--- DarthVader/CalorimeterLevel2/inc/CaloLevel2.h 2006/06/05 16:42:10 1.3 +++ DarthVader/CalorimeterLevel2/inc/CaloLevel2.h 2007/03/18 20:22:52 1.14 @@ -7,8 +7,11 @@ // #include #include -#include +#include // +#include +// + /** * \brief Calorimeter track-related variables class * @@ -22,7 +25,7 @@ public: // - Int_t trkseqno; ///< tracker entry coming from tracker, -1 if selftrigger event. + Int_t trkseqno; ///< this variable determine which track and which routine was used to obtain track related variables: if >= 0 standard routine/tracker track, -1 selftrigger event routine/calorimeter track, -2 high Z nuclei routine/calorimeter track, -3 standard routine/calorimeter track // // track related variables // @@ -34,9 +37,9 @@ Int_t npresh; ///< the same as "ncyl" but with radius 2 strips and only in the first four planes Int_t ntr; ///< the same as "ncyl" but with radius 4 strips Int_t planetot; ///< number of planes used to calculate the energy truncated mean "qmean" - Int_t nlow; ///< the same as "nstrip" but below the calculated electromagnetic shower maximum - Int_t tibar[22][2]; ///< strip traversed by the trajectory as measured by the tracker - Float_t tbar[22][2]; ///< position in cm as measured by the tracker + Int_t nlow; ///< the same as "nstrip" but only after the calculated electromagnetic shower maximum + Int_t tibar[22][2]; ///< strip traversed by the trajectory as measured by the tracker or by the selftrigger when trkseqno = -1 + Float_t tbar[22][2]; ///< position in cm as measured by the tracker or by the selftrigger when trkseqno = -1 Float_t qcore; ///< SUM(j=1,2)SUM(i=1,PLmax) Qhit(i,j)*i , where Qhit(i,j) is the energy released (MIP) in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view). Float_t qcyl; ///< the measured energy deposited in a cylinder of radius 8 strips around the shower axis Float_t qlast; ///< the same as "qcyl" but only for the last four planes and radius 4 strips. @@ -49,7 +52,7 @@ Float_t dxtrack; ///< measured energy outside the clusters along the track in the x-view Float_t dytrack; ///< measured energy outside the clusters along the track in the y-view Float_t qmean; ///< the energy truncated mean that is the average energy deposit for the five planes with the smaller energy deposit of the whole calorimeter - Float_t qlow; ///< the same as "qstrip" but below the calculated electromagnetic shower maximum + Float_t qlow; ///< the same as "qtot" but only after the calculated electromagnetic shower maximum Float_t dX0l; ///< tranversed X0 lenght // CaloTrkVar(); ///< Constructor. @@ -58,9 +61,10 @@ */ CaloTrkVar(const CaloTrkVar &trkvar); ///< copy values from trkvar to this // + void Clear(); ///< clear variables CaloTrkVar* GetCaloTrkVar(){return this;}; ///< returns pointer to this object // - ClassDef(CaloTrkVar,1); + ClassDef(CaloTrkVar,2); // }; @@ -96,14 +100,13 @@ // // Fit variables // - Int_t npcfit[2]; ///< number of point used to perform the fit for the two views - Int_t cibar[22][2]; ///< strip traversed by the trajectory as measured by the calorimeter - Float_t cbar[22][2]; ///< position in cm as measured by the calorimeter - Float_t impx; ///< the x impact position on the first plane as determined by the track fitted in the calorimeter - Float_t impy; ///< the y impact position on the first plane as determined by the track fitted in the calorimeter - Float_t tanx; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter - Float_t tany; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter - Float_t varcfit[2]; ///< variance of the calorimeter fit for the two views + Int_t npcfit[4]; ///< number of point used to perform the fit for the two views (0,1 calo fit, 2,3 selftrigger fit if any) + Float_t varcfit[4]; ///< variance of the calorimeter fit for the two views (0,1 calo fit, 2,3 selftrigger fit if any) + Float_t tanx[2]; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter (0 calo fit, 1 selftrigger fit) + Float_t tany[2]; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter (0 calo fit, 1 selftrigger fit) + Int_t fitmode[2]; ///< for x and y is 0 if the fit was performed with the "electron" algorithm, is 1 if the fit was performed with the "nuclei" algorithm + Int_t cibar[22][2]; ///< strip traversed by the trajectory as measured by the calorimeter (calo fit) + Float_t cbar[22][2]; ///< position in cm as measured by the calorimeter (calo fit) // // Energy variables // @@ -112,56 +115,35 @@ // // track related variables: inline methods // - Int_t ntrk() {return CaloTrk->GetEntries();}; ///< number of saved blocks of track-related variables - Int_t trkseqno(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->trkseqno);}; ///< extract