/** * \file src/CaloLevel0.cpp * \author Emiliano Mocchiutti **/ // // C/C++ headers // #include #include // // ROOT headers // #include #include #include #include // // YODA headers // #include #include #include // // // #include // // this package headers // #include #include // // // Declaration of the core fortran routines // #define calol2cm calol2cm_ extern "C" int calol2cm(); #define calol2tr calol2tr_ extern "C" int calol2tr(); // using namespace std; // // // Public methods // CaloLevel0::~CaloLevel0(){ if ( de ) delete de; delete this; } CaloLevel0::CaloLevel0(){ // extern struct FlCaLevel1 clevel1_; extern struct FlCaLevel2 clevel2_; clevel1 = &clevel1_; clevel2 = &clevel2_; // // extern struct FlEventi eventi_; // extern struct FlGruppo gruppo_; // extern struct FlGruppo2 gruppo2_; // extern struct FlGruppo4 gruppo4_; // extern struct FlTaglioen taglioen_; // extern struct FlAngolo angolo_; // extern struct FlWhere where_; // extern struct FlGeneral general_; // extern struct FlCh ch_; // extern struct FlCalofit calofit_; // extern struct FlPawcd pawcd_; // extern struct FlQuestd questd_; // eventi = &eventi_; // gruppo = &gruppo_; // gruppo2 = &gruppo2_; // gruppo4 = &gruppo4_; // taglioen = &taglioen_; // angolo = &angolo_; // where = &where_; // general = &general_; // ch = &ch_; // calofit = &calofit_; // pawcd = &pawcd_; // questd = &questd_; // trkseqno = 0; ClearStructs(); // memset(dexy, 0, 2*22*96*sizeof(Float_t)); memset(dexyc, 0, 2*22*96*sizeof(Float_t)); memset(mip, 0, 2*22*96*sizeof(Float_t)); memset(base, 0, 2*22*6*sizeof(Float_t)); memset(sbase, 0, 2*22*6*sizeof(Float_t)); memset(obadmask, 0, 2*22*96*sizeof(Int_t)); memset(obadpulsemask, 0, 2*22*6*sizeof(Int_t)); memset(ctprecor, 0, 2*22*6*sizeof(Float_t)); memset(ctsicor, 0, 2*22*9*sizeof(Float_t)); memset(ctneigcor, 0, 2*22*6*sizeof(Float_t)); calopar1 = true; calopar2 = true; calopar3 = true; calopar4 = true; calopar5 = true; crosst = true; mask18 = false; ftcalopar1 = 0; ttcalopar1 = 0; ftcalopar2 = 0; ttcalopar2 = 0; ftcalopar3 = 0; ttcalopar3 = 0; ftcalopar4 = 0; ttcalopar4 = 0; ftcalopar5 = 0; ttcalopar5 = 0; } void CaloLevel0::SetCrossTalk(Bool_t ct){ crosst = ct; } void CaloLevel0::SetCrossTalkType(Bool_t ct){ ctground = ct; } void CaloLevel0::SetCrossTalkType(Int_t ct){ if ( ct == 0 ) ctground = true; if ( ct == 1 ){ ctground = false; noselfct = false; }; if ( ct == 2 ){ ctground = false; noselfct = true; }; } void CaloLevel0::SetVerbose(Bool_t ct){ verbose = ct; } /** * Initialize CaloLevel0 object **/ void CaloLevel0::ProcessingInit(TSQLServer *dbc, UInt_t hs, Int_t &sgnl, TTree *l0tree, Bool_t isdeb, Bool_t isverb){ if ( !dbc->IsConnected() ) throw -116; this->InitDo(dbc,hs,sgnl,l0tree,isdeb,isverb); } /** * Initialize CaloLevel0 object **/ void CaloLevel0::ProcessingInit(GL_TABLES *glt, UInt_t hs, Int_t &sgnl, TTree *l0tree, Bool_t isdeb, Bool_t isverb){ // const TString host = glt->CGetHost(); const TString user = glt->CGetUser(); const TString psw = glt->CGetPsw(); TSQLServer *dbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); if ( !dbc->IsConnected() ) throw -116; this->InitDo(dbc,hs,sgnl,l0tree,isdeb,isverb); dbc->Close(); delete dbc; } void CaloLevel0::InitDo(TSQLServer *dbc, UInt_t hs, Int_t &sgnl, TTree *l0tree, Bool_t isdeb, Bool_t isverb){ stringstream myquery; myquery.str(""); myquery << "SET time_zone='+0:00'"; dbc->Query(myquery.str().c_str()); // debug = isdeb; verbose = isverb; // l0tr=(TTree*)l0tree; de = new pamela::calorimeter::CalorimeterEvent(); l0calo = (TBranch*)l0tr->GetBranch("Calorimeter"); l0tr->SetBranchAddress("Calorimeter", &de); // trkseqno = 0; ClearStructs(); // GL_CALO_CALIB *glcalo = new GL_CALO_CALIB(); // sgnl = 0; UInt_t uptime = 0; // for (Int_t s = 0; s < 4; s++){ idcalib[s] = 0; fromtime[s] = 0; totime[s] = 0; calibno[s] = 0; ClearCalibVals(s); // sgnl = glcalo->Query_GL_CALO_CALIB(hs,uptime,s,dbc); if ( sgnl < 0 ){ if ( verbose ) printf(" CALORIMETER - ERROR: error from GLTables\n"); return; }; // idcalib[s] = glcalo->ID_ROOT_L0; fromtime[s] = glcalo->FROM_TIME; if ( glcalo->TO_TIME < hs ){ // calibration is corrupted and we are using the one that preceed the good one totime[s] = uptime; } else { totime[s] = glcalo->TO_TIME; }; calibno[s] = glcalo->EV_ROOT; // if ( totime[s] == 0 ){ if ( verbose ) printf(" CALORIMETER - WARNING: data with no associated calibration\n"); ClearCalibVals(s); sgnl = 100; }; }; // // determine path and name and entry of the calibration file // GL_ROOT *glroot = new GL_ROOT(); if ( verbose ) printf("\n"); for (Int_t s = 0; s < 4; s++){ if ( verbose ) printf(" ** SECTION %i **\n",s); if ( totime[s] > 0 ){ // sgnl = glroot->Query_GL_ROOT(idcalib[s],dbc); if ( sgnl < 0 ){ if ( verbose ) printf(" CALORIMETER - ERROR: error from GLTables\n"); return; }; // stringstream name; name.str(""); name << glroot->PATH.Data() << "/"; name << glroot->NAME.Data(); // fcalname[s] = (TString)name.str().c_str(); if ( verbose ) printf(" - runheader at time %u. From time %u to time %u \n use file %s \n calibration at entry %i \n\n",hs,fromtime[s],totime[s],fcalname[s].Data(),calibno[s]); } else { if ( verbose ) printf(" - runheader at time %u. NO CALIBRATION INCLUDE THE RUNHEADER! ",hs); }; sgnl = LoadCalib(s); if ( sgnl ) break; }; // delete glcalo; delete glroot; // return; // } Int_t CaloLevel0::ChkCalib(GL_TABLES *glt, UInt_t atime){ Int_t sgnl = 0; for ( Int_t s = 0; s < 4; s++){ if ( atime > totime[s] ){ sgnl = Update(glt,atime,s); if ( sgnl < 0 ) return(sgnl); }; }; return(sgnl); } Int_t CaloLevel0::ChkParam(TSQLServer *dbc, UInt_t runheader, Bool_t mechal){ Int_t sig = this->ChkParamDo(dbc,runheader,mechal); return(sig); } Int_t CaloLevel0::ChkParam(GL_TABLES *glt, UInt_t runheader, Bool_t mechal){ const TString host = glt->CGetHost(); const TString user = glt->CGetUser(); const TString psw = glt->CGetPsw(); TSQLServer *dbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); if ( !dbc->IsConnected() ) throw -116; stringstream myquery; myquery.str(""); myquery << "SET time_zone='+0:00'"; dbc->Query(myquery.str().c_str()); // Int_t sig = this->ChkParamDo(dbc,runheader,mechal); dbc->Close(); delete dbc; return(sig); } Int_t CaloLevel0::ChkParamDo(TSQLServer *dbc, UInt_t runheader, Bool_t mechal){ // stringstream calfile; stringstream bmfile; stringstream aligfile; Int_t error = 0; FILE *f = 0; ifstream badfile; GL_PARAM *glparam = new GL_PARAM(); // if ( calopar1 || ( ttcalopar1 != 0 && ttcalopar1 < runheader ) ){ // if ( debug ) printf(" calopar1 %i ftcalopar1 %u ttcalopar1 %u runheader %u \n",calopar1,ftcalopar1,ttcalopar1,runheader); // if ( calopar1 ){ // // determine where I can find calorimeter ADC to MIP conversion file // if ( verbose ) printf(" Querying DB for calorimeter parameters files...\n"); // error = 0; error = glparam->Query_GL_PARAM(runheader,101,dbc); if ( error < 0 ) return(error); // calfile.str(""); calfile << glparam->PATH.Data() << "/"; calfile << glparam->NAME.Data(); // if ( verbose ) printf("\n Using ADC to MIP conversion file: \n %s \n",calfile.str().c_str()); f = fopen(calfile.str().c_str(),"rb"); if ( !f ){ if ( verbose ) printf(" CALORIMETER - ERROR: no ADC to MIP file!\n"); return(-105); }; // for (Int_t m = 0; m < 2 ; m++ ){ for (Int_t k = 0; k < 22; k++ ){ for (Int_t l = 0; l < 96; l++ ){ fread(&mip[m][k][l],sizeof(mip[m][k][l]),1,f); if ( debug ) printf(" %f \n",mip[m][k][l]); }; }; }; fclose(f); }; // calopar1 = false; // // flight extra corrections: // if ( verbose ) printf(" Querying DB for calorimeter flight ADC to MIP files...