// // Given a calibration and a data file this program create an ntuple with LEVEL2 calorimeter variables - Emiliano Mocchiutti // // CaloCore.cxx version 3.05 (2006-05-30) // // The only input needed is the path to the directory created by YODA for the data file you want to analyze. // // Changelog: // // 3.08 (2006-11-13): Added high energy nuclei capability and "process all events" capability. // // 3.04 - 3.05 (2006-05-30): Qlast and nlast are now calculated using 4 (not 8) strips aournd the shower axis. Small bug fixed. // // 3.03 - 3.04 (2006-05-23): Forgot to put impx and impy in the PAMELA reference system, fixed. // // 3.02 - 3.03 (2006-05-18): updated to be called in DarthVader. Output dimension are now in cm and in the PAMELA reference system. // // 3.01 - 3.02 (2006-04-21): when copying entries get size of caclone and not of ca... (shouldn't matter). Fixed increasing file dimension bug when reprocessing. // Added variable planemax[2], plane of maximum energy release (x and y) in final output. Use ItoRunInfo instead of RunInfo. // // 3.00 - 3.01 (2006-04-14): fixed small bug in tagging the track used to determine track-related variables, put in caloprocessing the opening of parameters files, fixed // small bug in fortran routines // // 2.01 - 3.00 (2006-04-14): almost everything has changed. Now it can process one, all or some runs, introduced the final CaloLevel2 class+methods and the // working class "CaloProcessing", linked to the preliminary tracker flight software v0r00, reads YODA unique output files, // reduced the number of installed libraries, F77 programs splitted depending on the function contained, introduced the readout and // processing of self-trigger events, if the tracker provides more than one track all calorimeter track-related variables are saved // as many times as the number of tracks (via the TClonesArray object in the level2 rootple) and many other small changes. // // 2.00 - 2.01 (2006-01-26): bug: wrong calculation of baselines in some cases, fixed. // // 1.00 - 2.00 (2006-01-11): use TSQL ROOT classes instead of directly calling MySQL. // // 0.00 - 1.00 (2005-09-14): seems working. // // 0.00 (2005-09-09): clone of CaloLEVEL2.c . // // C/C++ headers // #include #include // // ROOT headers // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // // YODA headers // #include #include // // This program headers // #include #include #include #include #include // // Tracker classes headers and definitions // #include // using namespace std; // // CORE ROUTINE // int CaloCore(UInt_t run, TFile *file, TSQLServer *dbc, Int_t calargc, char *calargv[]){ // // Set these to true to have a very verbose output. // Bool_t verbose = false; Bool_t debug = false; // Bool_t trackanyway = true; // Float_t rigdefault = 50.; // Bool_t hZn = true; // Bool_t withtrk = true; // Bool_t st = true; // // Output directory is the working directoy. // const char* outdir = gSystem->DirName(gSystem->DirName(file->GetPath())); // Int_t ri = 0; TString processFolder = "calorimeterFolder"; if ( calargc > 0 ){ ri = 0; while ( ri < calargc ){ if ( !strcmp(calargv[ri],"-processFolder") ) { if ( calargc < ri+1 ){ throw -3; }; processFolder = (TString)calargv[ri+1]; ri++; }; if ( !strcmp(calargv[ri],"-v") || !strcmp(calargv[ri],"--verbose") ) { verbose = true; }; if ( !strcmp(calargv[ri],"-g") || !strcmp(calargv[ri],"--debug") ) { debug = true; }; if ( !strcmp(calargv[ri],"--alltracks") ) { trackanyway = true; }; if ( !strcmp(calargv[ri],"--no-tracker") ) { withtrk = false; }; if ( !strcmp(calargv[ri],"--with-tracker") ) { withtrk = true; }; if ( !strcmp(calargv[ri],"--defrig") ) { if ( calargc < ri+1 ){ throw -3; }; rigdefault = atof(calargv[ri+1]); ri++; }; if ( !strcmp(calargv[ri],"--no-alltracks") ) { trackanyway = false; }; if ( !strcmp(calargv[ri],"--highZnuclei") ) { hZn = true; }; if ( !strcmp(calargv[ri],"--no-highZnuclei") ) { hZn = false; }; if ( !strcmp(calargv[ri],"--selftrigger") ) { st = true; }; if ( !strcmp(calargv[ri],"--no-selftrigger") ) { st = false; }; if ( !strcmp(calargv[ri],"--help") ) { printf("\n\n CALORIMETER HELP CALLED\n\n"); printf(" CaloCore options: \n"); printf(" -v | --verbose be verbose\n"); printf(" -g | --debug be really verbose\n"); printf(" --defrig rig rig is the default rigidity in GV to be used to\n"); printf(" obtain calorimeter variables in the routines\n"); printf(" \"alltracks\" and \"higZnuclei\" [default = 50]\n"); printf(" --alltracks fill the track related variables even in the case\n"); printf(" of no tracks from tracker and no selftrigger event\n"); printf(" when we have a calorimeter fit for both views\n"); printf(" --no-alltracks fill the track related variables only in the case\n"); printf(" of a good track from tracker or selftrigger [default]\n"); printf(" --highZnuclei call the routine to analyze high Z nuclei\n"); printf(" selftrigger events [default]\n"); printf(" --no-highZnuclei do not call the routine to analyze high Z nuclei\n"); printf(" selftrigger events\n"); printf(" --no-tracker do not use tracker level2\n"); printf(" --with-tracker use tracker level2 [default]\n"); printf(" --selftrigger process selftrigger events [default]\n"); printf(" --no-selftrigger skip selftrigger events\n"); throw -114; }; ri++; }; }; // if ( verbose ) printf("\n"); if ( hZn && verbose ) printf(" Calling high energy nuclei subroutine \n"); if ( trackanyway && verbose ) printf(" Filling track related variables for all the possible tracks \n"); if ( verbose && ( hZn || trackanyway ) ) printf(" Default assumed rigidity %f \n",rigdefault); if ( verbose && st ) printf(" Calling selftrigger subroutine \n"); if ( verbose && withtrk ) printf(" Using tracker level2 data \n"); // // Working filename // TString outputfile; stringstream name; name.str(""); name << outdir << "/"; // // Variables. // // TFile *file = 0; TTree *tracker = 0; TTree *calo = 0; TTree *caloclone = 0; Bool_t reproc = false; Bool_t reprocall = false; UInt_t nevents = 0; UInt_t nobefrun = 0; UInt_t noaftrun = 0; UInt_t numbofrun = 0; UInt_t totnorun = 0; // Int_t code = 0; Int_t sgnl; // // calorimeter level2 classes // CaloLevel2 *ca = new CaloLevel2(); CaloLevel2 *caclone = new CaloLevel2(); // TrkLevel2 *trk = new TrkLevel2(); Int_t nevtrkl2 = 0; // UInt_t procev = 0; // // define variables where to store the absolute run header and run trailer times (unsigned long long integers, when set to a number use to store the correct number). // UInt_t runheadtime = 0; UInt_t runtrailtime = 0; UInt_t evfrom = 0; UInt_t evto = 0; UInt_t totfileentries = 0; UInt_t idRun = 0; Int_t id_reg_run=-1; stringstream ftmpname; TString fname; // // define variables for opening and reading level0 file // TFile *l0File = 0; TTree *l0tr = 0; TBranch *l0head = 0; TBranch *l0calo = 0; TBranch *l0trig = 0; pamela::EventHeader *eh = 0; pamela::PscuHeader *ph = 0; pamela::trigger::TriggerEvent *trig = 0; // // Define some basic variables // CaloProcessing *event = new CaloProcessing(); // NOTICE: very important to call here the constructor! stringstream file2; stringstream file3; stringstream qy; // Bool_t imtrack = false; Bool_t filled = false; // UInt_t caloevents = 0; stringstream calfile; stringstream aligfile; // Int_t i = -1; Int_t itr = -1; Int_t badevent = 0; Int_t totevent = 0; // UInt_t atime = 0; // Int_t S3 = 0; Int_t S2 = 0; Int_t S12 = 0; Int_t S11 = 0; UInt_t