trkseqno - Int_t ncore(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ncore);}; ///< extract ncore - Int_t noint(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->noint);}; ///< extract noint - Int_t ncyl(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ncyl);}; ///< extract ncyl - Int_t nlast(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->nlast);}; ///< extract nlast - Int_t npre(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->npre);}; ///< extract npre - Int_t npresh(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->npresh);}; ///< extract npresh - Int_t ntr(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ntr);}; ///< extract ntr - Int_t nlow(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->nlow);}; ///< extract nlow - Int_t planetot(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->planetot);}; ///< extract planetot - Int_t tibar(Int_t entry, Int_t plane, Int_t view) {return (((CaloTrkVar *)CaloTrk->At(entry))->tibar[plane][view]);}; ///< extract tibar - Float_t tbar(Int_t entry, Int_t plane, Int_t view) {return (((CaloTrkVar *)CaloTrk->At(entry))->tbar[plane][view]);}; ///< extract tbar - Float_t qcore(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qcore);}; ///< extract qcore - Float_t qcyl(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qcyl);}; ///< extract qcyl - Float_t qlast(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qlast);}; ///< extract qlast - Float_t qpre(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qpre);}; ///< extract qpre - Float_t qpresh(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qpresh);}; ///< extract qpresh - Float_t qtr(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtr);}; ///< extract qtr - Float_t qtrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtrack);}; ///< extract qtrack - Float_t qtrackx(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtrackx);}; ///< extract qtrackx - Float_t qtracky(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtracky);}; ///< extract qtracky - Float_t dxtrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dxtrack);}; ///< extract dxtrack - Float_t dytrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dytrack);}; ///< extract dytrack - Float_t qmean(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qmean);}; ///< extract qmean - Float_t qlow(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qlow);}; ///< extract qlow - Float_t dX0l(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dX0l);}; ///< extract dX0l - // - // Number of strip with energy > emip and their value coded with view plane and strip number: - // view x[y] plane PP strip SS with energy mmmm.iip = +[-] ( PP*10^6 + SS*10^4 + mmmm.iip ) - // - TArrayF estrip; ///< MIP values for each strip with energy > emin coded with view plane and strip number; view x[y] plane PP strip SS with energy mmmm.iip = +[-] ( PP*10^6 + SS*10^4 + mmmm.iip ) + Int_t ntrk(){return CaloTrk->GetEntries();}; ///< number of saved blocks of track-related variables // // METHODS // + Float_t impx(Int_t tr); ///< the x impact position on the first plane as determined by the track fitted in the calorimeter ( tr = 0 calo fit, tr = 1 selftrigger fit) + Float_t impy(Int_t tr); ///< the y impact position on the first plane as determined by the track fitted in the calorimeter ( tr = 0 calo fit, tr = 1 selftrigger fit) + + // void GetElectronEnergy(Float_t &energy, Float_t &sigma); ///< returns energy and sigma using qtot and assuming the particle being an electron - Float_t GetEstrip(Int_t view, Int_t plane, Int_t strip); ///< returns saved MIP value for the indicated strip - Float_t DecodeEstrip(Int_t entry, Int_t &view, Int_t &plane, Int_t &strip); ///< returns saved MIP value for the entry number "entry" of the TArrayF. - CaloTrkVar *GetCaloTrkVar(Int_t notrack); ///< returns a pointer to the CaloTrkVar class containing track related variables // - TClonesArray *GetTrackArray(){return CaloTrk;}; + CaloTrkVar *GetCaloTrkVar(Int_t notrack); ///< returns a pointer to the CaloTrkVar class containing track related variables for track number notrack + // + TClonesArray *GetTrackArray(){return CaloTrk;}; ///< returns a pointer to the track related variables array CaloLevel2* GetCaloLevel2(){return this;}; ///< returns pointer to this object // + void GetLevel2Struct(cCaloLevel2 *l2) const; + // + void Clear(); + void Delete(); //ELENA + void Set(); //ELENA + // // constructor // - CaloLevel2(); + CaloLevel2(); ///< Constructor. + ~CaloLevel2(){Delete();}; //ELENA // - friend class CaloProcessing; + friend class CaloLevel0; // - ClassDef(CaloLevel2,1); + ClassDef(CaloLevel2,4); }; #endif