/[PAMELA software]/DarthVader/CalorimeterLevel2/inc/CaloLevel2.h
ViewVC logotype

Annotation of /DarthVader/CalorimeterLevel2/inc/CaloLevel2.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1.1 - (hide annotations) (download)
Fri May 19 13:15:49 2006 UTC (18 years, 6 months ago) by mocchiut
Branch: MAIN
Branch point for: DarthVader
File MIME type: text/plain
Initial revision

1 mocchiut 1.1 /**
2     * \file inc/CaloLevel2.h
3     * \author Emiliano Mocchiutti
4     */
5     #ifndef CaloLevel2_h
6     #define CaloLevel2_h
7     //
8     #include <TObject.h>
9     #include <TClonesArray.h>
10     #include <TArrayF.h>
11     //
12     /**
13     * \brief Calorimeter track-related variables class
14     *
15     * This class contains track-related variables. One set of variables is saved for any given
16     * track, including seltrigger event tracks.
17     *
18     */
19     class CaloTrkVar : public TObject {
20    
21     private:
22    
23     public:
24     //
25     Int_t trkseqno; ///< tracker entry coming from tracker, -1 if selftrigger event, 100 if image track is used, -100 if the track is not consistent with calorimeter one
26     //
27     // track related variables
28     //
29     Int_t ncore; ///< SUM(j=1,2)SUM(i=1,PLmax) Nhit(i,j)*i , where Nhit(i,j) is the number of hits in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view)
30     Int_t noint; ///< SUM(j=1,2)SUM(i=1,22) TH(i,j)*i , where TH(i,j) = 1 if the i-th plane of the j-th view has a cluster along (less than 4 mm away) the track with a deposited energy typical of a proton (order of one MIP), otherwise TH(i,j) = 0
31     Int_t ncyl; ///< the number of strip hit in a cylinder of radius 8 strips around the shower axis
32     Int_t nlast; ///< the same as "ncyl" but only for the last four planes.
33     Int_t npre; ///< the same as "ncyl" but only for the first three planes
34     Int_t npresh; ///< the same as "ncyl" but with radius 2 strips and only in the first four planes
35     Int_t ntr; ///< the same as "ncyl" but with radius 4 strips
36     Int_t planetot; ///< number of planes used to calculate the energy truncated mean "qmean"
37     Int_t nlow; ///< the same as "nstrip" but below the calculated electromagnetic shower maximum
38     Int_t tibar[22][2]; ///< strip traversed by the trajectory as measured by the tracker
39     Float_t tbar[22][2]; ///< position in cm as measured by the tracker
40     Float_t qcore; ///< SUM(j=1,2)SUM(i=1,PLmax) Qhit(i,j)*i , where Qhit(i,j) is the energy released (MIP) in a cylinder of radius 2 Rm (Moliere radius) around the track in the i-th plane (where the top plane is number 1 and the sum runs up to plane number PLmax, closest to the calculated electromagnetic shower maximum of the j-th view).
41     Float_t qcyl; ///< the measured energy deposited in a cylinder of radius 8 strips around the shower axis
42     Float_t qlast; ///< the same as "qcyl" but only for the last four planes.
43     Float_t qpre; ///< the same as "qcyl" but only for the first three planes
44     Float_t qpresh; ///< the same as "qcyl" but with radius 2 strips and only in the first four planes
45     Float_t qtr; ///< the same as "qcyl" but with radius 4 strips
46     Float_t qtrack; ///< the energy deposited in the strip closest to the track and the neighbouring strip on each side
47     Float_t qtrackx; ///< measured energy in clusters along the track in the x-view
48     Float_t qtracky; ///< measured energy in clusters along the track in the y-view
49     Float_t dxtrack; ///< measured energy outside the clusters along the track in the x-view
50     Float_t dytrack; ///< measured energy outside the clusters along the track in the y-view
51     Float_t qmean; ///< the energy truncated mean that is the average energy deposit for the five planes with the smaller energy deposit of the whole calorimeter
52     Float_t qlow; ///< the same as "qstrip" but below the calculated electromagnetic shower maximum
53     Float_t dX0l; ///< traversed X0 lenght
54     //
55     CaloTrkVar(); ///< Constructor.
56     /**
57     * \param trkvar Object of the class CaloTrkVar
58     */
59     CaloTrkVar(const CaloTrkVar &trkvar); ///< copy values from trkvar to this
60     //
61     CaloTrkVar* GetCaloTrkVar(){return this;}; ///< returns pointer to this object
62     //
63     ClassDef(CaloTrkVar,1);
64     //
65     };
66    
67     /**
68     * \brief Calorimeter level2 class
69     *
70     * This class contains level2 calorimeter variables
71     *
72     **/
73     class CaloLevel2 : public TObject {
74     private:
75     TClonesArray *CaloTrk; ///< track related variables
76    
77     public:
78     //
79     // general variables
80     //
81     Int_t good; ///< no errors (perr, swerr and crc are checked)
82     Int_t perr[4]; ///< processing errors (one for each calorimeter section)
83     Int_t swerr[4];///< DSP status word
84     Int_t crc[4]; ///< CRC errors on data
85     Int_t selftrigger;///< self-trigger flag (1 selftrigger event, 0 normal event)
86     //
87     // common variables (not related to tracks)
88     //
89     Int_t nstrip; ///< total number of strip hit
90     Int_t nx22; ///< number of strip hit in the last silicon plane of the calorimeter (x view number 22)
91     Int_t planemax[2]; ///< plane of maximum energy release (x and y)
92     Float_t qtot; ///< total energy detected (MIP)
93     Float_t qx22; ///< energy detected in the last silicon plane of the calorimeter (x view number 22)