re = 0; UInt_t jumped = 0; // TString caloversion; ItoRunInfo *runinfo = 0; TArrayI *runlist = 0; // Float_t tmptrigty = -1.; Int_t ntrkentry = 0; GL_PARAM *q4 = new GL_PARAM(); UInt_t tttrkpar1 = 0; Bool_t trkpar1 = true; GL_ROOT *glroot = new GL_ROOT(); GL_TIMESYNC *dbtime = 0; // // // TFile *tempfile = 0; TTree *tempcalo = 0; stringstream tempname; stringstream calofolder; tempname.str(""); tempname << outdir; tempname << "/" << processFolder.Data(); calofolder.str(""); calofolder << tempname.str().c_str(); gSystem->MakeDirectory(calofolder.str().c_str()); tempname << "/calotree_run"; tempname << run << ".root"; // // As a first thing we must check what we have to do: if run = -1 we must process all events in the file has been passed // if run != -1 we must process only that run but first we have to check if the branch calorimeter already exist in the file // if it exists we are reprocessing data and we must delete that entries, if not we must create it. // if ( run == 0 ) reproc = true; // // // if ( !file->IsOpen() ){ if ( verbose ) printf(" CALORIMETER - ERROR: cannot open file for writing\n"); throw -101; }; // if ( withtrk ){ // // Does it contain the Tracker tree? // tracker = (TTree*)file->Get("Tracker"); if ( !tracker ) { if ( verbose ) printf(" CALORIMETER - ERROR: no tracker tree\n"); code = -102; goto closeandexit; }; tracker->SetBranchAddress("TrkLevel2",&trk); nevtrkl2 = tracker->GetEntries(); }; // // Call runinfo // sgnl = 0; runinfo = new ItoRunInfo(file); // // update versioning information and retrieve informations about the run to be processed // caloversion = CaloInfo(false); sgnl = runinfo->Update(run,"CALO",caloversion); // if ( sgnl ){ if ( verbose ) printf(" CALORIMETER - ERROR: RunInfo exited with non-zero status\n"); code = sgnl; goto closeandexit; } else { sgnl = 0; }; // // number of events in the file BEFORE the first event of our run // nobefrun = runinfo->GetFirstEntry(); // // total number of events in the file // totfileentries = runinfo->GetFileEntries(); // // first file entry AFTER the last event of our run // noaftrun = runinfo->GetLastEntry() + 1; // // number of run to be processed // numbofrun = runinfo->GetNoRun(); // // number of runs in the file // totnorun = runinfo->GetRunEntries(); // // Does it contain already a Calorimeter branch? if so we are reprocessing data, if not we must create it. // caloclone = (TTree*)file->Get("Calorimeter"); // if ( !caloclone ){ reproc = false; if ( run == 0 && verbose ) printf(" CALORIMETER - WARNING: you are reprocessing data but calorimeter tree does not exist!\n"); if ( runinfo->IsReprocessing() && run != 0 && verbose ) printf(" CALORIMETER - WARNING: it seems you are not reprocessing data but calorimeter\n versioning information already exists in RunInfo.\n"); // } else { // reproc = true; // if ( verbose ) printf("\n Preparing the pre-processing...\n"); // if ( run == 0 ){ // // if we are reprocessing everything we don't need to copy any old event and we can just create a new branch in the clone tree and jump steps 4/5/7. // if ( verbose ) printf("\n CALORIMETER - WARNING: Reprocessing all runs in the file\n"); reprocall = true; // } else { // // we are reprocessing a single run // if ( verbose ) printf("\n CALORIMETER - WARNING: Reprocessing run number %u \n",run); reprocall = false; // // // tempfile = new TFile(tempname.str().c_str(),"RECREATE"); tempcalo = caloclone->CloneTree(-1,"fast"); tempcalo->SetName("Calorimeter-old"); tempfile->Write(); tempfile->Close(); }; // // delete old tree // caloclone->Delete("all"); // if ( verbose ) printf("\n ...done!