/** * \file inc/CaloLevel2.h * \author Emiliano Mocchiutti */ #ifndef CaloLevel2_h #define CaloLevel2_h // #include #include #include // /** * \brief Calorimeter track-related variables class * * This class contains track-related variables. One set of variables is saved for any given * track, including seltrigger event tracks. * */ class CaloTrkVar : public TObject { private: public: // Int_t trkseqno; ///< tracker entry coming from tracker, -1 if selftrigger event, 100 if image track is used, -100 if the track is not consistent with calorimeter one // // track related variables // Int_t ncore; ///< SUM(j=1,2)SUM(i=1,PLmax) Nhit(i,j)*i , where Nhit(i,j) is the number of hits in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view) Int_t noint; ///< SUM(j=1,2)SUM(i=1,22) TH(i,j)*i , where TH(i,j) = 1 if the i-th plane of the j-th view has a cluster along (less than 4 mm away) the track with a deposited energy typical of a proton (order of one MIP), otherwise TH(i,j) = 0 Int_t ncyl; ///< the number of strip hit in a cylinder of radius 8 strips around the shower axis Int_t nlast; ///< the same as "ncyl" but only for the last four planes. Int_t npre; ///< the same as "ncyl" but only for the first three planes Int_t npresh; ///< the same as "ncyl" but with radius 2 strips and only in the first four planes Int_t ntr; ///< the same as "ncyl" but with radius 4 strips Int_t planetot; ///< number of planes used to calculate the energy truncated mean "qmean" Int_t nlow; ///< the same as "nstrip" but below the calculated electromagnetic shower maximum Int_t tibar[22][2]; ///< strip traversed by the trajectory as measured by the tracker Float_t tbar[22][2]; ///< position in cm as measured by the tracker Float_t qcore; ///< SUM(j=1,2)SUM(i=1,PLmax) Qhit(i,j)*i , where Qhit(i,j) is the energy released (MIP) in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view). Float_t qcyl; ///< the measured energy deposited in a cylinder of radius 8 strips around the shower axis Float_t qlast; ///< the same as "qcyl" but only for the last four planes. Float_t qpre; ///< the same as "qcyl" but only for the first three planes Float_t qpresh; ///< the same as "qcyl" but with radius 2 strips and only in the first four planes Float_t qtr; ///< the same as "qcyl" but with radius 4 strips Float_t qtrack; ///< the energy deposited in the strip closest to the track and the neighbouring strip on each side Float_t qtrackx; ///< measured energy in clusters along the track in the x-view Float_t qtracky; ///< measured energy in clusters along the track in the y-view Float_t dxtrack; ///< measured energy outside the clusters along the track in the x-view Float_t dytrack; ///< measured energy outside the clusters along the track in the y-view Float_t qmean; ///< the energy truncated mean that is the average energy deposit for the five planes with the smaller energy deposit of the whole calorimeter Float_t qlow; ///< the same as "qstrip" but below the calculated electromagnetic shower maximum Float_t dX0l; ///< traversed X0 lenght // CaloTrkVar(); ///< Constructor. /** * \param trkvar Object of the class CaloTrkVar */ CaloTrkVar(const CaloTrkVar &trkvar); ///< copy values from trkvar to this // CaloTrkVar* GetCaloTrkVar(){return this;}; ///< returns pointer to this object // ClassDef(CaloTrkVar,1); // }; /** * \brief Calorimeter level2 class * * This class contains level2 calorimeter variables * **/ class CaloLevel2 : public TObject { private: TClonesArray *CaloTrk; ///< track related variables public: // // general variables // Int_t good; ///< no errors (perr, swerr and crc are checked) Int_t perr[4]; ///< processing errors (one for each calorimeter section) Int_t swerr[4];///< DSP status word Int_t crc[4]; ///< CRC errors on data Int_t selftrigger;///< self-trigger flag (1 selftrigger event, 0 normal event) // // common variables (not related to tracks) // Int_t nstrip; ///< total number of strip hit Int_t nx22; ///< number of strip hit in the last silicon plane of the calorimeter (x view number 22) Int_t planemax[2]; ///< plane of maximum energy release (x and y) Float_t qtot; ///< total energy detected (MIP) Float_t qx22; ///< energy detected in the last silicon plane of the calorimeter (x view number 22) Float_t qmax; ///< the maximum energy detected in a strip Float_t qq[4]; ///< the energy released in the first half of each of the four calorimeter sections // // Fit variables // Int_t npcfit[2]; ///< number of point used to perform