\n"); // error = 0; error = glparam->Query_GL_PARAM(runheader,110,dbc); if ( error < 0 ) return(error); // calfile.str(""); calfile << glparam->PATH.Data() << "/"; calfile << glparam->NAME.Data(); ftcalopar1 = glparam->FROM_TIME; ttcalopar1 = glparam->TO_TIME; // if ( verbose ) printf("\n Using ADC to MIP special conversion file: \n %s \n",calfile.str().c_str()); ifstream spfile; spfile.open(calfile.str().c_str()); if ( !spfile ){ if ( verbose ) printf(" CALORIMETER - ERROR: no special calibration file!\n"); return(-123); }; // Int_t vview = 0; Int_t vplane = 0; Int_t vstrip = 0; Float_t vval = 0.; while ( spfile >> vview && spfile >> vplane && spfile >> vstrip && spfile >> vval){ if ( debug ) printf(" Setting ADC to MIP conversion factor: view %i plane %i strip %i mip %f \n",vview,vplane,vstrip,vval); mip[vview][vplane][vstrip] = vval; }; // }; // // if ( calopar2 || ( ttcalopar2 != 0 && ttcalopar2 < runheader ) ){ // if ( debug ) printf(" calopar2 %i ftcalopar2 %u ttcalopar2 %u runheader %u \n",calopar2,ftcalopar2,ttcalopar2,runheader); calopar2 = false; // // determine where I can find calorimeter alignment file // // error = 0; error = glparam->Query_GL_PARAM(runheader,102,dbc); if ( error < 0 ) return(error); // aligfile.str(""); aligfile << glparam->PATH.Data() << "/"; aligfile << glparam->NAME.Data(); ftcalopar2 = glparam->FROM_TIME; ttcalopar2 = glparam->TO_TIME; // if ( verbose ) printf("\n Using parameter file: \n %s \n",aligfile.str().c_str()); f = fopen(aligfile.str().c_str(),"rb"); if ( !f ){ if ( verbose ) printf(" CALORIMETER - ERROR: no parameter file!\n"); return(-106); }; // if ( !mechal ){ // fread(&clevel1->xalig,sizeof(clevel1->xalig),1,f); if ( debug ) printf(" xalig = %f \n",clevel1->xalig); fread(&clevel1->yalig,sizeof(clevel1->yalig),1,f); if ( debug ) printf(" yalig = %f \n",clevel1->yalig); fread(&clevel1->zalig,sizeof(clevel1->zalig),1,f); if ( debug ) printf(" zalig = %f \n",clevel1->zalig); } else { if ( verbose ) printf("\n Using MECHANICAL alignement parameters \n"); // CaloStrip cs = CaloStrip(); cs.UseMechanicalAlig(); clevel1->xalig = cs.GetXalig(); if ( debug ) printf(" xalig = %f \n",clevel1->xalig); clevel1->yalig = cs.GetYalig(); if ( debug ) printf(" yalig = %f \n",clevel1->yalig); clevel1->zalig = cs.GetZalig(); if ( debug ) printf(" zalig = %f \n",clevel1->zalig); // Float_t tmp = 0; fread(&tmp,sizeof(clevel1->xalig),1,f); fread(&tmp,sizeof(clevel1->yalig),1,f); fread(&tmp,sizeof(clevel1->zalig),1,f); // clevel1->zalig = -265.82; // }; fread(&clevel1->emin,sizeof(clevel1->emin),1,f); if ( debug ) printf(" signal threshold = %f \n",clevel1->emin); // fclose(f); }; // // Load offline bad strip mask // if ( calopar3 || ( ttcalopar3 != 0 && ttcalopar3 < runheader ) ){ if ( debug ) printf(" calopar3 %i ftcalopar3 %u ttcalopar3 %u runheader %u \n",calopar3,ftcalopar3,ttcalopar3,runheader); calopar3 = false; // // determine where I can find calorimeter alignment file // // error = 0; error = glparam->Query_GL_PARAM(runheader,103,dbc); if ( error < 0 ) return(error); // bmfile.str(""); bmfile << glparam->PATH.Data() << "/"; bmfile << glparam->NAME.Data(); ftcalopar3 = glparam->FROM_TIME; ttcalopar3 = glparam->TO_TIME; // if ( verbose ) printf("\n Using bad strip offline mask file: \n %s \n\n",bmfile.str().c_str()); badfile.open(bmfile.str().c_str()); if ( !badfile ){ if ( verbose ) printf(" CALORIMETER - ERROR: no bad strip offline mask file!\n"); return(-115); }; // Bool_t isdone = false; Int_t bad = 0; Int_t view = 1; Int_t strip = 0; Int_t plane = 21; while ( !isdone ) { badfile >> bad; obadmask[view][plane][strip] = bad; if ( debug && bad ) printf(" SETTING view %i plane %i strip %i BAD = %i \n",view,plane,strip,bad); strip++; if ( strip > 95 ){ strip = 0; plane--; if ( plane < 0 ){ plane = 21; view--; }; if ( view < 0 ) isdone = true; }; }; // badfile.close(); }; // // calopar4 // if ( calopar4 || ( ttcalopar4 != 0 && ttcalopar4 < runheader ) ){ // if ( debug ) printf(" calopar4 %i ftcalopar4 %u ttcalopar4 %u runheader %u \n",calopar4,ftcalopar4,ttcalopar4,runheader); // calopar4 = false; // // flight extra corrections: // if ( verbose ) printf(" Querying DB for calorimeter max rms file...\n"); // error = 0; error = glparam->Query_GL_PARAM(runheader,109,dbc); if ( error < 0 ) return(error); // calfile.str(""); calfile << glparam->PATH.Data() << "/"; calfile << glparam->NAME.Data(); ftcalopar4 = glparam->FROM_TIME; ttcalopar4 = glparam->TO_TIME; // if ( verbose ) printf("\n Using calorimeter max rms file: \n %s \n",calfile.str().c_str()); ifstream spfile; spfile.open(calfile.str().c_str()); if ( !spfile ){ if ( verbose ) printf(" CALORIMETER - ERROR: no max rms file!\n"); return(-124); }; // Int_t vview = 0; Int_t vplane = 0; Int_t vval = 0; for (Int_t l=0; l<2; l++){ for (Int_t m=0; m<22; m++){ maxrms[l][m] = 26; }; }; while ( spfile >> vview && spfile >> vplane && spfile >> vval){ if ( debug ) printf(" Setting view %i plane %i max rms %i \n",vview,vplane,vval); maxrms[vview][vplane] = vval; }; spfile.close(); // }; // // calopar5 // if ( calopar5 || ( ttcalopar5 != 0 && ttcalopar5 < runheader ) ){ // if ( debug ) printf(" calopar5 %i ftcalopar5 %u ttcalopar5 %u runheader %u \n",calopar5,ftcalopar5,ttcalopar5,runheader); // calopar5 = false; // // flight extra corrections: // if ( verbose ) printf(" Querying DB for calorimeter noise to signal threshold file...\n"); // error = 0; error = glparam->Query_GL_PARAM(runheader,111,dbc); if ( error < 0 ) return(error); // calfile.str(""); calfile << glparam->PATH.Data() << "/"; calfile << glparam->NAME.Data(); ftcalopar5 = glparam->FROM_TIME; ttcalopar5 = glparam->TO_TIME; // if ( verbose ) printf("\n Using calorimeter noise to signal threshold file: \n %s \n",calfile.str().c_str()); ifstream spfile; spfile.open(calfile.str().c_str()); if ( !spfile ){ if ( verbose ) printf(" CALORIMETER - ERROR: no noise to signal threshold file!\n"); return(-125); }; // Int_t vview = 0; Int_t vplane = 0; Int_t vstrip = 0; Float_t vval = 0.; for (Int_t l=0; l<2; l++){ for (Int_t m=0; m<22; m++){ for (Int_t n=0; n<96; n++){ memin[l][m][n] = 0.7; }; }; }; while ( spfile >> vview && spfile >> vplane && spfile >> vstrip && spfile >> vval){ if ( vstrip == -1 ){ for (Int_t ll=0; ll<96; ll++){ if ( debug ) printf(" Setting view %i plane %i strip %i noise to signal ratio %f \n",vview,vplane,ll,vval); memin[vview][vplane][ll] = vval; }; } else { if ( debug ) printf(" Setting view %i plane %i strip %i noise to signal ratio %f \n",vview,vplane,vstrip,vval); memin[vview][vplane][vstrip] = vval; }; }; spfile.close(); // }; // // delete glparam; // return(0); } Int_t CaloLevel0::CalcCrossTalkCorr(TSQLServer *dbc, UInt_t runheader, Bool_t ctusetable){ Int_t sig = CalcCrossTalkCorrDo(dbc,runheader,ctusetable); return(sig); }; Int_t CaloLevel0::CalcCrossTalkCorr(TSQLServer *dbc, UInt_t runheader){ Int_t sig = CalcCrossTalkCorrDo(dbc,runheader,true); return(sig); } Int_t CaloLevel0::CalcCrossTalkCorr(GL_TABLES *glt, UInt_t runheader, Bool_t usetable){ const TString host = glt->CGetHost(); const TString user = glt->CGetUser(); const TString psw = glt->CGetPsw(); TSQLServer *dbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); if ( !dbc->IsConnected() ) throw -116; stringstream myquery; myquery.str(""); myquery << "SET