\n"); // }; // // create calorimeter tree calo // file->cd(); calo = new TTree("Calorimeter-new","PAMELA Level2 calorimeter data"); calo->Branch("CaloLevel2","CaloLevel2",&ca); // if ( reproc && !reprocall ){ // // // tempfile = new TFile(tempname.str().c_str(),"READ"); caloclone = (TTree*)tempfile->Get("Calorimeter-old"); caloclone->SetBranchAddress("CaloLevel2",&caclone); // if ( nobefrun > 0 ){ if ( verbose ) printf("\n Pre-processing: copying events from the old tree before the processed run\n"); if ( verbose ) printf(" Copying %u events in the file which are before the beginning of the run %u \n",nobefrun,run); if ( verbose ) printf(" Start copying at event number 0, end copying at event number %u \n",nobefrun); for (UInt_t j = 0; j < nobefrun; j++){ // caloclone->GetEntry(j); // // copy caclone to ca // memcpy(&ca,&caclone,sizeof(caclone)); // // Fill entry in the new tree // calo->Fill(); // ca->Clear(); // }; if ( verbose ) printf(" Finished successful copying!\n"); }; }; // // Get the list of run to be processed // runlist = runinfo->GetRunList(); // // Loop over the run to be processed // for (UInt_t irun=0; irun < numbofrun; irun++){ // badevent = 0; // idRun = runlist->At(irun); if ( verbose ) printf("\n\n\n ####################################################################### \n"); if ( verbose ) printf(" PROCESSING RUN NUMBER %u \n",idRun); if ( verbose ) printf(" ####################################################################### \n\n\n"); // sgnl = runinfo->GetRunInfo(idRun); if ( sgnl ){ if ( verbose ) printf(" CALORIMETER - ERROR: RunInfo exited with non-zero status\n"); code = sgnl; goto closeandexit; } else { sgnl = 0; }; id_reg_run = runinfo->ID_ROOT_L0; runheadtime = runinfo->RUNHEADER_TIME; runtrailtime = runinfo->RUNTRAILER_TIME; evfrom = runinfo->EV_FROM; evto = runinfo->EV_TO; // if ( id_reg_run == -1 ){ if ( verbose ) printf("\n CALORIMETER - ERROR: no run with ID_RUN = %u \n\n Exiting... \n\n",idRun); code = -5; goto closeandexit; }; // // prepare the timesync for the db // dbtime = new GL_TIMESYNC(runinfo->ID_ROOT_L0,"ID",dbc); // // Search in the DB the path and name of the LEVEL0 file to be processed. // glroot->Query_GL_ROOT(runinfo->ID_ROOT_L0,dbc); // ftmpname.str(""); ftmpname << glroot->PATH.Data() << "/"; ftmpname << glroot->NAME.Data(); fname = ftmpname.str().c_str(); // // print out informations // totevent = runinfo->NEVENTS; if ( verbose ) printf("\n LEVEL0 data file: %s \n",fname.Data()); if ( verbose ) printf(" RUN HEADER absolute time is: %u \n",runheadtime); if ( verbose ) printf(" RUN TRAILER absolute time is: %u \n",runtrailtime); if ( verbose ) printf(" %i events to be processed for run %u: from %i to %i (reg entries)\n\n",totevent,idRun,evfrom,evfrom+totevent); // // Open Level0 file // l0File = new TFile(fname.Data()); if ( !l0File ) { if ( verbose ) printf(" CALORIMETER - ERROR: problems opening Level0 file\n"); code = -6; goto closeandexit; }; l0tr = (TTree*)l0File->Get("Physics"); if ( !l0tr ) { if ( verbose ) printf(" CALORIMETER - ERROR: no Physics tree in Level0 file\n"); l0File->Close(); code = -7; goto closeandexit; }; l0head = l0tr->GetBranch("Header"); if ( !l0head ) { if ( verbose ) printf(" CALORIMETER - ERROR: no Header branch in Level0 tree\n"); l0File->Close(); code = -8; goto closeandexit; }; l0calo = l0tr->GetBranch("Calorimeter"); if ( !l0calo ) { if ( verbose ) printf(" CALORIMETER - ERROR: no Calorimeter branch in Level0 tree\n"); l0File->Close(); code = -103; goto closeandexit; }; l0trig = l0tr->GetBranch("Trigger"); if ( !l0trig ) { if ( verbose ) printf(" CALORIMETER - ERROR: no Trigger branch in Level0 tree\n"); l0File->Close(); code = -104; goto closeandexit; }; // l0tr->SetBranchAddress("Trigger", &trig); l0tr->SetBranchAddress("Header", &eh); // // Construct