7 |
// |
// |
8 |
#include <TObject.h> |
#include <TObject.h> |
9 |
#include <TClonesArray.h> |
#include <TClonesArray.h> |
10 |
#include <TArrayF.h> |
#include <TArrayI.h> |
11 |
// |
// |
12 |
#include <CaloStruct.h> |
#include <CaloStruct.h> |
13 |
|
// |
14 |
|
|
15 |
/** |
/** |
16 |
* \brief Calorimeter track-related variables class |
* \brief Calorimeter track-related variables class |
17 |
* |
* |
25 |
|
|
26 |
public: |
public: |
27 |
// |
// |
28 |
Int_t trkseqno; ///< tracker entry coming from tracker, -1 if selftrigger event. |
Int_t trkseqno; ///< this variable determine which track and which routine was used to obtain track related variables: if >= 0 standard routine/tracker track, -1 selftrigger event routine/calorimeter track, -2 high Z nuclei routine/calorimeter track, -3 standard routine/calorimeter track |
29 |
// |
// |
30 |
// track related variables |
// track related variables |
31 |
// |
// |
37 |
Int_t npresh; ///< the same as "ncyl" but with radius 2 strips and only in the first four planes |
Int_t npresh; ///< the same as "ncyl" but with radius 2 strips and only in the first four planes |
38 |
Int_t ntr; ///< the same as "ncyl" but with radius 4 strips |
Int_t ntr; ///< the same as "ncyl" but with radius 4 strips |
39 |
Int_t planetot; ///< number of planes used to calculate the energy truncated mean "qmean" |
Int_t planetot; ///< number of planes used to calculate the energy truncated mean "qmean" |
40 |
Int_t nlow; ///< the same as "nstrip" but below the calculated electromagnetic shower maximum |
Int_t nlow; ///< the same as "nstrip" but only after the calculated electromagnetic shower maximum |
41 |
Int_t tibar[22][2]; ///< strip traversed by the trajectory as measured by the tracker |
Int_t tibar[22][2]; ///< strip traversed by the trajectory as measured by the tracker or by the selftrigger when trkseqno = -1 |
42 |
Float_t tbar[22][2]; ///< position in cm as measured by the tracker |
Float_t tbar[22][2]; ///< position in cm as measured by the tracker or by the selftrigger when trkseqno = -1 |
43 |
Float_t qcore; ///< SUM(j=1,2)SUM(i=1,PLmax) Qhit(i,j)*i , where Qhit(i,j) is the energy released (MIP) in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view). |
Float_t qcore; ///< SUM(j=1,2)SUM(i=1,PLmax) Qhit(i,j)*i , where Qhit(i,j) is the energy released (MIP) in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view). |
44 |
Float_t qcyl; ///< the measured energy deposited in a cylinder of radius 8 strips around the shower axis |
Float_t qcyl; ///< the measured energy deposited in a cylinder of radius 8 strips around the shower axis |
45 |
Float_t qlast; ///< the same as "qcyl" but only for the last four planes and radius 4 strips. |
Float_t qlast; ///< the same as "qcyl" but only for the last four planes and radius 4 strips. |
52 |
Float_t dxtrack; ///< measured energy outside the clusters along the track in the x-view |
Float_t dxtrack; ///< measured energy outside the clusters along the track in the x-view |
53 |
Float_t dytrack; ///< measured energy outside the clusters along the track in the y-view |
Float_t dytrack; ///< measured energy outside the clusters along the track in the y-view |
54 |
Float_t qmean; ///< the energy truncated mean that is the average energy deposit for the five planes with the smaller energy deposit of the whole calorimeter |
Float_t qmean; ///< the energy truncated mean that is the average energy deposit for the five planes with the smaller energy deposit of the whole calorimeter |
55 |
Float_t qlow; ///< the same as "qstrip" but below the calculated electromagnetic shower maximum |
Float_t qlow; ///< the same as "qtot" but only after the calculated electromagnetic shower maximum |
56 |
Float_t dX0l; ///< tranversed X0 lenght |
Float_t dX0l; ///< tranversed X0 lenght |
