO(M) = 0. |
655 |
NTOT(M) = 0 |
656 |
ENDDO |
657 |
NPIANI = 5 |
658 |
QMEAN = 0. |
659 |
INDEX = 0 |
660 |
C |
661 |
IF (TRIGTY.GE.2.AND.HZN.NE.0) THEN |
662 |
EINF = 50. |
663 |
ESUP = 15000. |
664 |
CALL NUCLEI(RPIANO,NPIANI,QMEAN,NTOT,INDEX) |
665 |
PLANETOT = RPIANO(1) + RPIANO(2) |
666 |
ELSE |
667 |
EINF = EMIN |
668 |
ESUP = 15000. |
669 |
CALL ELIO(RPIANO,NPIANI,QMEAN,NTOT,INDEX) |
670 |
PLANETOT = RPIANO(1) + RPIANO(2) |
671 |
ENDIF |
672 |
C |
673 |
50 CONTINUE |
674 |
C |
675 |
c print *,' esco' |
676 |
RETURN |
677 |
END |
678 |
|
679 |
|