the event object, look for the calibration which include the first header // sgnl = 0; if ( verbose ) printf(" Check for calorimeter calibrations and initialize event object \n"); event->ProcessingInit(dbc,runheadtime,sgnl,l0tr,debug,verbose); if ( verbose ) printf("\n"); if ( sgnl == 100 ) { code = sgnl; if ( verbose ) printf(" CALORIMETER - WARNING: run header not included in any calibration interval\n"); sgnl = 0; }; if ( sgnl ){ l0File->Close(); code = sgnl; goto closeandexit; }; // qy.str(""); // nevents = l0head->GetEntries(); caloevents = l0calo->GetEntries(); // if ( nevents < 1 ) { if ( verbose ) printf(" CALORIMETER - ERROR: Level0 file is empty\n\n"); l0File->Close(); code = -11; goto closeandexit; }; // if ( evto > nevents-1 ) { if ( verbose ) printf(" CALORIMETER - ERROR: too few entries in the registry tree\n"); l0File->Close(); code = -12; goto closeandexit; }; // // Check if we have to load parameter files // sgnl = 0; sgnl = event->ChkParam(dbc,runheadtime); // calorimeter parameter files if ( sgnl < 0 ){ code = sgnl; l0File->Close(); goto closeandexit; }; // if ( withtrk ){ if ( trkpar1 || ( tttrkpar1 != 0 && tttrkpar1 < runheadtime ) ){ trkpar1 = false; Int_t glpar = q4->Query_GL_PARAM(runinfo->RUNHEADER_TIME,1,dbc); if ( glpar < 0 ){ code = glpar; goto closeandexit; }; tttrkpar1 = q4->TO_TIME; // ---------------------------- // Read the magnetic field // ---------------------------- if ( verbose ) printf(" Reading magnetic field maps at %s\n",(q4->PATH+q4->NAME).Data()); trk->LoadField(q4->PATH+q4->NAME); if ( verbose ) printf("\n"); }; }; // // run over all the events of the run // if ( verbose ) printf("\n Ready to start! \n\n Processed events: \n\n"); // // for ( re = runinfo->EV_FROM; re < (runinfo->EV_FROM+runinfo->NEVENTS); re++){ // if ( procev%1000 == 0 && procev > 0 && verbose ) printf(" %iK \n",procev/1000); // l0head->GetEntry(re); // // absolute time of this event // ph = eh->GetPscuHeader(); atime = dbtime->DBabsTime(ph->GetOrbitalTime()); // // // if ( re > caloevents-1 ){ if ( verbose ) printf(" CALORIMETER - ERROR: no physics events with entry = %i in Level0 file\n",i); l0File->Close(); code = -112; goto closeandexit; }; // if ( atime > runtrailtime || atime < runheadtime ) { if ( verbose ) printf(" CALORIMETER - WARNING: event at time outside the run time window, skipping it\n"); jumped++; goto jumpev; }; // // retrieve tracker informations // if ( !reprocall ){ itr = nobefrun + (re - evfrom - jumped); } else { itr = runinfo->GetFirstEntry() + (re - evfrom - jumped); }; // if ( withtrk ){ if ( itr > nevtrkl2 ){ if ( verbose ) printf(" CALORIMETER - ERROR: no tracker events with entry = %i in Level2 file\n",itr); l0File->Close(); code = -113; goto closeandexit; }; // trk->Clear(); // tracker->GetEntry(itr); // }; // procev++; // // start processing // ca->Clear(); // // determine who generate the trigger for this event (TOF, S4/PULSER, CALO) // l0trig->GetEntry(re); S3 = 0; S2 = 0; S12 = 0; S11 = 0; S3 = trig->patterntrig[2]; S2 = trig->patterntrig[3]; S12 = trig->patterntrig[4]; S11 = trig->patterntrig[5]; if ( trig->patterntrig[0] ) tmptrigty = 2.; if ( S3 || S2 || S12 || S11 ) tmptrigty = 0.; if ( trig->patterntrig[1] & (1<<0) || (!trig->patterntrig[0] && !S3 && !S2 && !S12 && !S11) ) tmptrigty = 1.; event->clevel2->trigty = tmptrigty; // // check if the calibration we are using is still good, if not load another calibration // sgnl = 0; sgnl = event->ChkCalib(dbc,atime); if ( sgnl < 0 ){ code = sgnl; goto closeandexit; }; if ( sgnl == 100 ){ code = sgnl; if ( verbose ) printf(" CALORIMETER - WARNING: data not associated to any calibration