57 |
// |
// |
58 |
CaloTrkVar(); ///< Constructor. |
CaloTrkVar(); ///< Constructor. |
100 |
// |
// |
101 |
// Fit variables |
// Fit variables |
102 |
// |
// |
103 |
Int_t npcfit[2]; ///< number of point used to perform the fit for the two views |
Int_t npcfit[4]; ///< number of point used to perform the fit for the two views (0,1 calo fit, 2,3 selftrigger fit if any) |
104 |
Int_t cibar[22][2]; ///< strip traversed by the trajectory as measured by the calorimeter |
Float_t varcfit[4]; ///< variance of the calorimeter fit for the two views (0,1 calo fit, 2,3 selftrigger fit if any) |
105 |
Float_t cbar[22][2]; ///< position in cm as measured by the calorimeter |
Float_t tanx[2]; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter (0 calo fit, 1 selftrigger fit) |
106 |
Float_t impx; ///< the x impact position on the first plane as determined by the track fitted in the calorimeter |
Float_t tany[2]; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter (0 calo fit, 1 selftrigger fit) |
107 |
Float_t impy; ///< the y impact position on the first plane as determined by the track fitted in the calorimeter |
Int_t fitmode[2]; ///< for x and y is 0 if the fit was performed with the "electron" algorithm, is 1 if the fit was performed with the "nuclei" algorithm |
108 |
Float_t tanx; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter |
Int_t cibar[22][2]; ///< strip traversed by the trajectory as measured by the calorimeter (calo fit) |
109 |
Float_t tany; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter |
Float_t cbar[22][2]; ///< position in cm as measured by the calorimeter (calo fit) |
|
Float_t varcfit[2]; ///< variance of the calorimeter fit for the two views |
|
110 |
// |
// |
111 |
// Energy variables |
// Energy variables |
112 |
// |
// |
115 |
// |
// |
116 |
// track related variables: inline methods |
// track related variables: inline methods |
117 |
// |
// |
118 |
Int_t ntrk() {return CaloTrk->GetEntries();}; ///< number of saved blocks of track-related variables |
Int_t ntrk(){return CaloTrk->GetEntries();}; ///< number of saved blocks of track-related variables |
|
Int_t trkseqno(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->trkseqno);}; ///< extract trkseqno |
|
|
Int_t ncore(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ncore);}; ///< extract ncore |
|
|
Int_t noint(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->noint);}; ///< extract noint |
|
|
Int_t ncyl(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ncyl);}; ///< extract ncyl |
|
|
Int_t nlast(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->nlast);}; ///< extract nlast |
|
|
Int_t npre(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->npre);}; ///< extract npre |
|
|
Int_t npresh(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->npresh);}; ///< extract npresh |
|
|
Int_t ntr(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ntr);}; ///< extract ntr |
|
|
Int_t nlow(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->nlow);}; ///< extract nlow |
|
|
Int_t planetot(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->planetot);}; ///< extract planetot |
|
|
Int_t tibar(Int_t entry, Int_t plane, Int_t view) {return (((CaloTrkVar *)CaloTrk->At(entry))->tibar[plane][view]);}; ///< extract tibar |
|
|
Float_t tbar(Int_t entry, Int_t plane, Int_t view) {return (((CaloTrkVar *)CaloTrk->At(entry))->tbar[plane][view]);}; ///< extract tbar |
|
|
Float_t qcore(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qcore);}; ///< extract qcore |
|
|
Float_t qcyl(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qcyl);}; ///< extract qcyl |
|
|
Float_t qlast(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qlast);}; ///< extract qlast |
|
|