the fit for the two views Int_t cibar[22][2]; ///< strip traversed by the trajectory as measured by the calorimeter Float_t cbar[22][2]; ///< position in cm as measured by the calorimeter Float_t impx; ///< the x impact position on the first plane as determined by the track fitted in the calorimeter Float_t impy; ///< the y impact position on the first plane as determined by the track fitted in the calorimeter Float_t tanx; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter Float_t tany; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter Float_t varcfit[2]; ///< variance of the calorimeter fit for the two views // // Energy variables // Float_t elen; ///< energy in GeV assuming an electron interaction (from simulations). Float_t selen; ///< sigma of the energy // // track related variables: inline methods // Int_t ntrk() {return CaloTrk->GetEntries();}; ///< number of saved blocks of track-related variables Int_t trkseqno(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->trkseqno);}; ///< extract trkseqno Int_t ncore(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ncore);}; ///< extract ncore Int_t noint(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->noint);}; ///< extract noint Int_t ncyl(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ncyl);}; ///< extract ncyl Int_t nlast(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->nlast);}; ///< extract nlast Int_t npre(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->npre);}; ///< extract npre Int_t npresh(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->npresh);}; ///< extract npresh Int_t ntr(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ntr);}; ///< extract ntr Int_t nlow(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->nlow);}; ///< extract nlow Int_t planetot(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->planetot);}; ///< extract planetot Int_t tibar(Int_t entry, Int_t plane, Int_t view) {return (((CaloTrkVar *)CaloTrk->At(entry))->tibar[plane][view]);}; ///< extract tibar Float_t tbar(Int_t entry, Int_t plane, Int_t view) {return (((CaloTrkVar *)CaloTrk->At(entry))->tbar[plane][view]);}; ///< extract tbar Float_t qcore(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qcore);}; ///< extract qcore Float_t qcyl(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qcyl);}; ///< extract qcyl Float_t qlast(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qlast);}; ///< extract qlast Float_t qpre(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qpre);}; ///< extract qpre Float_t qpresh(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qpresh);}; ///< extract qpresh Float_t qtr(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtr);}; ///< extract qtr Float_t qtrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtrack);}; ///< extract qtrack Float_t qtrackx(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtrackx);}; ///< extract qtrackx Float_t qtracky(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtracky);}; ///< extract qtracky Float_t dxtrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dxtrack);}; ///< extract dxtrack Float_t dytrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dytrack);}; ///< extract dytrack Float_t qmean(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qmean);}; ///< extract qmean Float_t qlow(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qlow);}; ///< extract qlow Float_t dX0l(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dX0l);}; ///< extract dX0l // // Number of strip with energy > emip and their value coded with view plane and strip number: // view x(y) plane PP strip SS with energy mmmm.iip = +(-) ( PP*10^6 + SS*10^4 + mmmm.iip ) // TArrayF estrip; ///< MIP values for each strip with energy > emin // // METHODS // void GetElectronEnergy(Float_t &energy, Float_t &sigma); ///< returns energy and sigma using qtot and assuming the particle being an electron Float_t GetEstrip(Int_t view, Int_t plane, Int_t strip); ///< returns saved MIP value for the indicated strip Float_t DecodeEstrip(Int_t entry, Int_t &view, Int_t &plane, Int_t &strip); ///< returns saved MIP value for the entry number "entry" of the TArrayF. CaloTrkVar *GetCaloTrkVar(Int_t notrack); ///< returns a pointer to the CaloTrkVar class containing track related variables // CaloLevel2* GetCaloLevel2(){return this;}; ///< returns pointer to this object // // constructor // CaloLevel2(); // friend class CaloProcessing; // ClassDef(CaloLevel2,1); }; #endif