The Calorimeter LEVELZ2 package v. 3.07 README
Emiliano Mocchiutti
21st July 2005

This is the ROOT function written to calibrate and process the calorimeter
data creating a final level output that can be used in the data analysis. The
output format (ROOT or PAW) can be chosen at running time tuning an input
variable. The program connects to the Trieste MySQL server which stores the
calibration tables for the calorimeter. Before using this program user must
process data with the tracker ground software version 1.00. The program is
able to handle both tracker ntuples and rootples, checking first for rootples
and then for ntuples.

WARNINGl: The alignment between calorimeter and tracker is still temporary
even if a good approximation is used.

WARNING2: Calorimeter self-trigger events are not processed with this software
version.

INDEX

INSTALLATION

USER GUIDE

OUTPUT FORMAT

BRIEF DESCRIPTION OF VARIABLES
KNOWN BUGS

U w N

1) INSTALLATION

The software has been rearranged to satisfy the PAMELA repository
requirements.

This CaloLEVEL2.c program requires:

— the correct set up of the PAMELA environment;
— calorimeter COMMON package;

- root2paw package;

- tracker ground software v. 1.00;

- a working ROOT version;

- a working YODA version;

- the MySQL client package installed;

To compile the libraries you will also need:
- YODA source;
- GCC with Fortran support;

— CERN libraries.

- MySQL development package installed (check vyou have also installed the
mysqgl_config program) .

This software has been successfully compiled and tested with the following
programs:

- ROOT 4.03/02 9 February 2005
- YODA 4_400
- CERN 2002
— CERN 2003
- CERN 2004
- gcc (GCC) 3.2.3 20030502 (Red Hat Linux 3.2.3-49)
- gcc (GCC) 3.4.1 (Mandrakelinux 10.1 3.4.1-4mdk)
- mysgl Ver 11.18 Distrib 3.23.58, for redhat-linux-gnu (1686)

Installation steps:
a) download the CaloLEVEL2 software (plus the calorimeter common package
software 1if not already installed). You can find the software on the afs
repository:

/afs/ba.infn.it/user/pamela
or you can download it from the WEB, in this case go to:
http://pcba28.ba.infn.it/cgi-bin/cvsweb.cgi
from the menu “CVS Root” choose “PAMELA repository”, click on “calo/LEVEL2”
and click on “Download this directory in tarball or zip archive” depending on
your preferences.
b) once you have downloaded your package unpack it somewhere.
c) enter the “LEVEL2” directory, you will find these file and directories:
doc/ macros/ inc/ src/ bin/ 1ib/ Makefile calib/ data/
d) check you have installed the calorimeter common package and the root2paw
package (the latest one 1is needed to retrieve the tracker level?2
informations) .
e) make sure vyou have set up your PAMELA environmental variables and
directories (if you have installed the calocommon package you should already
have done this). To do so, choose a path where you want to install the PAMELA
software (let's say /mydirectory/pamela/) and create the following
directories: bin , lib , src , inc , macros , docs , calib

Then edit your login configuration file (people using bash shell will edit
SHOME/ .bashrc , people using tcsh will edit $HOME/.tcshrc and so on), and add
the following environmental variables:
export PAM_BIN=/mydirectory/pamela/bin
export PAM_LIB=/mydirectory/pamela/lib
export PAM_SRC=/mydirectory/pamela/src
export PAM_INC=/mydirectory/pamela/inc

export PAM_MACROS=/mydirectory/pamela/macros
export PAM_DOC=/mydirectory/pamela/docs

export PAM_CALIB=/mydirectory/pamela/calib
export PAM_YODASRC=/mydirectory/pamela/yoda/yodaX_YYY/
export PAM_YODALIB=/mydirectory/pamela/yoda/lib/

The last two variables determine where is the source of YODA and the path to
the installed YODA libraries.

I also suggest to add the PAMELA bin directory to your default bin path but
this is not essential:

export PATH=$PATH:S$PAM_BIN

People using tcsh will use “setenv” instead of *“export” and will put a space
at the place of the sign “equal”. This set up has to be done only once for all
the packages.

f) cd to the LEVEL2 directory and give:
make all install

the program will check the system and create the needed libraries for the
CaloLEVEL2 program; then it will install the CaloLEVEL2 libraries and macros
in the paths you have given.

If you are upgrading an older version, use “make all forceinstall” to force
the installation of latest programs or “make all wupgrade” to force the
installation and to delete the old libraries.