Float_t qpre(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qpre);}; ///< extract qpre |
|
|
Float_t qpresh(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qpresh);}; ///< extract qpresh |
|
|
Float_t qtr(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtr);}; ///< extract qtr |
|
|
Float_t qtrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtrack);}; ///< extract qtrack |
|
|
Float_t qtrackx(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtrackx);}; ///< extract qtrackx |
|
|
Float_t qtracky(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtracky);}; ///< extract qtracky |
|
|
Float_t dxtrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dxtrack);}; ///< extract dxtrack |
|
|
Float_t dytrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dytrack);}; ///< extract dytrack |
|
|
Float_t qmean(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qmean);}; ///< extract qmean |
|
|
Float_t qlow(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qlow);}; ///< extract qlow |
|
|
Float_t dX0l(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dX0l);}; ///< extract dX0l |
|
|
// |
|
|
// Number of strip with energy > emip and their value coded with view plane and strip number: |
|
|
// view x[y] plane PP strip SS with energy mmmm.iip = +[-] ( PP*10^6 + SS*10^4 + mmmm.iip ) |
|
|
// |
|
|
TArrayF estrip; ///< MIP values for each strip with energy > emin coded with view plane and strip number; view x[y] plane PP strip SS with energy mmmm.iip = +[-] ( PP*10^6 + SS*10^4 + mmmm.iip ) |
|
119 |
// |
// |
120 |
// METHODS |
// METHODS |
121 |
// |
// |
122 |
|
Float_t impx(Int_t tr); ///< the x impact position on the first plane as determined by the track fitted in the calorimeter ( tr = 0 calo fit, tr = 1 selftrigger fit) |
123 |
|
Float_t impy(Int_t tr); ///< the y impact position on the first plane as determined by the track fitted in the calorimeter ( tr = 0 calo fit, tr = 1 selftrigger fit) |
124 |
|
|
125 |
|
// |
126 |
void GetElectronEnergy(Float_t &energy, Float_t &sigma); ///< returns energy and sigma using qtot and assuming the particle being an electron |
void GetElectronEnergy(Float_t &energy, Float_t &sigma); ///< returns energy and sigma using qtot and assuming the particle being an electron |
|
Float_t GetEstrip(Int_t view, Int_t plane, Int_t strip); ///< returns saved MIP value for the indicated strip |
|
|
Float_t DecodeEstrip(Int_t entry, Int_t &view, Int_t &plane, Int_t &strip); ///< returns saved MIP value for the entry number "entry" of the TArrayF. |
|
|
CaloTrkVar *GetCaloTrkVar(Int_t notrack); ///< returns a pointer to the CaloTrkVar class containing track related variables |
|
127 |
// |
// |
128 |
TClonesArray *GetTrackArray(){return CaloTrk;}; |
CaloTrkVar *GetCaloTrkVar(Int_t notrack); ///< returns a pointer to the CaloTrkVar class containing track related variables for track number notrack |
129 |
|
// |
130 |
|
TClonesArray *GetTrackArray(){return CaloTrk;}; ///< returns a pointer to the track related variables array |
131 |
CaloLevel2* GetCaloLevel2(){return this;}; ///< returns pointer to this object |
CaloLevel2* GetCaloLevel2(){return this;}; ///< returns pointer to this object |
132 |
// |
// |
133 |
void GetLevel2Struct(cCaloLevel2 *l2) const; |
void GetLevel2Struct(cCaloLevel2 *l2) const; |
134 |
|
// |
135 |
void Clear(); |
void Clear(); |
136 |
|
void Delete(); //ELENA |
137 |
|
void Set(); //ELENA |
138 |
// |
// |
139 |
// constructor |
// constructor |
140 |
// |
// |
141 |
CaloLevel2(); ///< Constructor. |
CaloLevel2(); ///< Constructor. |
142 |
|
~CaloLevel2(){Delete();}; //ELENA |
143 |
// |
// |
144 |
friend class CaloProcessing; |
friend class CaloLevel0; |
145 |
// |
// |
146 |
ClassDef(CaloLevel2,1); |
ClassDef(CaloLevel2,4); |
147 |
}; |
}; |
148 |
|
|
149 |
#endif |
#endif |