7 |
// |
// |
8 |
#include <TObject.h> |
#include <TObject.h> |
9 |
#include <TClonesArray.h> |
#include <TClonesArray.h> |
10 |
#include <TArrayF.h> |
#include <TArrayI.h> |
11 |
// |
// |
12 |
|
#include <math.h> |
13 |
|
#include <string.h>//ELENA |
14 |
|
|
15 |
|
// |
16 |
|
#include <CaloStruct.h> |
17 |
|
// |
18 |
|
|
19 |
/** |
/** |
20 |
* \brief Calorimeter track-related variables class |
* \brief Calorimeter track-related variables class |
21 |
* |
* |
29 |
|
|
30 |
public: |
public: |
31 |
// |
// |
32 |
Int_t trkseqno; ///< tracker entry coming from tracker, -1 if selftrigger event, 100 if image track is used, -100 if the track is not consistent with calorimeter one |
Int_t trkseqno; ///< this variable determine which track and which routine was used to obtain track related variables: if >= 0 standard routine/tracker track, -1 selftrigger event routine/calorimeter track, -2 high Z nuclei routine/calorimeter track, -3 standard routine/calorimeter track |
33 |
// |
// |
34 |
// track related variables |
// track related variables |
35 |
// |
// |
36 |
Int_t ncore; ///< SUM(j=1,2)SUM(i=1,PLmax) Nhit(i,j)*i , where Nhit(i,j) is the number of hits in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view) |
Int_t ncore; ///< SUM(j=1,2)SUM(i=1,PLmax) Nhit(i,j)*i , where Nhit(i,j) is the number of hits in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view) |
37 |
Int_t noint; ///< SUM(j=1,2)SUM(i=1,22) TH(i,j)*i , where TH(i,j) = 1 if the i-th plane of the j-th view has a cluster along (less than 4 mm away) the track with a deposited energy typical of a proton (order of one MIP), otherwise TH(i,j) = 0 |
Int_t noint; ///< SUM(j=1,2)SUM(i=1,22) TH(i,j)*i , where TH(i,j) = 1 if the i-th plane of the j-th view has a cluster along (less than 4 mm away) the track with a deposited energy typical of a proton (order of one MIP), otherwise TH(i,j) = 0 |
38 |
Int_t ncyl; ///< the number of strip hit in a cylinder of radius 8 strips around the shower axis |
Int_t ncyl; ///< the number of strip hit in a cylinder of radius 8 strips around the shower axis |
39 |
Int_t nlast; ///< the same as "ncyl" but only for the last four planes. |
Int_t nlast; ///< the same as "ncyl" but only for the last four planes and radius 4 strips. |
40 |
Int_t npre; ///< the same as "ncyl" but only for the first three planes |
Int_t npre; ///< the same as "ncyl" but only for the first three planes |
41 |
Int_t npresh; ///< the same as "ncyl" but with radius 2 strips and only in the first four planes |
Int_t npresh; ///< the same as "ncyl" but with radius 2 strips and only in the first four planes |
42 |
Int_t ntr; ///< the same as "ncyl" but with radius 4 strips |
Int_t ntr; ///< the same as "ncyl" but with radius 4 strips |
43 |
Int_t planetot; ///< number of planes used to calculate the energy truncated mean "qmean" |
Int_t planetot; ///< number of planes used to calculate the energy truncated mean "qmean" |
44 |
Int_t nlow; ///< the same as "nstrip" but below the calculated electromagnetic shower maximum |
Int_t nlow; ///< the same as "nstrip" but only after the calculated electromagnetic shower maximum |
45 |
Int_t tibar[22][2]; ///< strip traversed by the trajectory as measured by the tracker |
Int_t tibar[22][2]; ///< strip traversed by the trajectory as measured by the tracker or by the selftrigger when trkseqno = -1 |
46 |
Float_t tbar[22][2]; ///< position in cm as measured by the tracker |
Float_t tbar[22][2]; ///< position in cm as measured by the tracker or by the selftrigger when trkseqno = -1 |
47 |
Float_t qcore; ///< SUM(j=1,2)SUM(i=1,PLmax) Qhit(i,j)*i , where Qhit(i,j) is the energy released (MIP) in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view). |
Float_t qcore; ///< SUM(j=1,2)SUM(i=1,PLmax) Qhit(i,j)*i , where Qhit(i,j) is the energy released (MIP) in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view). |
48 |
Float_t qcyl; ///< the measured energy deposited in a cylinder of radius 8 strips around the shower axis |