94     Float_t qmax; ///< the maximum energy detected in a strip
95     Float_t qq[4]; ///< the energy released in the first half of each of the four calorimeter sections
96     //
97     // Fit variables
98     //
99     Int_t npcfit[2]; ///< number of point used to perform the fit for the two views
100     Int_t cibar[22][2]; ///< strip traversed by the trajectory as measured by the calorimeter
101     Float_t cbar[22][2]; ///< position in cm as measured by the calorimeter
102     Float_t impx; ///< the x impact position on the first plane as determined by the track fitted in the calorimeter
103     Float_t impy; ///< the y impact position on the first plane as determined by the track fitted in the calorimeter
104     Float_t tanx; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter
105     Float_t tany; ///< the tangent of the angle in the x direction as determined by the track fitted in the calorimeter
106     Float_t varcfit[2]; ///< variance of the calorimeter fit for the two views
107     //
108     // Energy variables
109     //
110     Float_t elen; ///< energy in GeV assuming an electron interaction (from simulations).
111     Float_t selen; ///< sigma of the energy
112     //
113     // track related variables: inline methods
114     //
115     Int_t ntrk() {return CaloTrk->GetEntries();}; ///< number of saved blocks of track-related variables
116     Int_t trkseqno(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->trkseqno);}; ///< extract trkseqno
117     Int_t ncore(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ncore);}; ///< extract ncore
118     Int_t noint(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->noint);}; ///< extract noint
119     Int_t ncyl(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ncyl);}; ///< extract ncyl
120     Int_t nlast(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->nlast);}; ///< extract nlast
121     Int_t npre(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->npre);}; ///< extract npre
122     Int_t npresh(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->npresh);}; ///< extract npresh
123     Int_t ntr(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->ntr);}; ///< extract ntr
124     Int_t nlow(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->nlow);}; ///< extract nlow
125     Int_t planetot(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->planetot);}; ///< extract planetot
126     Int_t tibar(Int_t entry, Int_t plane, Int_t view) {return (((CaloTrkVar *)CaloTrk->At(entry))->tibar[plane][view]);}; ///< extract tibar
127     Float_t tbar(Int_t entry, Int_t plane, Int_t view) {return (((CaloTrkVar *)CaloTrk->At(entry))->tbar[plane][view]);}; ///< extract tbar
128     Float_t qcore(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qcore);}; ///< extract qcore
129     Float_t qcyl(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qcyl);}; ///< extract qcyl
130     Float_t qlast(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qlast);}; ///< extract qlast
131     Float_t qpre(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qpre);}; ///< extract qpre
132     Float_t qpresh(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qpresh);}; ///< extract qpresh
133     Float_t qtr(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtr);}; ///< extract qtr
134     Float_t qtrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtrack);}; ///< extract qtrack
135     Float_t qtrackx(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtrackx);}; ///< extract qtrackx
136     Float_t qtracky(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qtracky);}; ///< extract qtracky
137     Float_t dxtrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dxtrack);}; ///< extract dxtrack
138     Float_t dytrack(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dytrack);}; ///< extract dytrack
139     Float_t qmean(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qmean);}; ///< extract qmean
140     Float_t qlow(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->qlow);}; ///< extract qlow
141     Float_t dX0l(Int_t entry) {return (((CaloTrkVar *)CaloTrk->At(entry))->dX0l);}; ///< extract dX0l
142     //
143     // Number of strip with energy > emip and their value coded with view plane and strip number:
144     // view x(y) plane PP strip SS with energy mmmm.iip = +(-) ( PP*10^6 + SS*10^4 + mmmm.iip )
145     //
146     TArrayF estrip; ///< MIP values for each strip with energy > emin
147     //
148     // METHODS
149     //
150     void GetElectronEnergy(Float_t &energy, Float_t &sigma); ///< returns energy and sigma using qtot and assuming the particle being an electron
151     Float_t GetEstrip(Int_t view, Int_t plane, Int_t strip); ///< returns saved MIP value for the indicated strip
152     Float_t DecodeEstrip(Int_t entry, Int_t &view, Int_t &plane, Int_t &strip); ///< returns saved MIP value for the entry number "entry" of the TArrayF.
153     CaloTrkVar *GetCaloTrkVar(Int_t notrack); ///< returns a pointer to the CaloTrkVar class containing track related variables
154     //
155     CaloLevel2* GetCaloLevel2(){return this;}; ///< returns pointer to this object
156     //
157     // constructor
158     //
159     CaloLevel2();
160     //
161     friend class CaloProcessing;
162     //
163     ClassDef(CaloLevel2,1);
164     };
165    
166     #endif

  ViewVC Help
Powered by ViewVC 1.1.23