| 38 |
Int_t ntr; ///< the same as "ncyl" but with radius 4 strips |
Int_t ntr; ///< the same as "ncyl" but with radius 4 strips |
| 39 |
Int_t planetot; ///< number of planes used to calculate the energy truncated mean "qmean" |
Int_t planetot; ///< number of planes used to calculate the energy truncated mean "qmean" |
| 40 |
Int_t nlow; ///< the same as "nstrip" but only after the calculated electromagnetic shower maximum |
Int_t nlow; ///< the same as "nstrip" but only after the calculated electromagnetic shower maximum |
| 41 |
Int_t tibar[22][2]; ///< strip traversed by the trajectory as measured by the tracker |
Int_t tibar[22][2]; ///< strip traversed by the trajectory as measured by the tracker or by the selftrigger when trkseqno = -1 |
| 42 |
Float_t tbar[22][2]; ///< position in cm as measured by the tracker |
Float_t tbar[22][2]; ///< position in cm as measured by the tracker or by the selftrigger when trkseqno = -1 |
| 43 |
Float_t qcore; ///< SUM(j=1,2)SUM(i=1,PLmax) Qhit(i,j)*i , where Qhit(i,j) is the energy released (MIP) in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view). |
Float_t qcore; ///< SUM(j=1,2)SUM(i=1,PLmax) Qhit(i,j)*i , where Qhit(i,j) is the energy released (MIP) in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view). |
| 44 |
Float_t qcyl; ///< the measured energy deposited in a cylinder of radius 8 strips around the shower axis |
Float_t qcyl; ///< the measured energy deposited in a cylinder of radius 8 strips around the shower axis |
| 45 |
Float_t qlast; ///< the same as "qcyl" but only for the last four planes and radius 4 strips. |
Float_t qlast; ///< the same as "qcyl" but only for the last four planes and radius 4 strips. |
| 100 |
// |
// |
| 101 |
// Fit variables |
// Fit variables |
| 102 |
// |
// |
| 103 |
Int_t npcfit[2]; ///< number of point used to perform the fit for the two views |
Int_t npcfit[4]; ///< number of point used to perform the fit for the two views (0,1 calo fit, 2,3 selftrigger fit if any) |
| 104 |
Int_t cibar[22][2]; ///< strip traversed by the trajectory as measured by the calorimeter |
Float_t varcfit[4]; ///< variance of the calorimeter fit for the two views (0,1 calo fit, 2,3 selftrigger fit if any) |
| 105 |
Float_t cbar[22][2]; ///< position in cm as measured by the calorimeter |
Float_t tanx[2]; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter (0 calo fit, 1 selftrigger fit) |
| 106 |
Float_t impx; ///< the x impact position on the first plane as determined by the track fitted in the calorimeter |
Float_t tany[2]; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter (0 calo fit, 1 selftrigger fit) |
| 107 |
Float_t impy; ///< the y impact position on the first plane as determined by the track fitted in the calorimeter |
Int_t fitmode[2]; ///< for x and y is 0 if the fit was performed with the "electron" algorithm, is 1 if the fit was performed with the "nuclei" algorithm |
| 108 |
Float_t tanx; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter |
Int_t cibar[22][2]; ///< strip traversed by the trajectory as measured by the calorimeter (calo fit) |
| 109 |
Float_t tany; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter |
Float_t cbar[22][2]; ///< position in cm as measured by the calorimeter (calo fit) |
|
Float_t varcfit[2]; ///< variance of the calorimeter fit for the two views |
|
| 110 |
// |
// |
| 111 |
// Energy variables |
// Energy variables |
| 112 |
// |
// |
| 115 |
// |
// |
| 116 |
// track related variables: inline methods |
// track related variables: inline methods |
| 117 |
// |
// |
| 118 |
Int_t ntrk() {return CaloTrk->GetEntries();}; ///< number of saved blocks of track-related variables |
Int_t ntrk(){return CaloTrk->GetEntries();}; ///< number of saved blocks of track-related variables |
| 119 |
// |
// |
| 120 |
// METHODS |
// METHODS |
| 121 |
// |
// |
| 122 |
|
Float_t impx(Int_t tr); ///< the x impact position on the first plane as determined by the track fitted in the calorimeter ( tr = 0 calo fit, tr = 1 selftrigger fit) |
| 123 |
|
Float_t impy(Int_t tr); ///< the y impact position on the first plane as determined by the track fitted in the calorimeter ( tr = 0 calo fit, tr = 1 selftrigger fit) |
| 124 |
|
|
| 125 |
|
// |
| 126 |
void GetElectronEnergy(Float_t &energy, Float_t &sigma); ///< returns energy and sigma using qtot and assuming the particle being an electron |
void GetElectronEnergy(Float_t &energy, Float_t &sigma); ///< returns energy and sigma using qtot and assuming the particle being an electron |
| 127 |
// |
// |
| 128 |
CaloTrkVar *GetCaloTrkVar(Int_t notrack); ///< returns a pointer to the CaloTrkVar class containing track related variables for track number notrack |
CaloTrkVar *GetCaloTrkVar(Int_t notrack); ///< returns a pointer to the CaloTrkVar class containing track related variables for track number notrack |
| 143 |
// |
// |
| 144 |
friend class CaloProcessing; |
friend class CaloProcessing; |
| 145 |
// |
// |
| 146 |
ClassDef(CaloLevel2,3); |
ClassDef(CaloLevel2,4); |
| 147 |
}; |
}; |
| 148 |
|
|
| 149 |
#endif |
#endif |