2) USER GUIDE

The macro CaloLEVEL2.c has been compiled to improve the processing velocity.
To load the compiled macro follow this step: start the ROOT session...

bash> root
...load the macro...

root[0] .x CaloLEVEL2.C

Notice that this step is different respect to the past. You must use *“.x”
instead of “.L” and the program name now is “CaloLEVEL2.C” whit *“.C” (upper C)
instead of “.c”. You can still run the program loading and interpreting the
macro the same way it was done with the o0ld software but this way the
processing will be about 30 times slower.

To run the program once the compiled macro is loaded you can just give:
root [1] CaloLEVELZ2 ("/mypath/to/filesfromyoda/dw_050518_00100/");

Calling CaloLEVEL2 this way we are assuming that:

1) we have already processed the tracker data with tracker software version
1.00 and we have put the tracker level2 output in the YODA structure or we
have processed the tracker level2 ntuple with GroundDataConver (root2paw
package) and we have produced a rootple stored in the YODA structure;

2) we want to store the output in the YODA structure;

3) the calorimeter level2 output does not exist;

4) we want as output a rootple.

For further informations read below.

The output will be like this:

Filename will be:
/mypath/to/filesfromyoda/dw_050518_00100/dw_050518_00100.Physics.Level2.Calori

meter.Event.root

Not in FORCE mode, check the existence of LEVEL2 data:

Error in <TFile::TFile>: file
/mypath/to/filesfromyoda/dw_050518_00100/dw_050518_00100.Physics.Level2.Calori
meter.Event.root does not exists.

OK, I will create it!

Using calorimeter calibration file:
/mydirectory/pamela/calib/CaloADC2MIP.root

Try the connection to the MySQL database in Trieste...
...0K, the connection is fine!

Using database "romemuons", table "calocalib_dw_050518_001"

TRACKER: loading the magnetic field maps...

Opening first map : —/mydirectory/pamela/calib/bfield_n3.rz-
Opening second map : —-/mydirectory/pamela/calib/bfield_néd.rz-
...done!

Check the existence of tracker data...

...found tracker level2 ROOTPLE:
/mypath/to/filesfromyoda/dw_050518_00100//Physics/Level2/dw_050518_00900.Physi
cs.Level2.Tracker.Event.root

Processed events:

** SECTION 0 **
- event at time 154802. From time 114823 to time 356400
use calibration at time 114823, file
/mypath/to/filesfromyoda/dw_050518_00100/

** SECTION 1 **
- event at time 154802. From time 114876 to time 356400
use calibration at time 114876, file
/mypath/to/filesfromyoda/dw_050518_00100/

** SECTION 2 **
- event at time 154802. From time 114929 to time 356400
use calibration at time 114929, file
/mypath/to/filesfromyoda/dw_050518_00100/

** SECTION 3 **
- event at time 154802. From time 114989 to time 356400
use calibration at time 114989, file
/mypath/to/filesfromyoda/dw_050518_00100/

Finished, exiting...

This 1is the standard way to call CaloLEVEL2. Read carefully the output to
check for any WARNING. With the standard call any ERROR will stop the program.
By default the program will create a rootple called (as in the example)
dw_050518_00100.Physics.Level2.Calorimeter.Event.root

in the directory

"/mypath/to/filesfromyoda/dw_050518_00100/Physics/Level2/".

By default the program will try to connect to the MySQL database server in
Trieste (username and password can be found in the COMMON/src/readmy.c file,
package COMMON). If any problem is found in connecting the program will stop
running.

WARNING: the program will gquery the database only to know the calibration it
has to use in processing files and will not retrieve any calibration data from
the database. This means that you must provide the unpacked files with
calibration data. The program will look by default for unpacked data in the
same directory of the input file and with the same YODA level of the input
file. For example 1f I want to process on gundam in Rome the file
“/mypath/to/filesfromyoda/DW_050323_00103" and according to the Trieste
database the calorimeter calibrations for that file can be found in the file
“DW_050322_009"” then I must have both these files unpacked in Rome with the
same level. Hence the YODA directory for the <calibration file must be
“/mypath/to/filesfromyoda/DW_050322_00903/” (ending in “03”!). The Trieste
database has been built with the files 1listed in the “List of PAMELA
acquisition taken in night shifts in Tor Vergata Clean room” database, so if
you have unpacked all that files you should have no problems. The program will
give an error if it will not be able to find the correct calibration file.

To check the connection to MySQL database and the calibration files needed you
can use the script “CaloMySQLFINDCALIBS” that can be found in the macro
CaloFINDCALIBS.c (version greater or equal than 2.01).