time_zone='+0:00'"; dbc->Query(myquery.str().c_str()); // Int_t sig = CalcCrossTalkCorrDo(dbc,runheader,usetable); dbc->Close(); delete dbc; // return(sig); // }; Int_t CaloLevel0::CalcCrossTalkCorr(GL_TABLES *glt, UInt_t runheader){ const TString host = glt->CGetHost(); const TString user = glt->CGetUser(); const TString psw = glt->CGetPsw(); TSQLServer *dbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); if ( !dbc->IsConnected() ) throw -116; stringstream myquery; myquery.str(""); myquery << "SET time_zone='+0:00'"; dbc->Query(myquery.str().c_str()); // Int_t sig = CalcCrossTalkCorrDo(dbc,runheader,true); dbc->Close(); delete dbc; // return(sig); // } Int_t CaloLevel0::CalcCrossTalkCorrDo(TSQLServer *dbc, UInt_t runheader, Bool_t usetable){ // if ( ctground ) return(0); // Int_t error = 0; GL_PARAM *glparam = new GL_PARAM(); // // determine where I can find file with offline bad pulser mask // stringstream bmfile; error = 0; error = glparam->Query_GL_PARAM(runheader,105,dbc); if ( error < 0 ) return(error); // bmfile.str(""); bmfile << glparam->PATH.Data() << "/"; bmfile << glparam->NAME.Data(); // ifstream badfile; if ( verbose ) printf("\n Using bad pulser offline mask file: \n %s \n\n",bmfile.str().c_str()); badfile.open(bmfile.str().c_str()); if ( !badfile ){ if ( verbose ) printf(" CALORIMETER - ERROR: no bad pulser offline mask file!\n"); return(-115); }; // Bool_t isdone = false; Int_t bad = 0; Int_t view = 1; Int_t pre = 0; Int_t plane = 21; while ( !isdone ) { badfile >> bad; obadpulsemask[view][plane][pre] = bad; if ( debug && bad ) printf(" SETTING view %i plane %i pre %i BAD = %i \n",view,plane,pre,bad); pre++; if ( pre > 5 ){ pre = 0; plane--; if ( plane < 0 ){ plane = 21; view--; }; if ( view < 0 ) isdone = true; }; }; // badfile.close(); if ( !usetable ){ // // Let's start with cross-talk correction calculation // GL_CALOPULSE_CALIB *glp = new GL_CALOPULSE_CALIB(); Float_t adcp[2][22][96]; Float_t adcpcal[2][22][96]; memset(adcp , 0, 2*22*96*sizeof(Float_t)); memset(adcpcal , 0, 2*22*96*sizeof(Float_t)); // UInt_t pampli = 0; for (Int_t s=0; s<4; s++){ // // Save into matrix adcp the values of the highest pulse calibration (pulse amplitude = 2) // pampli = 2; error = 0; error = glp->Query_GL_CALOPULSE_CALIB(runheader,s,pampli,dbc); if ( error < 0 ){ if ( verbose ) printf(" CALORIMETER - ERROR: error from GLTables\n"); return(error); }; // UInt_t idcalib = glp->ID_ROOT_L0; UInt_t fromtime = glp->FROM_TIME; UInt_t calibno = glp->EV_ROOT; // // determine path and name and entry of the calibration file // GL_ROOT *glroot = new GL_ROOT(); if ( verbose ) printf("\n"); if ( verbose ) printf(" ** SECTION %i **\n",s); // error = 0; error = glroot->Query_GL_ROOT(idcalib,dbc); if ( error < 0 ){ if ( verbose ) printf(" CALORIMETER - ERROR: error from GLTables\n"); return(error); }; // stringstream name; name.str(""); name << glroot->PATH.Data() << "/"; name << glroot->NAME.Data(); // TString fcalname = (TString)name.str().c_str(); ifstream myfile; myfile.open(fcalname.Data()); if ( !myfile ){ return(-107); }; myfile.close(); // TFile *File = new TFile(fcalname.Data()); if ( !File ) return(-108); TTree *tr = (TTree*)File->Get("CalibCalPulse2"); if ( !tr ) return(-119); // TBranch *calo = tr->GetBranch("CalibCalPulse2"); // pamela::CalibCalPulse2Event *ce = 0; tr->SetBranchAddress("CalibCalPulse2", &ce); // Long64_t ncalibs = calo->GetEntries(); // if ( !ncalibs ) return(-110); // calo->GetEntry(calibno); if ( verbose ) printf(" PULSE2 using entry %u from file %s",calibno,fcalname.Data()); // // retrieve calibration table // if ( ce->pstwerr[s] && ce->pperror[s] == 0 && ce->unpackError == 0 ){ for ( Int_t d=0 ; d<11 ;d++ ){ for ( Int_t j=0; j<96 ;j++){ if ( s == 2 ){ adcp[0][2*d+1][j] = ce->calpuls[3][d][j]; }; if ( s == 3 ){ adcp[0][2*d][j] = ce->calpuls[1][d][j]; }; if ( s == 0 ){ adcp[1][2*d][j] = ce->calpuls[0][d][j]; }; if ( s == 1 ){ adcp[1][2*d+1][j] = ce->calpuls[2][d][j]; }; }; }; } else { if ( verbose ) printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n "); return(-111); }; // File->Close(); delete glroot; // // Save into matrix adcpcal the calibrated values of the pulse calibration (subtraction of pulse amplitude = 0 relative to the pulse2 calibration used) // pampli = 0; error = 0; error = glp->Query_GL_CALOPULSE_CALIB(fromtime,s,pampli,dbc); if ( error < 0 ){ if ( verbose ) printf(" CALORIMETER - ERROR: error from GLTables\n"); return(error); }; // idcalib = glp->ID_ROOT_L0; calibno = glp->EV_ROOT; // // determine path and name and entry of the calibration file // glroot = new GL_ROOT(); if ( verbose ) printf("\n"); if ( verbose ) printf(" ** SECTION %i **\n",s); // error = 0; error = glroot->Query_GL_ROOT(idcalib,dbc); if ( error < 0 ){ if ( verbose ) printf(" CALORIMETER - ERROR: error from GLTables\n"); return(error); }; // name.str(""); name << glroot->PATH.Data() << "/"; name << glroot->NAME.Data(); // fcalname = (TString)name.str().c_str(); myfile.open(fcalname.Data()); if ( !myfile ){ return(-107); }; myfile.close(); // TFile *File1 = new TFile(fcalname.Data()); if ( !File1 ) return(-108); TTree *tr1 = (TTree*)File1->Get("CalibCalPulse1"); if ( !tr1 ) return(-120); // TBranch *calo1 = tr1->GetBranch("CalibCalPulse1"); // pamela::CalibCalPulse1Event *ce1 = 0; tr1->SetBranchAddress("CalibCalPulse1", &ce1); // ncalibs = calo1->GetEntries(); // if ( !ncalibs ) return(-110); // calo1->GetEntry(calibno); if ( verbose ) printf(" PULSE1 using entry %u from file %s",calibno,fcalname.Data()); // // retrieve calibration table // if ( ce1->pstwerr[s] && ce1->pperror[s] == 0 && ce1->unpackError == 0 ){ for ( Int_t d=0 ; d<11 ;d++ ){ for ( Int_t j=0; j<96 ;j++){ if ( s == 2 ){ adcpcal[0][2*d+1][j] = adcp[0][2*d+1][j] - ce1->calpuls[3][d][j]; }; if ( s == 3 ){ adcpcal[0][2*d][j] = adcp[0][2*d][j] - ce1->calpuls[1][d][j]; }; if ( s == 0 ){ adcpcal[1][2*d][j] = adcp[1][2*d][j] - ce1->calpuls[0][d][j]; }; if ( s == 1 ){ adcpcal[1][2*d+1][j] = adcp[1][2*d+1][j] - ce1->calpuls[2][d][j]; }; }; }; } else { if ( verbose ) printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n "); return(-111); }; // File1->Close(); // delete glroot; // };// loop on the four sections // // delete glp; // // Ok, now we can try to calculate the cross-talk correction for each pre-amplifier // for ( Int_t v=0; v<2; v++){ if ( debug ) printf(" \n\n NEW VIEW \n"); for ( Int_t p=0; p<22; p++){ for ( Int_t npre=0; npre<6; npre++){ ctprecor[v][p][npre] = 1000.; ctneigcor[v][p][npre] = 1000.; Int_t str0=npre*16; Int_t str16= -1 + (1+npre)*16; // UInt_t neigc = 0; UInt_t farc = 0; UInt_t pulsc = 0; Float_t sigpulsed = 0.; Float_t neigbase = 0.; Float_t farbase = 0.; // // Loop over the strip of the pre and sum all signal far away from pulsed strip, signal in the neighbour(s) strip(s) and save the pulsed signal // moreover count the number of strips in each case // for (Int_t s=str0; s<=str16; s++){ if ( adcpcal[v][p][s] > 10000.){ sigpulsed = adcpcal[v][p][s]; pulsc++; if ( s > str0 ){ neigbase += adcpcal[v][p][s-1]; neigc++; farbase -= adcpcal[v][p][s-1]; farc--; }; if ( s < str16 ){ neigbase += adcpcal[v][p][s+1]; neigc++; farbase -= adcpcal[v][p][s+1]; farc--; }; } else { farc++; farbase += adcpcal[v][p][s]; }; }; // // Now calculate the corrections // Float_t avefarbase = 0.; if ( farc ) avefarbase = farbase/(Float_t)farc; Float_t aveneigbase = 0.; if ( neigc ) aveneigbase = neigbase/(Float_t)neigc; // if ( pulsc == 1 && farc && neigc ){ ctprecor[v][p][npre] = -avefarbase/(sigpulsed+fabs(avefarbase)); ctneigcor[v][p][npre] = fabs(aveneigbase-avefarbase)/(sigpulsed+fabs(avefarbase)); if ( debug ) printf(" Cross-talk correction View %i Plane %i Pre %i : pre-correction: %f neighbour strips correction %f \n",v,p,npre,ctprecor[v][p][npre],ctneigcor[v][p][npre]); } else { // // did not find the pulsed strip or more than one pulsed strip found! // if ( debug ) printf(" Problems finding the cross-talk corrections: \n View %i Plane %i Pre %i number of pulsed strip %i \n Average faraway baseline %f number of strips %i Average neighbour baseline %f number of neighbour strips %i \n",v,p,npre,pulsc,avefarbase,farc,aveneigbase,neigc); // }; }; if ( debug ) printf(" \n ==================== \n"); }; }; } else { // // use pre-amply table // // // determine where I can find file with offline neighbour correction table // stringstream bmfile2; error = 0; error = glparam->Query_GL_PARAM(runheader,106,dbc); if ( error < 0 ) return(error); // bmfile2.str(""); bmfile2 << glparam->PATH.Data() << "/"; bmfile2 << glparam->NAME.Data(); // ifstream badfile2; if ( verbose ) printf("\n Using pre-amply neighbour crosstalk table file: \n %s \n\n",bmfile2.str().c_str()); badfile2.open(bmfile2.str().c_str()); if ( !badfile2 ){ if ( verbose ) printf(" CALORIMETER - ERROR: no pre-amply neighbour crosstalk table file!\n"); return(-121); }; // Int_t vview = 0; Int_t vplane = 0; Int_t vpre = 0; Float_t vcorr = 0.; while ( badfile2 >> vview && badfile2 >> vplane && badfile2 >> vpre && badfile2 >> vcorr){ if ( debug ) printf(" Pre-amply neighbour correction: view %i plane %i pre %i correction %f \n",vview,vplane,vpre,vcorr); ctneigcor[vview][vplane][vpre] = vcorr; }; // // determine where I can find file with offline SECOND neighbour correction table // stringstream bmfile3; error = 0; error = glparam->Query_GL_PARAM(runheader,107,dbc); if ( error < 0 ) return(error); // bmfile3.str(""); bmfile3 << glparam->PATH.Data() << "/"; bmfile3 << glparam->NAME.Data(); // ifstream badfile3; if ( verbose ) printf("\n Using pre-amply second neighbour crosstalk table file: \n %s \n\n",bmfile3.str().c_str()); badfile3.open(bmfile3.str().c_str()); if ( !badfile3 ){ if ( verbose ) printf(" CALORIMETER - ERROR: no pre-amply second neighbour crosstalk table file!\n"); return(-122); }; // Int_t pview = 0; Int_t pplane = 0; Int_t ppre = 0; Float_t pcorr = 0.; while ( badfile3 >> pview && badfile3 >> pplane && badfile3 >> ppre && badfile3 >> pcorr){ if ( debug ) printf(" Pre-amply second neighbour correction: view %i plane %i pre %i correction %f \n",pview,pplane,ppre,-pcorr); ctprecor[pview][pplane][ppre] = -pcorr; // data are saved as negatives in the file }; // // determine where to find the file containing the Silicon crosstalk correction table // stringstream bmfile4; error = 0; error = glparam->Query_GL_PARAM(runheader,108,dbc); if ( error < 0 ) return(error); // bmfile4.str(""); bmfile4 << glparam->PATH.Data() << "/"; bmfile4 << glparam->NAME.Data(); // ifstream badfile4; if ( verbose ) printf("\n Using Silicon crosstalk table file: \n %s \n\n",bmfile4.str().c_str()); badfile4.open(bmfile4.str().c_str()); if ( !badfile4 ){ if ( verbose ) printf(" CALORIMETER - ERROR: no Silicon crosstalk table file!\n"); return(-125); }; // Int_t spview = 0; Int_t spplane = 0; Int_t psil = 0; Float_t spcorr = 0.; memset(ctsicor, 0, 2*22*9*sizeof(Float_t)); while ( badfile4 >> spview && badfile4 >> spplane && badfile4 >> psil && badfile4 >> spcorr){ if ( debug ) printf(" Silicon correction: view %i plane %i silicon %i correction %f \n",spview,spplane,psil,-spcorr); ctsicor[spview][spplane][psil] = -spcorr; // data are saved as negatives in the file }; // }; // delete glparam; // // Check the calculated corrections // Int_t opre=0; Int_t ppre=0; Bool_t found = false; for ( Int_t v=0; v<2; v++){ for ( Int_t p=0; p<22; p++){ for ( Int_t npre=0; npre<6; npre++){ if ( ctprecor[v][p][npre] == 1000. || ctneigcor[v][p][npre] == 1000. || obadpulsemask[v][p][npre] != 0 ){ if ( debug ) printf(" Cross-talk correction CHANGED for view %i Plane %i Pre %i\n BEFORE: pre-correction: %f neighbour strips correction %f \n",v,p,npre,ctprecor[v][p][npre],ctneigcor[v][p][npre]); if ( npre%2 ){ opre = npre-1; } else { opre = npre+1; }; if ( ctprecor[v][p][opre] == 1000. || ctneigcor[v][p][opre] == 1000. || obadpulsemask[v][p][opre] != 0 ){ ppre=0; found = false; while ( ppre < 6 ){ if ( ctprecor[v][p][ppre] != 1000. && ctneigcor[v][p][ppre] != 1000. && !obadpulsemask[v][p][ppre] ){ found = true; ctprecor[v][p][npre] = ctprecor[v][p][ppre]; ctneigcor[v][p][npre] = ctneigcor[v][p][ppre]; break; }; ppre++; }; if ( !found ){ if ( verbose ) printf(" WARNING: cannot find a good cross-talk correction for view %i plane %i pre %i \n Setting to default values 0.002 0.002\n",v,p,npre); ctprecor[v][p][npre] = 0.002; ctneigcor[v][p][npre] = 0.002; }; } else { ctprecor[v][p][npre] = ctprecor[v][p][opre]; ctneigcor[v][p][npre] = ctneigcor[v][p][opre]; }; if ( debug ) printf(" AFTER: pre-correction: %f neighbour strips correction %f \n",ctprecor[v][p][npre],ctneigcor[v][p][npre]); }; }; }; }; // return(0); } void CaloLevel0::FindBaseCompress(Int_t l, Int_t m, Int_t pre){ Int_t n = 0; Float_t q = 0; this->FindBaseCompress(l,m,pre,n,q); } void CaloLevel0::FindBaseCompress(Int_t l, Int_t m, Int_t pre, Int_t &nst, Float_t &qp){ for (Int_t e = pre*16; e < (pre+1)*16 ; e++){ dexy[l][m][e] = dexyc[l][m][e]; }; this->FindBaseRaw(l,m,pre,nst,qp); } void CaloLevel0::FindBaseRaw(Int_t l, Int_t m, Int_t pre){ Int_t n = 0; Float_t q = 0; this->FindBaseRaw(l,m,pre,n,q); } void CaloLevel0::FindBaseRaw(Int_t l, Int_t m, Int_t pre, Int_t &nst, Float_t &qp){ // Float_t minstrip = 100000.; Float_t rms = 0.; Int_t process = 0; Int_t onlmask[16]; memset(onlmask, 0, 16*sizeof(Int_t)); // while ( process < 2 ){ // minstrip = 100000.; rms = 0.; base[l][m][pre] = 0.; qp = 0.; // Int_t spos = -1; Int_t ee = 0; for (Int_t e = pre*16; e < (pre+1)*16 ; e++){ if ( calgood[l][m][e] == 0. && obadmask[l][m][e] == 0 && dexy[l][m][e]-calped[l][m][e] < minstrip && dexy[l][m][e] > 0. && onlmask[ee] == 0 ) { minstrip = dexy[l][m][e]-calped[l][m][e]; rms = calthr[l][m][pre]; spos = ee; }; ee++; qp += (dexy[l][m][e]-calped[l][m][e]-sbase[l][m][e]); }; // if ( debug && l==0 ){ printf("\n BASELINE CALCULATION for view %i pl %i pre %i: \n => minstrip %f rms %f \n => qp = %f \n",l,m,pre,minstrip,rms,qp); }; if ( minstrip != 100000. ) { Float_t strip6s = 0.; for (Int_t e = pre*16; e < (pre+1)*16 ; e++){ if ( (dexy[l][m][e]-calped[l][m][e]) >= minstrip && (dexy[l][m][e]-calped[l][m][e]) <= (minstrip+rms) ) { strip6s += 1.; base[l][m][pre] += (dexy[l][m][e] - calped[l][m][e]); }; // // compression // // if ( abs((int)(dexy[l][m][e]-calped[l][m][e])) <= (minstrip+rms) ) { // dexyc[l][m][e] = 0.; // } else { dexyc[l][m][e] = dexy[l][m][e]; // }; }; // if ( strip6s == 1. && process < 1 ){ onlmask[spos] = 1; process++; if ( debug ) printf(" Warning, only one strip to calculate baseline: minstrip %f rms %f spos %i l %i m %i pre %i \n",minstrip,rms,spos,l,m,pre); continue; }; process += 2; nst = (Int_t)strip6s; // if ( debug ){ printf(" strip6s %f \n",strip6s); }; // if ( strip6s >= 9. ){ if ( (strip6s >= 2. && process == 2) || (strip6s >= 9. && process > 2) ){ //if ( (strip6s >= 4. && process == 2) || (strip6s >= 9. && process > 2) ){ Double_t arro = base[l][m][pre]/strip6s; Float_t deci = 1000.