Float_t qcyl; ///< the measured energy deposited in a cylinder of radius 8 strips around the shower axis |
49 |
Float_t qlast; ///< the same as "qcyl" but only for the last four planes. |
Float_t qlast; ///< the same as "qcyl" but only for the last four planes and radius 4 strips. |
50 |
Float_t qpre; ///< the same as "qcyl" but only for the first three planes |
Float_t qpre; ///< the same as "qcyl" but only for the first three planes |
51 |
Float_t qpresh; ///< the same as "qcyl" but with radius 2 strips and only in the first four planes |
Float_t qpresh; ///< the same as "qcyl" but with radius 2 strips and only in the first four planes |
52 |
Float_t qtr; ///< the same as "qcyl" but with radius 4 strips |
Float_t qtr; ///< the same as "qcyl" but with radius 4 strips |
56 |
Float_t dxtrack; ///< measured energy outside the clusters along the track in the x-view |
Float_t dxtrack; ///< measured energy outside the clusters along the track in the x-view |
57 |
Float_t dytrack; ///< measured energy outside the clusters along the track in the y-view |
Float_t dytrack; ///< measured energy outside the clusters along the track in the y-view |
58 |
Float_t qmean; ///< the energy truncated mean that is the average energy deposit for the five planes with the smaller energy deposit of the whole calorimeter |
Float_t qmean; ///< the energy truncated mean that is the average energy deposit for the five planes with the smaller energy deposit of the whole calorimeter |
59 |
Float_t qlow; ///< the same as "qstrip" but below the calculated electromagnetic shower maximum |
Float_t qlow; ///< the same as "qtot" but only after the calculated electromagnetic shower maximum |
60 |
Float_t dX0l; ///< traversed X0 lenght |
Float_t dX0l; ///< tranversed X0 lenght |
61 |
// |
// |
62 |
CaloTrkVar(); ///< Constructor. |
CaloTrkVar(); ///< Constructor. |
63 |
/** |
/** |
65 |
*/ |
*/ |
66 |
CaloTrkVar(const CaloTrkVar &trkvar); ///< copy values from trkvar to this |
CaloTrkVar(const CaloTrkVar &trkvar); ///< copy values from trkvar to this |
67 |
// |
// |
68 |
CaloTrkVar* GetCaloTrkVar(){return this;}; ///< returns pointer to this object |
void Clear(Option_t *t=""); ///< clear variables |
69 |
|
CaloTrkVar* GetCaloTrkVar(){return this;} ///< returns pointer to this object |
70 |
// |
// |
71 |
ClassDef(CaloTrkVar,1); |
ClassDef(CaloTrkVar,2); |
72 |
// |
// |
73 |
}; |
}; |
74 |
|
|
90 |
Int_t perr[4]; ///< processing errors (one for each calorimeter section) |
Int_t perr[4]; ///< processing errors (one for each calorimeter section) |
91 |
Int_t swerr[4];///< DSP status word |
Int_t swerr[4];///< DSP status word |
92 |
Int_t crc[4]; ///< CRC errors on data |
Int_t crc[4]; ///< CRC errors on data |
93 |
Int_t selftrigger;///< self-trigger flag (1 selftrigger event, 0 normal event) |
Int_t selftrigger;///< self-trigger flag: 0 tof trigger, 2 selftrigger event, 3 selftrigger + tof trigger, 102 selftrigger event not stored in the selfdelay array NB: selftrigger == S4 trigger || no trigger || calo trigger in the triggerconf array |
94 |
// |
// |
95 |
// common variables (not related to tracks) |
// common variables (not related to tracks) |
96 |
// |
// |
97 |
Int_t nstrip; ///< total number of strip hit |
Int_t nstrip; ///< total number of strip hit |
98 |
|
Int_t nsatstrip; ///< total number of strip hit with saturated signal |
99 |
Int_t nx22; ///< number of strip hit in the last silicon plane of the calorimeter (x view number 22) |
Int_t nx22; ///< number of strip hit in the last silicon plane of the calorimeter (x view number 22) |
100 |
Int_t planemax[2]; ///< plane of maximum energy release (x and y) |
Int_t planemax[2]; ///< plane of maximum energy release (x and y) |
101 |
|
Int_t selfdelay[4][7]; ///< Delay of the selftrigger planes + coincidence for every section |
102 |
Float_t qtot; ///< total energy detected (MIP) |
Float_t qtot; ///< total energy detected (MIP) |
103 |
