1 |
/** |
2 |
* \file inc/CaloLevel2.h |
3 |
* \author Emiliano Mocchiutti |
4 |
*/ |
5 |
#ifndef CaloLevel2_h |
6 |
#define CaloLevel2_h |
7 |
// |
8 |
#include <TObject.h> |
9 |
#include <TClonesArray.h> |
10 |
#include <TArrayF.h> |
11 |
// |
12 |
#include <CaloStruct.h> |
13 |
/** |
14 |
* \brief Calorimeter track-related variables class |
15 |
* |
16 |
* This class contains track-related variables. One set of variables is saved for any given |
17 |
* track, including seltrigger event tracks. |
18 |
* |
19 |
*/ |
20 |
class CaloTrkVar : public TObject { |
21 |
|
22 |
private: |
23 |
|
24 |
public: |
25 |
// |
26 |
Int_t trkseqno; ///< tracker entry coming from tracker, -1 if selftrigger event. |
27 |
// |
28 |
// track related variables |
29 |
// |
30 |
Int_t ncore; ///< SUM(j=1,2)SUM(i=1,PLmax) Nhit(i,j)*i , where Nhit(i,j) is the number of hits in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view) |
31 |
Int_t noint; ///< SUM(j=1,2)SUM(i=1,22) TH(i,j)*i , where TH(i,j) = 1 if the i-th plane of the j-th view has a cluster along (less than 4 mm away) the track with a deposited energy typical of a proton (order of one MIP), otherwise TH(i,j) = 0 |
32 |
Int_t ncyl; ///< the number of strip hit in a cylinder of radius 8 strips around the shower axis |
33 |
Int_t nlast; ///< the same as "ncyl" but only for the last four planes and radius 4 strips. |
34 |
Int_t npre; ///< the same as "ncyl" but only for the first three planes |
35 |
Int_t npresh; ///< the same as "ncyl" but with radius 2 strips and only in the first four planes |
36 |
Int_t ntr; ///< the same as "ncyl" but with radius 4 strips |
37 |
Int_t planetot; ///< number of planes used to calculate the energy truncated mean "qmean" |
38 |
Int_t nlow; ///< the same as "nstrip" but below the calculated electromagnetic shower maximum |
39 |
Int_t tibar[22][2]; ///< strip traversed by the trajectory as measured by the tracker |
40 |
Float_t tbar[22][2]; ///< position in cm as measured by the tracker |
41 |
Float_t qcore; ///< SUM(j=1,2)SUM(i=1,PLmax) Qhit(i,j)*i , where Qhit(i,j) is the energy released (MIP) in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view). |
42 |
Float_t qcyl; ///< the measured energy deposited in a cylinder of radius 8 strips around the shower axis |
43 |
Float_t qlast; ///< the same as "qcyl" but only for the last four planes and radius 4 strips. |
44 |
Float_t qpre; ///< the same as "qcyl" but only for the first three planes |
45 |
Float_t qpresh; ///< the same as "qcyl" but with radius 2 strips and only in the first four planes |
46 |
Float_t qtr; ///< the same as "qcyl" but with radius 4 strips |
47 |
Float_t qtrack; ///< the energy deposited in the strip closest to the track and the neighbouring strip on each side |
48 |
Float_t qtrackx; ///< measured energy in clusters along the track in the x-view |
49 |
Float_t qtracky; ///< measured energy in clusters along the track in the y-view |
50 |
Float_t dxtrack; ///< measured energy outside the clusters along the track in the x-view |
51 |
Float_t dytrack; ///< measured energy outside the clusters along the track in the y-view |
52 |
Float_t qmean; ///< the energy truncated mean that is the average energy deposit for the five planes with the smaller energy deposit of the whole calorimeter |
53 |
Float_t qlow; ///< the same as "qstrip" but below the calculated electromagnetic shower maximum |
54 |
Float_t dX0l; ///< tranversed X0 lenght |
55 |
// |
56 |
CaloTrkVar(); ///< Constructor. |
57 |
/** |
58 |
* \param trkvar Object of the class CaloTrkVar |
59 |
*/ |
60 |
CaloTrkVar(const CaloTrkVar &trkvar); ///< copy values from trkvar to this |
61 |
// |
62 |
CaloTrkVar* GetCaloTrkVar(){return this;}; ///< returns pointer to this object |
63 |
// |
64 |
ClassDef(CaloTrkVar,1); |
65 |
// |
66 |
}; |
67 |
|
68 |
/** |
69 |
* \brief Calorimeter level2 class |
70 |
* |
71 |
* This class contains level2 calorimeter variables |
72 |
* |
73 |
**/ |
74 |
class CaloLevel2 : public TObject { |
75 |
private: |
76 |
TClonesArray *CaloTrk; ///< track related variables |
77 |
|
78 |
public: |
79 |
// |
80 |
// general variables |
81 |
// |
82 |
Int_t good; ///< no errors (perr, swerr and crc are checked) |
83 |
Int_t perr[4]; ///< processing errors (one for each calorimeter section) |
84 |
Int_t swerr[4];///< DSP status word |
85 |
Int_t crc[4]; ///< CRC errors on data |
86 |
Int_t selftrigger;///< self-trigger flag (1 selftrigger event, 0 normal event) |
87 |
// |
88 |
// common variables (not related to tracks) |
89 |
// |
90 |
Int_t nstrip; ///< total number of strip hit |
91 |
Int_t nx22; ///< number of strip hit in the last silicon plane of the calorimeter (x view number 22) |
92 |
Int_t planemax[2]; ///< plane of maximum energy release (x and y) |
93 |
Float_t qtot; ///< total energy detected (MIP) |
94 |
Float_t qx22; ///< energy detected in the last silicon plane of the calorimeter (x view number 22) |
95 |
Float_t qmax; ///< the maximum energy detected in a strip |
96 |
Float_t qq[4]; ///< the energy released in the first half of each of the four calorimeter sections |
97 |
// |
98 |
// Fit variables |
99 |
// |
100 |
Int_t npcfit[2]; ///< number of point used to perform the fit for the two views |
101 |