*((float)arro - float(int(arro))); if ( deci < 500. ) { arro = double(int(arro)); } else { arro = 1. + double(int(arro)); }; base[l][m][pre] = arro; // // if too few strips were used to determine the baseline check if it is comparable with the previous event, if not mark it as bad // if ( debug && process > 2 ) printf(" AGH low strip value was discarded process %i strip6s %f minstrip %f rms %f spos %i\n",process,strip6s,minstrip,rms,spos); if ( debug ) printf(" Calculated baseline: base %f sbase-0.02*qp %f \n",base[l][m][pre],(-qp*0.02+sbase[l][m][pre])); // if ( strip6s < 4 && base[l][m][pre] > (-0.015*qp+sbase[l][m][pre]) && sbase[l][m][pre] > 0. ){ if ( debug ) printf(" Suspicious calculated baseline: base %f sbase-0.02*qp %f strip6s %i \n",base[l][m][pre],(-qp*0.02+sbase[l][m][pre]),(Int_t)strip6s); base[l][m][pre] = 31000.; for (Int_t e = pre*16; e < (pre+1)*16 ; e++){ dexyc[l][m][e] = dexy[l][m][e]; }; }; } else { base[l][m][pre] = 31000.; for (Int_t e = pre*16; e < (pre+1)*16 ; e++){ dexyc[l][m][e] = dexy[l][m][e]; }; }; } else { process += 2; base[l][m][pre] = 31000.; for (Int_t e = pre*16; e < (pre+1)*16 ; e++){ dexyc[l][m][e] = dexy[l][m][e]; }; }; }; } Int_t CaloLevel0::Calibrate(Int_t ei){ // // get entry ei // l0calo->GetEntry(ei); // // if it was not a selftrigger event, could it ever been a selftrigger event? if so trigty = 3. // clevel2->nsatstrip = 0.; Int_t val = 0; Int_t del = 1000; for (Int_t sec = 0; sec < 4; sec++){ for (Int_t dsec = 0; dsec < 7; dsec++){ val = (Int_t)de->calselftrig[sec][dsec]; del = delay(val); clevel2->selfdelay[sec][dsec] = del; }; }; val = 0; del = 1000; if ( clevel2->trigty < 2. ){ Bool_t ck = false; for (Int_t sec = 0; sec < 4; sec++){ val = (Int_t)de->calselftrig[sec][6]; del = delay(val); if ( del < 1000 ){ clevel2->wartrig = 0.; clevel2->trigty = 3.; ck = true; break; }; }; // if ( !ck ) clevel2->wartrig = 100.; } else { Bool_t ck = false; for (Int_t sec = 0; sec < 4; sec++){ val = (Int_t)de->calselftrig[sec][6]; del = delay(val); if ( del < 1000 ){ clevel2->wartrig = 0.; ck = true; }; }; if ( !ck ) clevel2->wartrig = 100.; }; // Int_t se = 5; Int_t done = 0; Int_t pre = -1; Bool_t isCOMP = false; Bool_t isFULL = false; Bool_t isRAW = false; Float_t ener; Int_t doneb = 0; Int_t donec = 0; Int_t ck[2][22][6]; memset(ck, 0, 2*22*6*sizeof(Int_t)); Int_t ipre = 0; // Int_t ip[3] = {0}; Int_t ip[3] = {0,0,0}; Int_t ipp = 0; Float_t base0, base1, base2; base0 = 0.; base1 = 0.; base2 = 0.; Float_t qpre[2][22][6]; memset(qpre, 0, 2*22*6*sizeof(Float_t)); Float_t ene[96]; Int_t chdone[4] = {0,0,0,0}; Int_t pe = 0; // Float_t ener0 = 0.; Float_t cbase0 = 0.; Float_t totbase = 0.; Float_t totped = 0.; Bool_t pproblem = false; Bool_t negbase = false; // Float_t tim = 0.; Int_t plo = 0; Int_t fbi = 0; Int_t cle = 0; // // run over views and planes // for (Int_t l = 0; l < 2; l++){ for (Int_t m = 0; m < 22; m++){ // // determine the section number // negbase = false; se = 5; if (l == 0 && m%2 == 0) se = 3; if (l == 0 && m%2 != 0) se = 2; if (l == 1 && m%2 != 0) se = 1; if (l == 1 && m%2 == 0) se = 0; // // determine what kind of event we are going to analyze // isCOMP = false; isFULL = false; isRAW = false; if ( de->stwerr[se] & (1 << 16) ) isCOMP = true; if ( de->stwerr[se] & (1 << 17) ) isFULL = true; if ( de->stwerr[se] & (1 << 3) ) isRAW = true; if ( !chdone[se] ){ // // check for any error in the event // clevel2->crc[se] = 0; if ( de->perror[se] == 132 ){ clevel2->crc[se] = 1; pe++; }; clevel2->perr[se] = 0; if ( de->perror[se] != 0 ){ clevel2->perr[se] = (Int_t)de->perror[se]; pe++; }; clevel2->swerr[se] = 0; for (Int_t j = 0; j < 7 ; j++){ if ( (j != 3) && (de->stwerr[se] & (1 << j)) ){ clevel2->swerr[se] = 1; pe++; }; }; chdone[se] = 1; }; if ( clevel2->crc[se] == 0 && (clevel1->good2 == 1 || clevel2->trigty >= 2) ){ pre = -1; // for (Int_t nn = 0; nn < 96; nn++){ // ene[nn] = 0.; dexy[l][m][nn] = de->dexy[l][m][nn] ; dexyc[l][m][nn] = de->dexyc[l][m][nn] ; }; // // run over preamplifiers // pre = -1; cbase0 = 0.; Int_t nstt[2]; Float_t rqp[2]; for (Int_t i = 0; i < 3; i++){ nstt[0] = 1000; nstt[1] = 1000; rqp[0] = 0.; rqp[1] = 0.; for (Int_t j = 0; j < 2; j++){ pre = j + i*2; // // baseline check and calculation // if ( !isRAW ){ // // if it is a compress event with fully transmitted pre try to calculate the baseline // if ( de->base[l][m][pre] != 0. && de->base[l][m][pre]<31000. ) { base[l][m][pre] = de->base[l][m][pre] ; } else { FindBaseCompress(l,m,pre,nstt[j],rqp[j]); }; cbase0 += base[l][m][pre]; } else { // // if it is a raw event calculate the baseline. // FindBaseRaw(l,m,pre,nstt[j],rqp[j]); cbase0 += base[l][m][pre]; }; }; // // if we are able to calculate the baseline with more than 3 strips on one pre and not in the other one choose the pre with more calculated strips // if ( nstt[0] < 4 && nstt[1] >= 4 && nstt[0] != 1000 && nstt[1] != 1000 ) base[l][m][pre-1] = 31000.; if ( nstt[0] >= 4 && nstt[1] < 4 && nstt[0] != 1000 && nstt[1] != 1000 ) base[l][m][pre] = 31000.; // // // // if we are NOT able to calculate the baseline with more than 3 strips on both pres take the baseline (if any) of the one which has less energy // // // if ( nstt[0] < 4 && nstt[1] < 4 ){ // if ( rqp[0] >= rqp[1] ) base[l][m][pre-1] = 31000.; // if ( rqp[0] < rqp[1] ) base[l][m][pre] = 31000.; // }; }; // // run over strips // pre = -1; ener0 = 0.; totbase = 0.; totped = 0.; for (Int_t i = 0 ; i < 3 ; i++){ ip[i] = 0; for (Int_t n = i*32 ; n < (i+1)*32 ; n++){ if (n%16 == 0) { done = 0; doneb = 0; donec = 0; pre++; ck[l][m][pre] = 0; qpre[l][m][pre] = 0.; }; // // baseline check and calculation // // no suitable new baseline, use old ones! // if ( !done ){ if ( (base[l][m][pre] == 31000. || base[l][m][pre] == 0.) ){ ck[l][m][pre] = 1; if (pre%2 == 0) { ip[i] = pre + 1; } else { ip[i] = pre - 1; }; if ( (base[l][m][ip[i]] == 31000. || base[l][m][ip[i]] == 0. || !crosst ) ){ // ck[l][m][pre] = 2; if ( sbase[l][m][pre] == 31000. || sbase[l][m][pre] == 0. ) { ck[l][m][pre] = 3; }; }; }; done = 1; }; // // CALIBRATION ALGORITHM // if ( !doneb ){ if ( debug ) printf(" ck[l][m][pre] is %i \n",ck[l][m][pre]); switch (ck[l][m][pre]) { case 0: base0 = base[l][m][pre]; base2 = calbase[l][m][pre]; if ( debug ) printf(" base0 = base l%i m%i pre%i = %f base2 = calbase l m pre = %f \n",l,m,pre,base[l][m][pre],calbase[l][m][pre]); break; case 1: base0 = base[l][m][ip[i]]; base2 = calbase[l][m][ip[i]]; if ( debug ) printf(" base0 = base l%i m%i ip(i)%i = %f base2 = calbase l m ip(i) = %f \n",l,m,ip[i],base[l][m][ip[i]],calbase[l][m][ip[i]]); break; case 2: base0 = sbase[l][m][pre]; base2 = calbase[l][m][pre]; if ( debug ) printf(" base0 = sbase l%i m%i pre%i = %f base2 = calbase l m pre = %f \n",l,m,pre,sbase[l][m][pre],calbase[l][m][pre]); break; case 3: base0 = calbase[l][m][pre]; base2 = calbase[l][m][pre]; if ( debug ) printf(" base0 = calbase l%i m%i pre%i = %f base2 = calbase l m pre = %f \n",l,m,pre,calbase[l][m][pre],calbase[l][m][pre]); break; }; base1 = calbase[l][m][pre]; doneb = 1; }; ener = dexyc[l][m][n]; ener0 += ener; clevel1->estrip[n][m][l] = 0.; totbase += de->base[l][m][pre]; totped += fabs(calped[l][m][n]); if ( de->base[l][m][pre] < 0 ) negbase = true; if ( base0>0 && base0 < 30000. ){ // // save the baseline only if the energy release is "small" // if ( !donec && (base0 + base1 - base2) != 0. && (n+1)%16==0 ){ if ( qpre[l][m][pre] < 