Float_t qx22; ///< energy detected in the last silicon plane of the calorimeter (x view number 22) |
Float_t qx22; ///< energy detected in the last silicon plane of the calorimeter (x view number 22) |
104 |
Float_t qmax; ///< the maximum energy detected in a strip |
Float_t qmax; ///< the maximum energy detected in a strip |
106 |
// |
// |
107 |
// Fit variables |
// Fit variables |
108 |
// |
// |
109 |
Int_t npcfit[2]; ///< number of point used to perform the fit for the two views |
Int_t npcfit[4]; ///< number of point used to perform the fit for the two views (0,1 calo fit, 2,3 selftrigger fit if any) |
110 |
Int_t cibar[22][2]; ///< strip traversed by the trajectory as measured by the calorimeter |
Float_t varcfit[4]; ///< variance of the calorimeter fit for the two views (0,1 calo fit, 2,3 selftrigger fit if any) |
111 |
Float_t cbar[22][2]; ///< position in cm as measured by the calorimeter |
Float_t tanx[2]; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter (0 calo fit, 1 selftrigger fit) |
112 |
Float_t impx; ///< the x impact position on the first plane as determined by the track fitted in the calorimeter |
Float_t tany[2]; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter (0 calo fit, 1 selftrigger fit) |
113 |
Float_t impy; ///< the y impact position on the first plane as determined by the track fitted in the calorimeter |
Int_t fitmode[2]; ///< for x and y is 0 if the fit was performed with the "electron" algorithm, is 1 if the fit was performed with the "nuclei" algorithm |
114 |
Float_t tanx; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter |
Int_t cibar[22][2]; ///< strip traversed by the trajectory as measured by the calorimeter (calo fit) |
115 |
Float_t tany; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter |
Float_t cbar[22][2]; ///< position in cm as measured by the calorimeter (calo fit) |
|
Float_t varcfit[2]; ///< variance of the calorimeter fit for the two views |
|
116 |
// |
// |
117 |
// Energy variables |
// Energy variables |
118 |
// |
// |
121 |
// |
// |
122 |
// track related variables: inline methods |
// track related variables: inline methods |
123 |
// |
// |
124 |
Int_t ntrk() {return CaloTrk->GetEntries();}; ///< number of saved blocks of track-related variables |
Int_t ntrk(){return CaloTrk->GetEntries();} ///< number of saved blocks of track-related variables |
|
Int_t trkseqno(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->trkseqno);}; ///< extract trkseqno |
|
|
Int_t ncore(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ncore);}; ///< extract ncore |
|
|
Int_t noint(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->noint);}; ///< extract noint |
|
|
Int_t ncyl(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ncyl);}; ///< extract ncyl |
|
|
Int_t nlast(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->nlast);}; ///< extract nlast |
|
|
Int_t npre(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->npre);}; ///< extract npre |
|
|
Int_t npresh(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->npresh);}; ///< extract npresh |
|
|
Int_t ntr(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ntr);}; ///< extract ntr |
|
|
Int_t nlow(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->nlow);}; ///< extract nlow |
|
|
Int_t planetot(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->planetot);}; ///< extract planetot |
|
|
Int_t tibar(Int_t entry, Int_t plane, Int_t view) {return (((CaloTrkVar *)CaloTrk->At(entry))->tibar[plane][view]);}; ///< extract tibar |
|
|
Float_t tbar(Int_t entry, Int_t plane, Int_t view) {return (((CaloTrkVar *)CaloTrk->At(entry))->tbar[plane][view]);}; ///< extract tbar |
|
|
Float_t qcore(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qcore);}; ///< extract qcore |
|
|
Float_t qcyl(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qcyl);}; ///< extract qcyl |
|
|
Float_t qlast(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qlast);}; ///< extract qlast |
|
|