interval\n"); badevent++; sgnl = 0; }; // // do we have at least one track from the tracker? this check has been disabled // event->clevel1->good2 = 1; // // // Calibrate calorimeter event "re" and store output in the two structures that will be passed to fortran routine // event->Calibrate(re); // // Here we have calibrated data, ready to be passed to the FORTRAN routine which will extract topological variables. // // // Calculate variables common to all tracks (qtot, nstrip, etc.) // event->GetCommonVar(); // // Fill common variables // event->FillCommonVar(ca); // // Calculate variables related to tracks only if we have at least one track (from selftrigger and/or tracker) // ntrkentry = 0; // filled = false; // // Run over tracks (tracker or calorimeter ) // if ( withtrk ){ for(Int_t nt=0; nt < trk->ntrk(); nt++){ // event->clevel1->good2 = 1; // TrkTrack *ptt = trk->GetStoredTrack(nt); // event->clevel1->trkchi2 = 0; // // Copy the alpha vector in the input structure // for (Int_t e = 0; e < 5 ; e++){ event->clevel1->al_p[e][0] = ptt->al[e]; }; // // Get tracker related variables for this track // event->GetTrkVar(); // // Save tracker track sequence number // event->trkseqno = nt; // // Copy values in the class ca from the structure clevel2 // event->FillTrkVar(ca,ntrkentry); ntrkentry++; filled = true; // }; // loop on all the tracks }; // // if no tracks found but there is the possibility to have a good track we should try to calculate anyway the track related variables using the calorimeter // fit of the track (to be used for example when TRK is off due to any reason like IPM3/5 off). // here we make an event selection so it must be done very carefully... // // conditions are: 0) no track from the tracker 1) we have a track fit both in x and y 2) no problems with calo for this event 3) no selftrigger event // if ( trackanyway && !filled && event->clevel2->npcfit[0] >= 2 && event->clevel2->npcfit[1] >= 2 && event->clevel2->good != 0 && event->clevel2->trigty < 2. ){ if ( debug ) printf(" Event with a track not fitted by the tracker at entry %i \n",itr); // // Disable "track mode" in the fortran routine // event->clevel1->good2 = 0; event->clevel1->riginput = rigdefault; if ( debug ) printf(" Using as default rigidity: %f \n",event->clevel1->riginput); // // We have a selftrigger event to analyze. // for (Int_t e = 0; e < 5 ; e++){ event->clevel1->al_p[e][0] = 0.; event->clevel1->al_p[e][1] = 0.; }; event->clevel1->trkchi2 = 0; // event->GetTrkVar(); // // if we had no problem (clevel1->good2 = 0, NOTICE zero, not one in this mode!), fill and go on // if ( event->clevel1->good2 == 0 ) { // // In selftrigger mode the trkentry variable is set to -1 // event->trkseqno = -3; // // Copy values in the class ca from the structure clevel2 // event->FillTrkVar(ca,ntrkentry); ntrkentry++; filled = true; // } else { if ( verbose ) printf(" Selftrigger: problems with event at entry %i \n",itr); }; // }; // // Call high energy nuclei routine // if ( hZn && event->clevel2->trigty >= 2. ){ if ( debug ) printf(" Calling selftrigger high energy nuclei routine for entry %i \n",itr); // // Disable "track mode" in the fortran routine // event->clevel1->good2 = 0; // // Set high energy nuclei flag to one // event->clevel1->hzn = 1; event->clevel1->riginput = rigdefault; // // We have a selftrigger event to analyze. // for (Int_t e = 0; e < 5 ; e++){ event->clevel1->al_p[e][0] = 0.; event->clevel1->al_p[e][1] = 0.; }; event->clevel1->trkchi2 = 0; // event->GetTrkVar(); // // if we had no problem (clevel1->good2 = 0, NOTICE zero, not one in this mode!), fill and go on // if ( event->clevel1->good2 == 0 ) { // // In selftrigger mode the trkentry variable is