The number of queries to the database depends on the number of calibrations
needed to process the file and not on the number of events of the file. There
will be four queries for any calibration needed, independently on the number
of events.

The possible input options are the following:

short int CaloLEVEL2(TString filename, Tstring TrackerDir="", TString outDir
="", TString Framework = "root", Int_t FORCE = 0)

— filename : is the path to the YODA unpacked data directory;

— TrackerDir: the path to the directory which contains tracker level2
data (ntuples or rootples). NOTICE: the program will
search for ntuples which name is of the form
“DW_YYMMDD_NNN_level2.rz”
and for rootples which name is of the form
“DW_YYMMDD_NNNnn.Physics.Level2.Tracker.Event.root”

If TrackerDir is left empty (default) the program will
search for ntuples or rootples in the YODA structure,
that is in the directory:

/mypath/to/filesfromyoda/DW_ YYMMDD_NNNnn/Physics/Level2/

- outDir : is the output directory, the directory where you want
to store the calorimeter level2 data. If not given
the program will create DW_000000_00000/Physics/Level2
as output directory. The filename will always be of the
form

DW_000000_00000.Physics.Level2.Calorimeter.Event.{root/rz}

— Framework : this flag allows the user to choose as output a rootple
("root", default value) or a ntuple ("paw");

- FORCE : when set to 0 the program will check if the output file
exists. If so it will give a warning and it will exit
without overriding the existing file. Set this flag to 1
to force the processing of data; in this case the old
file will be lost. In FORCE mode the program will try to
recover any error and to go on processing the file. Check
carefully the output for any error!

3) OUTPUT FORMAT

The generated rootple has the following format:

KRR AR R AR A A A A A A A A A A A A A A A A A A AR A AR A A A A AR A A A A I A A A KA I A A I A A A A A I A A A A A A A A A AR A A A A A A h K

*Tree :CaloLevel2: PAMELA Level2 calorimeter data *
*Entries : 140 : Total = 156014 bytes File Size = 26722 *
* : : Tree compression factor = 1.00 *
R R I I e b b b b b b b e 2 b b b b b b b i b b b b b b b b b 2 2 b b b b b e I S b b b b b b b db a2 b b b b b b a2 b b b b b b b I 2 b b b (b b Sb b 4
*Br 0 :0OBT : OBT/I *
*Entries : 140 : Total Size= 1186 bytes One basket in memory *
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *
* *
*Br 1 :pkt_num : pkt_num/I *
*Entries : 140 : Total Size= 1210 bytes One basket in memory *
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *
* *
*Br 2 :pro_num : pro_num/I *
*Entries : 140 : Total Size= 1210 bytes One basket in memory *
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *
* *
*Br 3 :trigty : trigty/F *
*Entries : 140 : Total Size= 1204 bytes One basket in memory *
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *
* *
*Br 4 :good : good/I *
*Entries : 140 : Total Size= 1192 bytes One basket in memory *
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *
* *
*Br 5 :perr : perr[4]/1 *
*Entries : 140 : Total Size= 2878 bytes One basket in memory *
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *
* *
*Br 6 :swerr : swerr[4]/1 *
*Entries : 140 : Total Size= 2884 bytes One basket in memory *
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *
* *
*Br 7 :crc : crcl[4]/1 *
*Entries : 140 : Total Size= 2872 bytes One basket in memory *
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *
* *
*Br 8 :nstrip : nstrip/F *
*Entries : 140 : Total Size= 1204 bytes One basket in memory *
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *
* *
*Br 9 :qgtot : gtot/F *
*Entries : 140 : Total Size= 1192 bytes One basket in memory *
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *
* *
*Br 10 :ncore : ncore/F *
*Entries : 140 : Total Size= 1198 bytes One basket in memory *
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *
* *

*Br 11 :gcore : gcore/F

*Entries : 140 : Total Size= 1198 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 12 :impx : impx/F

*Entries : 140 : Total Size= 1192 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 13 :impy : impy/F

*Entries : 140 : Total Size= 1192 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 14 :tanx : tanx/F

*Entries : 140 : Total Size= 1192 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 15 :tany : tany/F

*Entries : 140 : Total Size= 1192 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 16 :nint : nint/F

*Entries : 140 : Total Size= 1192 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 17 :ncyl : ncyl/F

*Entries : 140 : Total Size= 1192 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 18 :gcyl : qcyl/F

