/[PAMELA software]/DarthVader/CalorimeterLevel2/inc/CaloLevel2.h
ViewVC logotype

Contents of /DarthVader/CalorimeterLevel2/inc/CaloLevel2.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.9 - (show annotations) (download)
Tue Nov 14 14:08:48 2006 UTC (18 years ago) by mocchiut
Branch: MAIN
Changes since 1.8: +13 -36 lines
File MIME type: text/plain
Major calorimeter release, some news in DarthVader main

1 /**
2 * \file inc/CaloLevel2.h
3 * \author Emiliano Mocchiutti
4 */
5 #ifndef CaloLevel2_h
6 #define CaloLevel2_h
7 //
8 #include <TObject.h>
9 #include <TClonesArray.h>
10 #include <TArrayI.h>
11 //
12 #include <CaloStruct.h>
13 /**
14 * \brief Calorimeter track-related variables class
15 *
16 * This class contains track-related variables. One set of variables is saved for any given
17 * track, including seltrigger event tracks.
18 *
19 */
20 class CaloTrkVar : public TObject {
21
22 private:
23
24 public:
25 //
26 Int_t trkseqno; ///< this variable determine which track and which routine was used to obtain track related variables: if >= 0 standard routine/tracker track, -1 selftrigger event routine/calorimeter track, -2 high Z nuclei routine/calorimeter track, -3 standard routine/calorimeter track
27 //
28 // track related variables
29 //
30 Int_t ncore; ///< SUM(j=1,2)SUM(i=1,PLmax) Nhit(i,j)*i , where Nhit(i,j) is the number of hits in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view)
31 Int_t noint; ///< SUM(j=1,2)SUM(i=1,22) TH(i,j)*i , where TH(i,j) = 1 if the i-th plane of the j-th view has a cluster along (less than 4 mm away) the track with a deposited energy typical of a proton (order of one MIP), otherwise TH(i,j) = 0
32 Int_t ncyl; ///< the number of strip hit in a cylinder of radius 8 strips around the shower axis
33 Int_t nlast; ///< the same as "ncyl" but only for the last four planes and radius 4 strips.
34 Int_t npre; ///< the same as "ncyl" but only for the first three planes
35 Int_t npresh; ///< the same as "ncyl" but with radius 2 strips and only in the first four planes
36 Int_t ntr; ///< the same as "ncyl" but with radius 4 strips
37 Int_t planetot; ///< number of planes used to calculate the energy truncated mean "qmean"
38 Int_t nlow; ///< the same as "nstrip" but only after the calculated electromagnetic shower maximum
39 Int_t tibar[22][2]; ///< strip traversed by the trajectory as measured by the tracker
40 Float_t tbar[22][2]; ///< position in cm as measured by the tracker
41 Float_t qcore; ///< SUM(j=1,2)SUM(i=1,PLmax) Qhit(i,j)*i , where Qhit(i,j) is the energy released (MIP) in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view).
42 Float_t qcyl; ///< the measured energy deposited in a cylinder of radius 8 strips around the shower axis
43 Float_t qlast; ///< the same as "qcyl" but only for the last four planes and radius 4 strips.
44 Float_t qpre; ///< the same as "qcyl" but only for the first three planes
45 Float_t qpresh; ///< the same as "qcyl" but with radius 2 strips and only in the first four planes
46 Float_t qtr; ///< the same as "qcyl" but with radius 4 strips
47 Float_t qtrack; ///< the energy deposited in the strip closest to the track and the neighbouring strip on each side
48 Float_t qtrackx; ///< measured energy in clusters along the track in the x-view
49 Float_t qtracky; ///< measured energy in clusters along the track in the y-view
50 Float_t dxtrack; ///< measured energy outside the clusters along the track in the x-view
51 Float_t dytrack; ///< measured energy outside the clusters along the track in the y-view
52 Float_t qmean; ///< the energy truncated mean that is the average energy deposit for the five planes with the smaller energy deposit of the whole calorimeter
53 Float_t qlow; ///< the same as "qtot" but only after the calculated electromagnetic shower maximum
54 Float_t dX0l; ///< tranversed X0 lenght
55 //
56 CaloTrkVar(); ///< Constructor.
57 /**
58 * \param trkvar Object of the class CaloTrkVar
59 */