set to -1 // event->trkseqno = -2; // // Copy values in the class ca from the structure clevel2 // event->FillTrkVar(ca,ntrkentry); ntrkentry++; filled = true; // } else { if ( verbose ) printf(" Selftrigger: problems with event at entry %i \n",itr); }; // }; // // self trigger event // if ( st && event->clevel2->trigty >= 2. ){ if ( verbose ) printf(" Selftrigger event at entry %i \n",itr); // // Disable "track mode" in the fortran routine // event->clevel1->good2 = 0; // // disable high enery nuclei flag; // event->clevel1->hzn = 0; // // We have a selftrigger event to analyze. // for (Int_t e = 0; e < 5 ; e++){ event->clevel1->al_p[e][0] = 0.; event->clevel1->al_p[e][1] = 0.; }; event->clevel1->trkchi2 = 0; // event->GetTrkVar(); // // if we had no problem (clevel2->good = 0, NOTICE zero, not one in selftrigger mode!), fill and go on // if ( event->clevel1->good2 == 0 ) { // // In selftrigger mode the trkentry variable is set to -1 // event->trkseqno = -1; // // Copy values in the class ca from the structure clevel2 // event->FillTrkVar(ca,ntrkentry); ntrkentry++; filled = true; // } else { if ( verbose ) printf(" Selftrigger: problems with event at entry %i \n",itr); }; }; // if ( !filled ) badevent++; // // Clear structures used to communicate with fortran // event->ClearStructs(); // // Fill the rootple // calo->Fill(); // // delete ca; // jumpev: debug = false; // }; // if ( verbose ) printf("\n SUMMARY:\n"); if ( verbose ) printf(" Total number of events: %i \n",totevent); if ( verbose ) printf(" Events with at least one track: %i \n",totevent-badevent); if ( verbose ) printf(" Events without tracks: %i \n",badevent); // if ( badevent == totevent ){ if ( verbose ) printf("\n CALORIMETER - WARNING no tracks or good events in run %u \n",idRun); code = 101; }; // delete dbtime; // // Clear variables before processing another run (needed to have always the same result when reprocessing data with the same software). // event->RunClose(); if ( l0File ) l0File->Close(); // }; // process all the runs // if ( verbose ) printf("\n Finished processing data \n"); // closeandexit: // if ( !reprocall && reproc && code >= 0 ){ if ( totfileentries > noaftrun ){ if ( verbose ) printf("\n Post-processing: copying events from the old tree after the processed run\n"); if ( verbose ) printf(" Copying %u events in the file which are after the end of the run %u \n",(totfileentries-noaftrun),run); if ( verbose ) printf(" Start copying at event number %u end copying at event number %u \n",noaftrun,totfileentries); for (UInt_t j = noaftrun; j < totfileentries; j++ ){ // // Get entry from old tree // caloclone->GetEntry(j); // // copy caclone to ca // ca->Clear(); // memcpy(&ca,&caclone,sizeof(caclone)); // // Fill entry in the new tree // calo->Fill(); // }; if ( verbose ) printf(" Finished successful copying!\n"); }; }; // // Case of no errors: close files, delete old tree(s), write and close level2 file // if ( l0File ) l0File->Close(); if ( tempfile ) tempfile->Close(); gSystem->Unlink(tempname.str().c_str()); if ( tracker ) tracker->Delete(); // if ( code < 0 ) printf("\n CALORIMETER - ERROR: an error occurred, try to save anyway...\n"); if ( verbose ) printf("\n Writing and closing rootple\n"); if ( runinfo ) runinfo->Close(); if ( calo ) calo->SetName("Calorimeter"); if ( file ){ file->cd(); file->Write(); }; if ( calo ) calo->Delete(); // gSystem->Unlink(calofolder.str().c_str()); // if ( ca ) delete ca; if ( caclone ) delete caclone; if ( trk ) delete trk; if ( q4 ) delete q4; if ( glroot ) delete glroot; if ( runinfo ) delete runinfo; // // the end // if ( verbose ) printf("\n Exiting...\n"); if ( code < 0 ) throw code; return(code); }