*Entries : 140 : Total Size= 1192 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 19 :gtrack : gtrack/F

*Entries : 140 : Total Size= 1204 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 20 :gmax : gmax/F

*Entries : 140 : Total Size= 1192 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 21 :nx22 : nx22/F

*Entries : 140 : Total Size= 1192 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 22 :gx22 : gx22/F

*Entries : 140 : Total Size= 1192 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 23 :q9 : gql41/F

*Entries : 140 : Total Size= 2866 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 24 :gtrackx : gtrackx/F

*Entries : 140 : Total Size= 1210 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 25 :gtracky : gtracky/F

*Entries : 140 : Total Size= 1210 bytes One basket in memory
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00
*

*Br 26 :dxtrack : dxtrack/F

*Entries : 140 : Total Size= 1210 bytes One basket in memory

*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00

LR S T . . . S S SRS ST S S S R e T S . S . S NS, . S, S ST S S S R i e S S S . S S . S SR R e e S S S S S S N N .

*Br 27
*Entries
*Baskets

*Br 28
*Entries
*Baskets

*Entries
*Baskets

*Br 30
*Entries
*Baskets

*Br 31
*Entries
*Baskets

*Br 32
*Entries
*Baskets

*Br 33
*Entries
*Baskets

*Br 34
*Entries
*Baskets

*Entries
*Baskets

*Br 36
*Entries
*Baskets

*Br 37
*Entries
*Baskets

*Br 38
*Entries
*Baskets

*Br 39
*Entries
*Baskets

*Br 40
*Entries
*Baskets

*Entries
*Baskets

*Entries

dytrack
140
0
glast
140
0
nlast
140
0
gpre
140
0
npre
140
0
gpresh
140
0
npresh
140
0
glow
140
0
nlow
140
0
tgtr
140
0
ntr
140
0
cibar
140
0
tibar
140
0
cbar
140
0
tbar
140
0
:planetot
140

dytrack/F
Total Size=
Basket Size=

glast/F
Total Size=
Basket Size=

nlast/F
Total Size=
Basket Size=

gpresh/F
Total Size=
Basket Size=

npresh/F
Total Size=
Basket Size=

nlow/F
Total
Basket

cibar[22]1[2]/1I
Total Size=
Basket Size=

tibar[22][2]/1
Total Size=
Basket Size=

cbar[22]1[2]/F
Total Size=
Basket Size=

tbar[22][2]/F
Total Size=
Basket Size=

planetot/F
Total Size=

One basket in
Compression=

One basket in
Compression=

One basket in
Compression=

One basket in
Compression=

One basket in
Compression=

One basket in
Compression=

One basket in
Compression=

One basket in
Compression=

One basket in
Compression=

One basket in
Compression=

One basket in
Compression=

One basket in
Compression=

One basket in
Compression=

One basket in
Compression=

One basket in
Compression=

One basket in

memory
1.00

memory
1.00

memory
1.00

memory
1.00

memory
1.00

memory
1.00

memory
1.00

memory
1.00

memory
1.00

memory
1.00

memory
1.00

memory
1.00

memory
1.00

memory
1.00

memory
1.00

memory

LR S T . . . S S SRS ST S S S R e T S . S . S NS, . S, S ST S S S R i e S S S . S S . S SR R e e S S S S S S N N .

*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *
* *
*Br 43 :gmean : gmean/F *
*Entries : 140 : Total Size= 1198 bytes One basket in memory *
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *

*

the class is CalorimeterLevel?2 (defined in CaloFunctions.h)
the tree name is "CaloLevel2"
branch name is "Event"

The rootple contains also another branch with one entry only:

KRR AR R AR A A A A A A A A A A A A A A A A A A AR A AR A A A A AR A A A A I A A A KA I A A I A A A A A I A A A A A A A A A AR A A A A A A h K

*Tree :Software : Software used to generate data *
Entries : 1 : Total = 1663 bytes File Size = 534 ~
* : : Tree compression factor = 1.00 *
R R I I e b b b b b b b e 2 b b b b b b b i b b b b b b b b b 2 2 b b b b b e I S b b b b b b b db a2 b b b b b b a2 b b b b b b b I 2 b b b (b b Sb b 4
*Br 0 :swcode : swcode/I *
*Entries : 1 : Total Size= 644 bytes One basket in memory

*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *
* *
*Br 1 :swtrkcode : swtrkcode/I *
*Entries : 1 : Total Size= 662 bytes One basket in memory *
*Baskets : 0 : Basket Size= 32000 bytes Compression= 1.00 *

the tree name is “Software”

swcode 1is the software version of the <calorimeter LEVEL2 program which

produced the rootple. It is an integer coded this way: swcode = version +
100*subversion + 10000*subsubversion +
For example, software version 2.09 has swcode = 902

swtrkcode is the same as above but for tracker code used to produce track and
rigidity informations used by the calorimeter LEVEL2 program.