200. ) sbase[l][m][pre] = base0 + base1 - base2; donec = 1; }; if ( ener > 0. ){ clevel1->estrip[n][m][l] = (ener - calped[l][m][n] - base0 - base1 + base2)/mip[l][m][n] ; // // OK, now in estrip we have the energy deposit in MIP of all the strips for this event (at the end of loops of course) // if ( clevel1->estrip[n][m][l] > 0. ) qpre[l][m][pre] += clevel1->estrip[n][m][l]; // // }; }; }; }; // // check if there were problems with 5.7 or glitches in the power supply // if ( ((ener0 == 0. && cbase0 == 0.) || negbase || totbase > 196600. || totped < 1. ) && !pproblem && clevel2->perr[se] == 0){ // check pedestal and baseline values for one plane, if all zeros calibration is not valid (calorimeter power problems) [8th data reduction bug, fixed on 25/11/2009 by E.M.] if ( verbose ) printf(" L0 entry %i : calorimeter power problems! event marked as bad perr %f swerr %X view %i plane %i \n",ei,de->perror[se],de->stwerr[se],l,m); pproblem = true; pe++; }; // } else { for (Int_t nn = 0; nn < 96; nn++){ clevel1->estrip[nn][m][l] = 0.; }; }; }; }; // // run over views and planes to apply crosstalk corrections // for (Int_t l = 0; l < 2; l++){ for (Int_t m = 0; m < 22; m++){ // // determine the section number // se = 5; if (l == 0 && m%2 == 0) se = 3; if (l == 0 && m%2 != 0) se = 2; if (l == 1 && m%2 != 0) se = 1; if (l == 1 && m%2 == 0) se = 0; // // check for any error in the event // if ( clevel2->crc[se] == 0 && (clevel1->good2 == 1 || clevel2->trigty >= 2) ){ // // Cross-talk corrections // if ( crosst ){ // // energy on silicon ladders // Float_t qsi[3]; qsi[0] = qpre[l][m][0]+qpre[l][m][1]; qsi[1] = qpre[l][m][2]+qpre[l][m][3]; qsi[2] = qpre[l][m][4]+qpre[l][m][5]; // for ( pre = 1; pre < 6; pre += 2 ){ Int_t ladder = (pre - 1)/2; // // If the noselfct flag is set the strip doesn't suffer the self crosstalk due to electronics so we must subtract some energy // if ( noselfct ){ for (Int_t j = ladder*32 ; j < (ladder+1)*32 ; j++){ ipre = j/16 ; if ( clevel1->estrip[j][m][l] != 0. ) clevel1->estrip[j][m][l] -= clevel1->estrip[j][m][l] * ctprecor[l][m][ipre]; }; }; // // Using the neighbour pre baseline // if (ck[l][m][pre] == 1 || ck[l][m][pre-1] == 1){ // // pre-amplifier effect on baseline when using the neighbour pre (ck=1) // if (ck[l][m][pre] == 1){ ipre = pre; ipp = pre - 1; } else { ipre = pre - 1; ipp = pre; }; Int_t it = 0; Float_t nqpre = 0.; // if ( debug ) printf(" CK1 Limit for while: 0.07 \n"); for (Int_t j = ipre*16 ; j < (ipre+1)*16 ; j++){ if ( !ctground ){ if ( clevel1->estrip[j][m][l] != 0. ) clevel1->estrip[j][m][l] += - qpre[l][m][ipp] * ctprecor[l][m][ipp]; } else { if ( clevel1->estrip[j][m][l] != 0. ) clevel1->estrip[j][m][l] += - qpre[l][m][ipp] * 0.00478; }; if ( clevel1->estrip[j][m][l] > 0. ) nqpre += clevel1->estrip[j][m][l] ; }; qpre[l][m][ipre] = nqpre; nqpre = 0.; Float_t deltaqpre = qpre[l][m][ipre]; // // these values are empirically determined, usually the routine converge due to deltaqsi and the latest applied correction is based on less than 1 mip // while ( it < 10 && deltaqpre > 0.07 ){ nqpre = 0.; for (Int_t j = ipre*16 ; j < (ipre+1)*16 ; j++){ if ( !ctground ){ if ( debug ) printf(" CK1 pre correction: iteration %i deltaqpre %f ctprecor %f TOTAL CORRECTION %f \n",it,deltaqpre,ctprecor[l][m][ipre],deltaqpre * ctprecor[l][m][ipre]); if ( clevel1->estrip[j][m][l] != 0. ) clevel1->estrip[j][m][l] += deltaqpre * ctprecor[l][m][ipre]; } else { if ( clevel1->estrip[j][m][l] != 0. ) clevel1->estrip[j][m][l] += deltaqpre * 0.00478; }; if ( clevel1->estrip[j][m][l] > 0. ) nqpre += clevel1->estrip[j][m][l] ; }; if ( ctground ) it = 100; it++; deltaqpre = nqpre - qpre[l][m][ipre]; if ( debug ) printf(" CK1 BEFORE: qpre %f \n",qpre[l][m][ipre]); qpre[l][m][ipre] = nqpre; if ( debug ) printf(" CK1 AFTER: qpre %f \n",qpre[l][m][ipre]); }; // }; // // No baseline calculation due to high energy release // if (ck[l][m][pre] == 2 && ck[l][m][pre-1] == 2){ // // y^ // | // | 6 7 8 // | 3 4 5 // | 0 1 2 // | --------------------------------------> x // Int_t si1 = 0; Int_t si2 = 0; Int_t si3 = 0; if ( l == 0 ){ if ( ladder == 0 ){ si1 = 0; si2 = 3; si3 = 6; }; if ( ladder == 1 ){ si1 = 1; si2 = 4; si3 = 7; }; if ( ladder == 2 ){ si1 = 2; si2 = 5; si3 = 8; }; } else { if ( ladder == 0 ){ si1 = 0; si2 = 1; si3 = 2; }; if ( ladder == 1 ){ si1 = 3; si2 = 4; si3 = 5; }; if ( ladder == 2 ){ si1 = 6; si2 = 7; si3 = 8; }; }; // // Find the energy distribution along the considered plane looking at the two sandwiching plane of the other view. // Float_t sied[3] = {0.,0.,0.}; Int_t othv = !l; Int_t othpl1 = m - 1; Int_t othpl2 = m + 1; Float_t oprof[3] = {0.,0.,0.}; for(Int_t s=0; s<3; s++){ for(Int_t t=(s*32); t<32*(s + 1); t++){ if ( othpl1 > -1 ) { oprof[s] += clevel1->estrip[othv][othpl1][t]; }; if ( othpl2 < 22 ) { oprof[s] += clevel1->estrip[othv][othpl2][t]; }; }; }; Float_t otote = fabs(oprof[0]) + fabs(oprof[1]) + fabs(oprof[2]); for(Int_t g=0; g<3; g++){ if ( otote > 0. ){ sied[g] = fabs(oprof[g])/otote; } else { sied[g] = 1./3.; }; }; // // // Int_t it = 0; Int_t jpre = 0; Float_t nqsi = 0.; Float_t snqsi = qsi[ladder]; Float_t nqpre[2] = {0.,0.}; Float_t deltaqsi = qsi[ladder]; Float_t deltaqpre[2]; deltaqpre[0] = qpre[l][m][pre-1]; deltaqpre[1] = qpre[l][m][pre]; // if ( debug ) printf(" Limit for while: 0.07 it < 10 \n"); // // these values are empirically determined, usually the routine converge due to deltaqsi and the latest applied correction is based on less than 1 mip // while ( it < 10 && (deltaqsi > 0.07 || deltaqpre[0] > 0.07 || deltaqpre[1] > 0.07) ){ nqsi = 0.; nqpre[0] = 0.; nqpre[1] = 0.; for (Int_t j = ladder*32 ; j < (ladder+1)*32 ; j++){ ipre = 0; if ( j > (ladder*32)+15 ) ipre = 1; jpre = j/16 ; // // Silicon effect on the baseline when using the same pre previous baseline (ck = 2) + pre-amply effect // if ( !ctground ){ if ( debug ) printf(" silicon correction: iteration %i deltaqsi[%i] %f ctsicor %f %f %f sied %f %f %f si %i %i %i TOTAL CORRECTION %f \n",it,ladder,deltaqsi,ctsicor[l][m][si1],ctsicor[l][m][si2],ctsicor[l][m][si3],sied[0],sied[1],sied[2],si1,si2,si3,deltaqsi * (ctsicor[l][m][si1] * sied[0] + ctsicor[l][m][si2] * sied[1] + ctsicor[l][m][si3] * sied[2])); if ( debug ) printf(" pre correction: iteration %i deltaqpre[0] %f deltaqpre[1] %f ctprecor %f TOTAL CORRECTION %f \n",it,deltaqpre[0],deltaqpre[1],ctprecor[l][m][jpre],deltaqpre[ipre] * ctprecor[l][m][jpre]); if ( clevel1->estrip[j][m][l] != 0. ) clevel1->estrip[j][m][l] += (deltaqsi * (ctsicor[l][m][si1] * sied[0] + ctsicor[l][m][si2] * sied[1] + ctsicor[l][m][si3] * sied[2])/mip[l][m][j]) + deltaqpre[ipre] * ctprecor[l][m][jpre]; } else { if ( clevel1->estrip[j][m][l] != 0. ) clevel1->estrip[j][m][l] += 0. + qpre[l][m][jpre] * 0.00478; // no correction }; if ( clevel1->estrip[j][m][l] > 0. ) nqsi += clevel1->estrip[j][m][l] ; if ( clevel1->estrip[j][m][l] > 0. ) nqpre[ipre] += clevel1->estrip[j][m][l] ; }; if ( ctground ) it = 100; deltaqsi = nqsi-snqsi; snqsi = nqsi; it++; deltaqpre[0] = nqpre[0] - qpre[l][m][pre-1]; deltaqpre[1] = nqpre[1] - qpre[l][m][pre]; if ( debug ) printf(" BEFORE: qpre 0 %f qpre 1 %f \n",qpre[l][m][pre-1],qpre[l][m][pre]); qpre[l][m][pre-1] = nqpre[0]; qpre[l][m][pre] = nqpre[1]; if ( debug ) printf(" AFTER: qpre 0 %f qpre 1 %f \n",qpre[l][m][pre-1],qpre[l][m][pre]); }; // // // // for (Int_t j = ladder*32 ; j < (ladder+1)*32 ; j++){ // ipre = j/16 ; // // // // pre-amplifier