60 CaloTrkVar(const CaloTrkVar &trkvar); ///< copy values from trkvar to this
61 //
62 void Clear(); ///< clear variables
63 CaloTrkVar* GetCaloTrkVar(){return this;}; ///< returns pointer to this object
64 //
65 ClassDef(CaloTrkVar,2);
66 //
67 };
68
69 /**
70 * \brief Calorimeter level2 class
71 *
72 * This class contains level2 calorimeter variables
73 *
74 **/
75 class CaloLevel2 : public TObject {
76 private:
77 TClonesArray *CaloTrk; ///< track related variables
78
79 public:
80 //
81 // general variables
82 //
83 Int_t good; ///< no errors (perr, swerr and crc are checked)
84 Int_t perr[4]; ///< processing errors (one for each calorimeter section)
85 Int_t swerr[4];///< DSP status word
86 Int_t crc[4]; ///< CRC errors on data
87 Int_t selftrigger;///< self-trigger flag (1 selftrigger event, 0 normal event)
88 //
89 // common variables (not related to tracks)
90 //
91 Int_t nstrip; ///< total number of strip hit
92 Int_t nx22; ///< number of strip hit in the last silicon plane of the calorimeter (x view number 22)
93 Int_t planemax[2]; ///< plane of maximum energy release (x and y)
94 Float_t qtot; ///< total energy detected (MIP)
95 Float_t qx22; ///< energy detected in the last silicon plane of the calorimeter (x view number 22)
96 Float_t qmax; ///< the maximum energy detected in a strip
97 Float_t qq[4]; ///< the energy released in the first half of each of the four calorimeter sections
98 //
99 // Fit variables
100 //
101 Int_t npcfit[2]; ///< number of point used to perform the fit for the two views
102 Int_t cibar[22][2]; ///< strip traversed by the trajectory as measured by the calorimeter
103 Float_t cbar[22][2]; ///< position in cm as measured by the calorimeter
104 Float_t impx; ///< the x impact position on the first plane as determined by the track fitted in the calorimeter
105 Float_t impy; ///< the y impact position on the first plane as determined by the track fitted in the calorimeter
106 Float_t tanx; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter
107 Float_t tany; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter
108 Float_t varcfit[2]; ///< variance of the calorimeter fit for the two views
109 //
110 // Energy variables
111 //
112 Float_t elen; ///< energy in GeV assuming an electron interaction (from simulations).
113 Float_t selen; ///< sigma of the energy
114 //
115 // track related variables: inline methods
116 //
117 Int_t ntrk() {return CaloTrk->GetEntries();}; ///< number of saved blocks of track-related variables
118 //
119 // Number of strip with energy > emip and their value coded with view plane and strip number:
120 // view x[y] plane PP strip SS with energy mmmm.iip = +[-] ( PP*10^6 + SS*10^4 + mmmm.iip )
121 //
122 TArrayI estrip; ///< MIP values for each strip with energy > emin coded with view plane and strip number. NOTICE: precision is limited to the 5 most significative ciphers
123 //
124 // METHODS
125 //
126 void GetElectronEnergy(Float_t &energy, Float_t &sigma); ///< returns energy and sigma using qtot and assuming the particle being an electron
127 //
128 Float_t GetEstrip(Int_t view, Int_t plane, Int_t strip); ///< returns saved MIP value for the indicated strip.
129 Float_t DecodeEstrip(Int_t entry, Int_t &view, Int_t &plane, Int_t &strip); ///< returns saved MIP value for the entry number "entry" of the TArrayI.
130 //
131 CaloTrkVar *GetCaloTrkVar(Int_t notrack); ///< returns a pointer to the CaloTrkVar class containing track related variables for track number notrack
132 //
133 TClonesArray *GetTrackArray(){return CaloTrk;}; ///< returns a pointer to the track related variables array
134 CaloLevel2* GetCaloLevel2(){return this;}; ///< returns pointer to this object
135 //
136 void GetLevel2Struct(cCaloLevel2 *l2) const;
137 //
138 void Clear();
139 //
140 // constructor
141 //
142 CaloLevel2(); ///< Constructor.
143 //
144 friend class CaloProcessing;
145 //
146 ClassDef(CaloLevel2,2);
147 };
148
149 #endif

  ViewVC Help
Powered by ViewVC 1.1.23