Int_t cibar[22][2]; ///< strip traversed by the trajectory as measured by the calorimeter |
102 |
Float_t cbar[22][2]; ///< position in cm as measured by the calorimeter |
103 |
Float_t impx; ///< the x impact position on the first plane as determined by the track fitted in the calorimeter |
104 |
Float_t impy; ///< the y impact position on the first plane as determined by the track fitted in the calorimeter |
105 |
Float_t tanx; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter |
106 |
Float_t tany; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter |
107 |
Float_t varcfit[2]; ///< variance of the calorimeter fit for the two views |
108 |
// |
109 |
// Energy variables |
110 |
// |
111 |
Float_t elen; ///< energy in GeV assuming an electron interaction (from simulations). |
112 |
Float_t selen; ///< sigma of the energy |
113 |
// |
114 |
// track related variables: inline methods |
115 |
// |
116 |
Int_t ntrk() {return CaloTrk->GetEntries();}; ///< number of saved blocks of track-related variables |
117 |
Int_t trkseqno(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->trkseqno);}; ///< extract trkseqno |
118 |
Int_t ncore(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ncore);}; ///< extract ncore |
119 |
Int_t noint(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->noint);}; ///< extract noint |
120 |
Int_t ncyl(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ncyl);}; ///< extract ncyl |
121 |
Int_t nlast(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->nlast);}; ///< extract nlast |
122 |
Int_t npre(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->npre);}; ///< extract npre |
123 |
Int_t npresh(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->npresh);}; ///< extract npresh |
124 |
Int_t ntr(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ntr);}; ///< extract ntr |
125 |
Int_t nlow(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->nlow);}; ///< extract nlow |
126 |
Int_t planetot(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->planetot);}; ///< extract planetot |
127 |
Int_t tibar(Int_t entry, Int_t plane, Int_t view) {return (((CaloTrkVar *)CaloTrk->At(entry))->tibar[plane][view]);}; ///< extract tibar |
128 |
Float_t tbar(Int_t entry, Int_t plane, Int_t view) {return (((CaloTrkVar *)CaloTrk->At(entry))->tbar[plane][view]);}; ///< extract tbar |
129 |
Float_t qcore(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qcore);}; ///< extract qcore |
130 |
Float_t qcyl(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qcyl);}; ///< extract qcyl |
131 |
Float_t qlast(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qlast);}; ///< extract qlast |
132 |
Float_t qpre(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qpre);}; ///< extract qpre |
133 |
Float_t qpresh(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qpresh);}; ///< extract qpresh |
134 |
Float_t qtr(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtr);}; ///< extract qtr |
135 |
Float_t qtrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtrack);}; ///< extract qtrack |
136 |
Float_t qtrackx(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtrackx);}; ///< extract qtrackx |
137 |
Float_t qtracky(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtracky);}; ///< extract qtracky |
138 |
Float_t dxtrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dxtrack);}; ///< extract dxtrack |
139 |
Float_t dytrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dytrack);}; ///< extract dytrack |
140 |
Float_t qmean(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qmean);}; ///< extract qmean |
141 |
Float_t qlow(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qlow);}; ///< extract qlow |
142 |
Float_t dX0l(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dX0l);}; ///< extract dX0l |
143 |
// |
144 |
// Number of strip with energy > emip and their value coded with view plane and strip number: |
145 |
// view x[y] plane PP strip SS with energy mmmm.iip = +[-] ( PP*10^6 + SS*10^4 + mmmm.iip ) |
146 |
// |
147 |
TArrayF estrip; ///< MIP values for each strip with energy > emin coded with view plane and strip number; view x[y] plane PP strip SS with energy mmmm.iip = +[-] ( PP*10^6 + SS*10^4 + mmmm.iip ) |
148 |
// |
149 |
// METHODS |
150 |
// |
151 |
void GetElectronEnergy(Float_t &energy, Float_t &sigma); ///< returns energy and sigma using qtot and assuming the particle being an electron |
152 |
Float_t GetEstrip(Int_t view, Int_t plane, Int_t strip); ///< returns saved MIP value for the indicated strip |
153 |
Float_t DecodeEstrip(Int_t entry, Int_t &view, Int_t &plane, Int_t &strip); ///< returns saved MIP value for the entry number "entry" of the TArrayF. |
154 |
CaloTrkVar *GetCaloTrkVar(Int_t notrack); ///< returns a pointer to the CaloTrkVar class containing track related variables |
155 |
// |
156 |
TClonesArray *GetTrackArray(){return CaloTrk;}; |
157 |
CaloLevel2* GetCaloLevel2(){return this;}; ///< returns pointer to this object |
158 |
// |
159 |
void GetLevel2Struct(cCaloLevel2 *l2) const; |
160 |
void Clear(); |
161 |
// |
162 |
// constructor |
163 |
// |
164 |
CaloLevel2(); ///< Constructor. |
165 |
// |
166 |
friend class CaloProcessing; |
167 |
// |
168 |
ClassDef(CaloLevel2,1); |
169 |
}; |
170 |
|
171 |
#endif |