15 |
**/ |
**/ |
16 |
CaloTrkVar::CaloTrkVar() { |
CaloTrkVar::CaloTrkVar() { |
17 |
this->Clear(); |
this->Clear(); |
18 |
}; |
} |
19 |
|
|
20 |
/** |
/** |
21 |
* Clear variables |
* Clear variables |
22 |
**/ |
**/ |
23 |
void CaloTrkVar::Clear() { |
void CaloTrkVar::Clear(Option_t *t) { |
24 |
|
//void CaloTrkVar::Clear() { |
25 |
trkseqno = 0; |
trkseqno = 0; |
26 |
noint = 0; |
noint = 0; |
27 |
ncore = 0; |
ncore = 0; |
92 |
// |
// |
93 |
this->Clear(); |
this->Clear(); |
94 |
// |
// |
95 |
}; |
} |
96 |
/** |
/** |
97 |
* Create the TClonesArray |
* Create the TClonesArray |
98 |
**/ |
**/ |
103 |
/** |
/** |
104 |
* Clear the CaloLevel2 object |
* Clear the CaloLevel2 object |
105 |
**/ |
**/ |
106 |
void CaloLevel2::Clear() { |
void CaloLevel2::Clear(Option_t *t ) { |
107 |
// |
// |
108 |
// CaloTrk->Clear(); //ELENA |
// CaloTrk->Clear(); //ELENA |
109 |
if(CaloTrk)CaloTrk->Delete(); //ELENA |
if(CaloTrk)CaloTrk->Delete(); //ELENA |
110 |
// |
// |
111 |
nstrip = 0; |
nstrip = 0; |
112 |
|
nsatstrip = 0; |
113 |
qtot = 0.; |
qtot = 0.; |
114 |
// impx = 0.; |
// impx = 0.; |
115 |
// impy = 0.; |
// impy = 0.; |
128 |
memset(tany, 0, 2*sizeof(Int_t)); |
memset(tany, 0, 2*sizeof(Int_t)); |
129 |
memset(fitmode, 0, 2*sizeof(Int_t)); |
memset(fitmode, 0, 2*sizeof(Int_t)); |
130 |
memset(planemax, 0, 2*sizeof(Int_t)); |
memset(planemax, 0, 2*sizeof(Int_t)); |
131 |
|
memset(selfdelay, 0, 4*7*sizeof(Int_t)); |
132 |
memset(cibar, 0, 2*22*sizeof(Int_t)); |
memset(cibar, 0, 2*22*sizeof(Int_t)); |
133 |
memset(cbar, 0, 2*22*sizeof(Float_t)); |
memset(cbar, 0, 2*22*sizeof(Float_t)); |
134 |
good = 0; |
good = 0; |
135 |
selftrigger = 0; |
selftrigger = 0; |
136 |
// |
// |
137 |
}; |
} |
138 |
|
|
139 |
/** |
/** |
140 |
* Delete the CaloLevel2 object |
* Delete the CaloLevel2 object |
141 |
**/ |
**/ |
142 |
void CaloLevel2::Delete() { //ELENA |
void CaloLevel2::Delete(Option_t *t) { //ELENA |
143 |
if(CaloTrk){ //ELENA |
if(CaloTrk){ //ELENA |
144 |
CaloTrk->Delete(); //ELENA |
CaloTrk->Delete(); //ELENA |
145 |
delete CaloTrk; //ELENA |
delete CaloTrk; //ELENA |
233 |
printf(" Cannot find selftrigger block\n"); |
printf(" Cannot find selftrigger block\n"); |
234 |
}; |
}; |
235 |
return(-100.); |
return(-100.); |
236 |
}; |
} |
237 |
|
|
238 |
/** |
/** |
239 |
* Returns the impact position on the top of the calorimeter as determined by the calorimeter itself. |
* Returns the impact position on the top of the calorimeter as determined by the calorimeter itself. |
255 |
printf(" Cannot find selftrigger block\n"); |
printf(" Cannot find selftrigger block\n"); |
256 |
}; |
}; |
257 |
return(-100.); |
return(-100.); |
258 |
}; |
} |
259 |
/** |
/** |
260 |
* Should return the energy in GeV if the particle would be an electron |
* Should return the energy in GeV if the particle would be an electron |
261 |
* using a parametrization taken from Monte Carlo simulation |
* using a parametrization taken from Monte Carlo simulation |
262 |
**/ |
**/ |
263 |
void CaloLevel2::GetElectronEnergy(Float_t &energy, Float_t &sigma){ |
void CaloLevel2::GetElectronEnergy(Float_t &energy, Float_t &sigma){ |
264 |
if ( nstrip == 0 ) return; |
if ( nstrip == 0 ) return; |
265 |
energy = qtot * 40.82 * 0.000106; |
energy = qtot / 260.; |
266 |
|
// energy = qtot * 40.82 * 0.000106; |
267 |
sigma = 0.; |
sigma = 0.; |
268 |
if ( energy > 0. ) sigma = energy * (0.01183 + 0.121/sqrt(energy)); |
if ( energy > 0. ) sigma = energy * (0.01183 + 0.121/sqrt(energy)); |
269 |
return; |
return; |
270 |
}; |
} |
271 |
|
|
272 |
/** |
/** |
273 |
* Returns pointer to the set of track-related variables "itrk" |
* Returns pointer to the set of track-related variables "itrk" |
310 |
}; |
}; |
311 |
return c; |
return c; |
312 |
|
|
313 |
}; |
} |