Float_t qpre(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qpre);}; ///< extract qpre |
|
|
Float_t qpresh(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qpresh);}; ///< extract qpresh |
|
|
Float_t qtr(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtr);}; ///< extract qtr |
|
|
Float_t qtrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtrack);}; ///< extract qtrack |
|
|
Float_t qtrackx(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtrackx);}; ///< extract qtrackx |
|
|
Float_t qtracky(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtracky);}; ///< extract qtracky |
|
|
Float_t dxtrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dxtrack);}; ///< extract dxtrack |
|
|
Float_t dytrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dytrack);}; ///< extract dytrack |
|
|
Float_t qmean(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qmean);}; ///< extract qmean |
|
|
Float_t qlow(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qlow);}; ///< extract qlow |
|
|
Float_t dX0l(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dX0l);}; ///< extract dX0l |
|
|
// |
|
|
// Number of strip with energy > emip and their value coded with view plane and strip number: |
|
|
// view x(y) plane PP strip SS with energy mmmm.iip = +(-) ( PP*10^6 + SS*10^4 + mmmm.iip ) |
|
|
// |
|
|
TArrayF estrip; ///< MIP values for each strip with energy > emin |
|
125 |
// |
// |
126 |
// METHODS |
// METHODS |
127 |
// |
// |
128 |
|
Float_t impx(Int_t tr); ///< the x impact position on the first plane as determined by the track fitted in the calorimeter ( tr = 0 calo fit, tr = 1 selftrigger fit) |
129 |
|
Float_t impy(Int_t tr); ///< the y impact position on the first plane as determined by the track fitted in the calorimeter ( tr = 0 calo fit, tr = 1 selftrigger fit) |
130 |
|
|
131 |
|
TClonesArray** GetPointerToTrackArray(){return &CaloTrk;}///< returns pointer to pointer to the track array |
132 |
|
void SetTrackArray(TClonesArray *track);///<set pointer to the track array |
133 |
|
|
134 |
|
// |
135 |
void GetElectronEnergy(Float_t &energy, Float_t &sigma); ///< returns energy and sigma using qtot and assuming the particle being an electron |
void GetElectronEnergy(Float_t &energy, Float_t &sigma); ///< returns energy and sigma using qtot and assuming the particle being an electron |
|
Float_t GetEstrip(Int_t view, Int_t plane, Int_t strip); ///< returns saved MIP value for the indicated strip |
|
|
Float_t DecodeEstrip(Int_t entry, Int_t &view, Int_t &plane, Int_t &strip); ///< returns saved MIP value for the entry number "entry" of the TArrayF. |
|
|
CaloTrkVar *GetCaloTrkVar(Int_t notrack); ///< returns a pointer to the CaloTrkVar class containing track related variables |
|
136 |
// |
// |
137 |
CaloLevel2* GetCaloLevel2(){return this;}; ///< returns pointer to this object |
CaloTrkVar *GetCaloTrkVar(Int_t notrack); ///< returns a pointer to the CaloTrkVar class containing track related variables for track number notrack |
138 |
|
CaloTrkVar* GetCaloStoredTrack(Int_t seqno); ///< returns pointer to the track set related to the seqno number |
139 |
|
// |
140 |
|
TClonesArray *GetTrackArray(){return CaloTrk;} ///< returns a pointer to the track related variables array |
141 |
|
CaloLevel2* GetCaloLevel2(){return this;} ///< returns pointer to this object |
142 |
|
// |
143 |
|
void GetLevel2Struct(cCaloLevel2 *l2) const; |
144 |
|
// |
145 |
|
void Clear(Option_t *t=""); |
146 |
|
void Delete(Option_t *t=""); //ELENA |
147 |
|
void Set(); //ELENA |
148 |
|
Bool_t IsGood(Bool_t strict = false); // method to check if the event is good or not |
149 |
// |
// |
150 |
// constructor |
// constructor |
151 |
// |
// |
152 |
CaloLevel2(); |
CaloLevel2(); ///< Constructor. |
153 |
|
~CaloLevel2(){Delete();} //ELENA |
154 |
// |
// |
155 |
friend class CaloProcessing; |
friend class CaloLevel0; |
156 |
// |
// |
157 |
ClassDef(CaloLevel2,1); |
ClassDef(CaloLevel2,6); |
158 |
}; |
}; |
159 |
|
|
160 |
#endif |
#endif |