effect on baseline when using the same pre previous event baseline (ck=2) // // // if ( !ctground ){ // if ( clevel1->estrip[j][m][l] != 0. ) clevel1->estrip[j][m][l] += qpre[l][m][ipre] * ctprecor[l][m][ipre]; // } else { // if ( clevel1->estrip[j][m][l] != 0. ) clevel1->estrip[j][m][l] += qpre[l][m][ipre] * 0.00478; // }; // }; }; }; }; }; // Int_t j4 = -4; Int_t jjj = -3; Int_t jj = -2; Int_t jjpre = -1; Int_t jjjpre = -1; memset(ene, 0, 96*sizeof(Float_t)); for (Int_t j = 0 ; j < 100 ; j++){ jj++; jjj++; j4++; if ( j < 96 ) ene[j] = clevel1->estrip[j][m][l]; if ( crosst ){ // // "Real" crosstalk effect on the neighbour strips respect to the one which have seen the energy deposit // if ( jj >= 0 && jj < 96 ){ if ( !ctground ){ if ( jj%16 == 0 ) jjpre++; if ( jj != 0 && jj != 32 && jj != 64 && ene[jj-1] != 0. ) ene[jj-1] += -clevel1->estrip[jj][m][l] * ctneigcor[l][m][jjpre]; if ( jj != 31 && jj != 63 && jj != 95 && ene[jj+1] != 0. ) ene[jj+1] += -clevel1->estrip[jj][m][l] * ctneigcor[l][m][jjpre]; } else { if ( jj != 0 && jj != 32 && jj != 64 && ene[jj-1] != 0. ) ene[jj-1] += -clevel1->estrip[jj][m][l] * 0.01581; if ( jj != 31 && jj != 63 && jj != 95 && ene[jj+1] != 0. ) ene[jj+1] += -clevel1->estrip[jj][m][l] * 0.01581; }; }; if ( jjj >= 0 && jjj < 96 ){ if ( !ctground ){ if ( jjj%16 == 0 ) jjjpre++; if ( jjj != 0 && jjj != 32 && jjj != 64 && clevel1->estrip[jjj-1][m][l] != 0. ) clevel1->estrip[jjj-1][m][l] += -ene[jjj] * ctneigcor[l][m][jjjpre]; if ( jjj != 31 && jjj != 63 && jjj != 95 && clevel1->estrip[jjj+1][m][l] !=0. ) clevel1->estrip[jjj+1][m][l] += -ene[jjj] * ctneigcor[l][m][jjjpre]; } else { if ( jjj != 0 && jjj != 32 && jjj != 64 && clevel1->estrip[jjj-1][m][l] != 0. ) clevel1->estrip[jjj-1][m][l] += -ene[jjj] * 0.01581; if ( jjj != 31 && jjj != 63 && jjj != 95 && clevel1->estrip[jjj+1][m][l] != 0. ) clevel1->estrip[jjj+1][m][l] += -ene[jjj] * 0.01581; }; }; }; if ( j4 >= 0 && j4 < 96 ){ // // CALOLEVEL1 CODING AND FILLING // // // NOTICE: THE FOLLOWING LINE EXCLUDE ALL STRIPS FOR WHICH THE RMS*4 IS GREATER THAN 26 !!! <=============== IMPORTANT! =================> // not true anymore, now it trust parameter files // if ( obadmask[l][m][j4] == 1 || clevel1->estrip[j4][m][l] <= clevel1->emin || clevel1->estrip[j4][m][l] <= memin[l][m][j4] || calrms[l][m][j4] > maxrms[l][m] || (l==0 && m == 18 && mask18 ) ){ clevel1->estrip[j4][m][l] = 0.; }; // if ( debug ) printf(" STRIP: view %i plane %i strip %i energy: %f \n",l,m,j4,clevel1->estrip[j4][m][l]); // // code and save the energy for each strip in svstrip // if ( clevel1->estrip[j4][m][l] > clevel1->emin ){ // Float_t savel1 = clevel1->estrip[j4][m][l]; // if ( m == 18 && l == 0 ){ if ( debug ) printf(" Resetting plane 18X for variable calculation: view %i plane %i strip %i \n",l,m,j4); clevel1->estrip[j4][m][l] = 0.; // SAVE STRIPS VALUE FOR PLANE 18 X but DO NOT USE IT FOR VARIABLE CALCULATION }; if ( debug ) printf(" HIT STRIP: view %i plane %i strip %i energy: %f \n",l,m,j4,clevel1->estrip[j4][m][l]); // if ( dexyc[l][m][j4] == 32767. ){ if ( dexyc[l][m][j4] > 32000. ){ savel1 += 5000.; clevel2->nsatstrip += 1.; }; // tim = 100000.; plo = m; fbi = 0; if ( savel1 > 0.99995 ){ tim = 10000.; plo = m; fbi = 1; }; if ( savel1 > 9.9995 ){ tim = 1000.; plo = 22 + m; fbi = 1; }; if ( savel1 > 99.995 ){ tim = 100.; plo = 22 + m; fbi = 0; }; if ( savel1 > 999.95 ){ tim = 10.; plo = 44 + m; fbi = 0; }; if ( savel1 > 9999.5 ){ tim = 1.; plo = 66 + m; fbi = 0; }; // cle = (Int_t)lroundf(tim*savel1); // if ( l == 0 ){ // // +-PPSSmmmm.mmmm // svstrip[istrip] = fbi*1000000000 + plo*10000000 + j4*100000 + cle; } else { svstrip[istrip] = -(fbi*1000000000 + plo*10000000 + j4*100000 + cle); }; // istrip++; }; }; }; // }; }; // // store goodness flag // if ( !pe ){ clevel2->good = 1; } else { clevel2->good = 0; }; // // done // return(0); } void CaloLevel0::GetTrkVar(){ calol2tr(); } void CaloLevel0::FillTrkVar(CaloLevel2 *ca, Int_t nutrk){ // CaloTrkVar *t_ca = new CaloTrkVar(); // t_ca->trkseqno = trkseqno; t_ca->ncore = (Int_t)clevel2->ncore; t_ca->qcore = clevel2->qcore; t_ca->noint = (Int_t)clevel2->noint; t_ca->ncyl = (Int_t)clevel2->ncyl; t_ca->qcyl = clevel2->qcyl; t_ca->qtrack = clevel2->qtrack; t_ca->qtrackx = clevel2->qtrackx; t_ca->qtracky = clevel2->qtracky; t_ca->dxtrack = clevel2->dxtrack; t_ca->dytrack = clevel2->dytrack; t_ca->qlast = clevel2->qlast; t_ca->nlast = (Int_t)clevel2->nlast; t_ca->qpre = clevel2->qpre; t_ca->npre = (Int_t)clevel2->npre; t_ca->qpresh = clevel2->qpresh; t_ca->npresh = (Int_t)clevel2->npresh; t_ca->qtr = clevel2->qtr; t_ca->ntr = (Int_t)clevel2->ntr; t_ca->planetot = (Int_t)clevel2->planetot; t_ca->qmean = clevel2->qmean; t_ca->dX0l = clevel2->dX0l; t_ca->qlow = clevel2->qlow; t_ca->nlow = (Int_t)clevel2->nlow; // if ( trkseqno == -1 ){ // ca->impx = clevel2->impx; // ca->impy = clevel2->impy; ca->tanx[1] = clevel2->tanx; ca->tany[1] = clevel2->tany; ca->elen = clevel2->elen; ca->selen = clevel2->selen; // memcpy(ca->cibar,clevel2->cibar,sizeof(clevel2->cibar)); // memcpy(ca->cbar,clevel2->cbar,sizeof(clevel2->cbar)); memcpy(t_ca->tibar,clevel2->cibar,sizeof(clevel2->cibar)); memcpy(t_ca->tbar,clevel2->cbar,sizeof(clevel2->cbar)); memcpy(ca->planemax,clevel2->planemax,sizeof(clevel2->planemax)); memcpy(ca->selfdelay,clevel2->selfdelay,sizeof(clevel2->selfdelay)); ca->varcfit[2] = clevel2->varcfit[0]; ca->varcfit[3] = clevel2->varcfit[1]; ca->npcfit[2] = clevel2->npcfit[0]; ca->npcfit[3] = clevel2->npcfit[1]; // memcpy(ca->varcfit,clevel2->varcfit,sizeof(clevel2->varcfit)); // memcpy(ca->npcfit,clevel2->npcfit,sizeof(clevel2->npcfit)); } else { memcpy(t_ca->tibar,clevel2->tibar,sizeof(clevel2->tibar)); memcpy(t_ca->tbar,clevel2->tbar,sizeof(clevel2->tbar)); }; // // if ( !(ca->CaloTrk) ) ca->CaloTrk = new TClonesArray("CaloTrkVar",1); //ELENA TClonesArray &t = *ca->CaloTrk; new(t[nutrk]) CaloTrkVar(*t_ca); // delete t_ca; // ClearTrkVar(); } void CaloLevel0::GetCommonVar(){ calol2cm(); } void CaloLevel0::FillCommonVar(CaloLevel1 *c1, CaloLevel2 *ca){ // ca->good = clevel2->good; // if ( clevel2->trigty == 2. ){ // ca->selftrigger = 1; // } else { // ca->selftrigger = 0; // }; // ca->selftrigger = (Int_t)clevel2->trigty + (Int_t)clevel2->wartrig; // memcpy(ca->perr,clevel2->perr,sizeof(clevel2->perr)); memcpy(ca->swerr,clevel2->swerr,sizeof(clevel2->swerr)); memcpy(ca->crc,clevel2->crc,sizeof(clevel2->crc)); ca->nstrip = (Int_t)clevel2->nstrip; ca->nsatstrip = (Int_t)clevel2->nsatstrip; ca->qtot = clevel2->qtot; // ca->impx = clevel2->impx; // ca->impy = clevel2->impy; ca->tanx[0] = clevel2->tanx; ca->tany[0] = clevel2->tany; ca->nx22 = (Int_t)clevel2->nx22; ca->qx22 = clevel2->qx22; ca->qmax = clevel2->qmax; ca->elen = clevel2->elen; ca->selen = clevel2->selen; memcpy(ca->qq,clevel2->qq,sizeof(clevel2->qq)); memcpy(ca->planemax,clevel2->planemax,sizeof(clevel2->planemax)); memcpy(ca->selfdelay,clevel2->selfdelay,sizeof(clevel2->selfdelay)); ca->varcfit[0] = clevel2->varcfit[0]; ca->varcfit[1] = clevel2->varcfit[1]; ca->npcfit[0] = clevel2->npcfit[0]; ca->npcfit[1] = clevel2->npcfit[1]; ca->fitmode[0] = clevel2->fmode[0]; ca->fitmode[1] = clevel2->fmode[1]; // memcpy(ca->varcfit,clevel2->varcfit,sizeof(clevel2->varcfit)); // memcpy(ca->npcfit,clevel2->npcfit,sizeof(clevel2->npcfit)); memcpy(ca->cibar,clevel2->cibar,sizeof(clevel2->cibar)); memcpy(ca->cbar,clevel2->cbar,sizeof(clevel2->cbar)); // if ( c1 ){ c1->istrip = istrip; c1->estrip = TArrayI(istrip,svstrip); }; // } void CaloLevel0::ClearStructs(){ ClearTrkVar(); ClearCommonVar(); } void CaloLevel0::Delete(Option_t *t){ if ( de ) delete de; delete this; } void CaloLevel0::RunClose(){ l0tr->Delete(); ClearStructs(); // memset(dexy, 0, 2*22*96*sizeof(Float_t)); memset(dexyc, 0, 2*22*96*sizeof(Float_t)); memset(base, 0, 2*22*6*sizeof(Float_t)); memset(sbase, 0, 2*22*6*sizeof(Float_t)); memset(ctprecor, 0, 2*22*6*sizeof(Float_t)); memset(ctsicor, 0, 2*22*9*sizeof(Float_t)); memset(ctneigcor, 0, 2*22*6*sizeof(Float_t)); // } // // Private methods // void CaloLevel0::ClearTrkVar(){ clevel2->ncore = 0; clevel2->qcore = 0.; clevel2->noint = 0.; clevel2->ncyl = 0.; clevel2->qcyl = 0.; clevel2->qtrack = 0.; clevel2->qtrackx = 0.; clevel2->qtracky = 0.; clevel2->dxtrack = 0.; clevel2->dytrack = 0.; clevel2->qlast = 0.; clevel2->nlast = 0.; clevel2->qpre = 0.; clevel2->npre = 0.; clevel2->qpresh = 0.; clevel2->npresh = 0.; clevel2->qlow = 0.; clevel2->nlow = 0.; clevel2->qtr = 0.; clevel2->ntr = 0.; clevel2->planetot = 0.; clevel2->qmean = 0.; clevel2->dX0l = 0.; clevel2->elen = 0.; clevel2->selen = 0.; memset(clevel1->al_p, 0, 5*2*sizeof(Double_t)); memset(clevel2->tibar, 0, 2*22*sizeof(Int_t)); memset(clevel2->tbar, 0, 2*22*sizeof(Float_t)); } void CaloLevel0::ClearCommonVar(){ istrip = 0; clevel2->trigty = -1.; clevel2->wartrig = 0.; clevel2->good = 0; clevel2->nstrip = 0.; clevel2->nsatstrip = 0.; clevel2->qtot = 0.; // clevel2->impx = 0.; // clevel2->impy = 0.; clevel2->tanx = 0.; // this is correct since it refers to the fortran structure clevel2->tany = 0.; // this is correct since it refers to the fortran structure clevel2->qmax = 0.; clevel2->nx22 = 0.; clevel2->qx22 = 0.; memset(clevel2->perr, 0, 4*sizeof(Int_t)); memset(clevel2->swerr, 0, 4*sizeof(Int_t)); memset(clevel2->crc, 0, 4*sizeof(Int_t)); memset(clevel2->qq, 0, 4*sizeof(Int_t)); memset(clevel2->varcfit, 0, 4*sizeof(Float_t)); memset(clevel2->npcfit, 0, 4*sizeof(Int_t)); memset(clevel2->planemax, 0, 2*sizeof(Int_t)); memset(clevel2->selfdelay, 0, 4*7*sizeof(Int_t)); memset(clevel2->fmode, 0, 2*sizeof(Int_t)); memset(clevel2->cibar, 0, 2*22*sizeof(Int_t)); memset(clevel2->cbar, 0, 2*22*sizeof(Float_t)); } void CaloLevel0::ClearCalibVals(Int_t s){ // for ( Int_t d=0 ; d<11 ;d++ ){ Int_t pre = -1; for ( Int_t j=0; j<96 ;j++){ if ( j%16 == 0 ) pre++; if ( s == 2 ){ calped[0][2*d+1][j] = 0.; cstwerr[3] = 0.; cperror[3] = 0.; calgood[0][2*d+1][j] = 0.; calthr[0][2*d+1][pre] = 0.; calrms[0][2*d+1][j] = 0.; calbase[0][2*d+1][pre] = 0.; calvar[0][2*d+1][pre] = 0.; }; if ( s == 3 ){ calped[0][2*d][j] = 0.; cstwerr[1] = 0.; cperror[1] = 0.; calgood[0][2*d][j] = 0.; calthr[0][2*d][pre] = 0.; calrms[0][2*d][j] = 0.; calbase[0][2*d][pre] = 0.; calvar[0][2*d][pre] = 0.; }; if ( s == 0 ){ calped[1][2*d][j] = 0.; cstwerr[0] = 0.; cperror[0] = 0.; calgood[1][2*d][j] = 0.; calthr[1][2*d][pre] = 0.; calrms[1][2*d][j] = 0.; calbase[1][2*d][pre] = 0.; calvar[1][2*d][pre] = 0.; }; if ( s == 1 ){ calped[1][2*d+1][j] = 0.; cstwerr[2] = 0.; cperror[2] = 0.; calgood[1][2*d+1][j] = 0.; calthr[1][2*d+1][pre] = 0.; calrms[1][2*d+1][j] = 0.; calbase[1][2*d+1][pre] = 0.; calvar[1][2*d+1][pre] = 0.; }; }; }; return; } Int_t CaloLevel0::Update(GL_TABLES *glt, UInt_t atime, Int_t s){ // const TString host = glt->CGetHost(); const TString user = glt->CGetUser(); const TString psw = glt->CGetPsw(); TSQLServer *dbc = TSQLServer::Connect(host.Data(),user.Data(),psw.Data()); if ( !dbc->IsConnected() ) throw -116; stringstream myquery; myquery.str(""); myquery << "SET time_zone='+0:00'"; dbc->Query(myquery.str().c_str()); Int_t sgnl = 0; // GL_CALO_CALIB *glcalo = new GL_CALO_CALIB(); // sgnl = 0; // idcalib[s] = 0; fromtime[s] = 0; totime[s] = 0; calibno[s] = 0; ClearCalibVals(s); // UInt_t uptime = 0; // sgnl = glcalo->Query_GL_CALO_CALIB(atime,uptime,s,dbc); if ( sgnl < 0 ){ if ( verbose ) printf(" CALORIMETER - ERROR: error from GLTables\n"); return(sgnl); }; // idcalib[s] = glcalo->ID_ROOT_L0; fromtime[s] = glcalo->FROM_TIME; if ( glcalo->TO_TIME < atime ){ // calibration is corrupted and we are using the one that preceed the good one totime[s] = uptime; } else { totime[s] = glcalo->TO_TIME; }; // totime[s] = glcalo->TO_TIME; calibno[s] = glcalo->EV_ROOT; // if ( totime[s] == 0 ){ if ( verbose ) printf(" CALORIMETER - WARNING: data with no associated calibration\n"); ClearCalibVals(s); sgnl = 100; }; // // determine path and name and entry of the calibration file // GL_ROOT *glroot = new GL_ROOT(); if ( verbose ) printf("\n"); if ( verbose ) printf(" ** SECTION %i **\n",s); // sgnl = glroot->Query_GL_ROOT(idcalib[s],dbc); if ( sgnl < 0 ){ if ( verbose ) printf(" CALORIMETER - ERROR: error from GLTables\n"); return(sgnl); }; // stringstream name; name.str(""); name << glroot->PATH.Data() << "/"; name << glroot->NAME.Data(); // fcalname[s] = (TString)name.str().c_str(); if ( verbose ) printf(" - event at time %u. From time %u to time %u \n use file %s \n calibration at entry %i \n\n",atime,fromtime[s],totime[s],fcalname[s].Data(),calibno[s]); // sgnl = LoadCalib(s); // if ( sgnl != 0 ) return(sgnl); delete glcalo; delete glroot; // return(0); // } Int_t CaloLevel0::LoadCalib(Int_t s){ // ifstream myfile; myfile.open(fcalname[s].Data()); if ( !myfile ){ return(-107); }; myfile.close(); // TFile *File = new TFile(fcalname[s].Data()); if ( !File ) return(-108); TTree *tr = (TTree*)File->Get("CalibCalPed"); if ( !tr ) return(-109); // TBranch *calo = tr->GetBranch("CalibCalPed"); // pamela::CalibCalPedEvent *ce = 0; tr->SetBranchAddress("CalibCalPed", &ce); // Long64_t ncalibs = calo->GetEntries(); // if ( !ncalibs ) return(-110); // calo->GetEntry(calibno[s]); // if (ce->cstwerr[s] != 0 && ce->cperror[s] == 0 ) { for ( Int_t d=0 ; d<11 ;d++ ){ Int_t pre = -1; for ( Int_t j=0; j<96 ;j++){ if ( j%16 == 0 ) pre++; if ( s == 2 ){ calped[0][2*d+1][j] = ce->calped[3][d][j]; cstwerr[3] = ce->cstwerr[3]; cperror[3] = ce->cperror[3]; calgood[0][2*d+1][j] = ce->calgood[3][d][j]; calthr[0][2*d+1][pre] = ce->calthr[3][d][pre]; calrms[0][2*d+1][j] = ce->calrms[3][d][j]; calbase[0][2*d+1][pre] = ce->calbase[3][d][pre]; calvar[0][2*d+1][pre] = ce->calvar[3][d][pre]; }; if ( s == 3 ){ calped[0][2*d][j] = ce->calped[1][d][j]; cstwerr[1] = ce->cstwerr[1]; cperror[1] = ce->cperror[1]; calgood[0][2*d][j] = ce->calgood[1][d][j]; calthr[0][2*d][pre] = ce->calthr[1][d][pre]; calrms[0][2*d][j] = ce->calrms[1][d][j]; calbase[0][2*d][pre] = ce->calbase[1][d][pre]; calvar[0][2*d][pre] = ce->calvar[1][d][pre]; }; if ( s == 0 ){ calped[1][2*d][j] = ce->calped[0][d][j]; cstwerr[0] = ce->cstwerr[0]; cperror[0] = ce->cperror[0]; calgood[1][2*d][j] = ce->calgood[0][d][j]; calthr[1][2*d][pre] = ce->calthr[0][d][pre]; calrms[1][2*d][j] = ce->calrms[0][d][j]; calbase[1][2*d][pre] = ce->calbase[0][d][pre]; calvar[1][2*d][pre] = ce->calvar[0][d][pre]; }; if ( s == 1 ){ calped[1][2*d+1][j] = ce->calped[2][d][j]; cstwerr[2] = ce->cstwerr[2]; cperror[2] = ce->cperror[2]; calgood[1][2*d+1][j] = ce->calgood[2][d][j]; calthr[1][2*d+1][pre] = ce->calthr[2][d][pre]; calrms[1][2*d+1][j] = ce->calrms[2][d][j]; calbase[1][2*d+1][pre] = ce->calbase[2][d][pre]; calvar[1][2*d+1][pre] = ce->calvar[2][d][pre]; }; }; }; } else { if ( verbose ) printf(" CALORIMETER - ERROR: problems finding a good calibration in this file! \n\n "); return(-111); }; File->Close(); return(0); }