The ntuple format is:

KK R AR AR AR A AR A AR A AR A AR AR A A AR A KRR A A A AR A AR A AR A IR A AR A A A AR A A A A A A A A A AR A A h K

* Ntuple ID =1 Entries = 140 Pamela Calo
R Rt I e b b dh b b 2 Sh b b b b b S b b b Sb b b d Sh b dh b b 2 Sh b b dh b b 2 b b S b b 2 Sh b SR b b 2 Sh b Sh b b S Sh b g Y

* Var numb * Type * Packing * Range * Block * Name *
R e R e I b b b b b b I b b b b b a2 b b b b b S I 4 2 b b b b b b b b b b b b b b I b e 2 b b b b b S b b 2 b b b b g
* 1 * I*4 * * * CALO * OBT

* 2 * Ix4 o+ * * CALO * pkt_num

* 3 * I*4 * * * CALO * pro_num

* 4 * Rx4 * * * CALO * trigty

* 5 * I*4 * * * CALO * good

* 6 * I*4 * * * CALO * perr(4)

* 7 * I*4 * * * CALO * swerr (4)

* 8 * I*4 * * * CALO * crc(4)

* 9 * R*4 % * * CALO * nstrip

* 10 * R*4 % * * CALO * gtot

* 11 * R*¥4 % * * CALO * ncore

* 12 * R*4 % * * CALO * gcore

* 13 * R*x4 % * * CALO * impx

* 14 * R*4 * * * CALO * impy

* 15 * R*4 * * * CALO * tanx

* 16 * R*4 % * * CALO * tany

* 17 * R*4 * * * CALO * nint

* 18 * R*4 % * * CALO * ncyl

* 19 * R*4 * * * CALO * geyl

* 20 * R*4 % * * CALO * gtrack

* 21 * R*4 % * * CALO * gmax

* 22 * R*4 % * * CALO * nx22

* 23 * Rx4 % * * CALO * qx22

* 24 * R*¥4 % * * CALO * gq(4)

* 25 * R*4 % * * CALO * gtrackx

* 26 * R*4 % * * CALO * gtracky

* 27 * R*4 % * * CALO * dxtrack

* 28 * R*4 % * * CALO * dytrack

* 29 * R*4 * * * CALO * glast

* 30 * R*4 % * * CALO * nlast

* 31 * R*4 % * * CALO * gpre

* 32 * R*¥4 % * * CALO * npre

* 33 * R*4 % * * CALO * gpresh

* 34 * R*4 * * * CALO * npresh

* 35 * R*4 * * * CALO * glow

* 36 * R*¥4 % * * CALO * nlow

* 37 * R*4 % * * CALO * gtr

* 38 * R*4 % * * CALO * ntr

* 39 * Ix4 x * * CALO * cibar(2,22)
* 40 * I*4 % * * CALO * tibar(2,22)
* 41 * R*¥4 % * * CALO * cbar(2,22)
* 42 * Rx4 * * * CALO * tbar (2,22)
* 43 * R*4 % * * CALO * planetot

* 44 * R*4 % * * CALO * gmean

ER I S S I S E I S I I b b I S I S S S S b S I e b b S R S b I S I b b S S R S b b b e S b S b S b

* Block * Entries * Unpacked * Packed * Packing Factor *
R IR I e 2 b b b b b S g 2 b b b b b b b dh g b b b b b b Sh S S 2 b b b b b b dh S 2 b b b b b IR SR S S 2 b b b b Sh Sh g 2 b b b b 4
* CALO * 140 * 912 * 912 * 1.000 *
* Total * - * 912 * 912 * 1.000 *
R R I e I b dh b b 2 Sh b b b b b S Sh b dh b b d Sh b b dh b b 2 Sh b b dh b b 2 Sh b dh Sb b 2 Sh b b Sh b b 2 Sh b SR b b dh db b i 2 4
* Blocks =1 Variables = 44 Columns = 228 *

KRR AR A AR A AR A AR A A A A A A A AR AR A AR A A A A A KA AN A A KA A I A A A A A I A A AR A AR A AR A AR A A,k

- ntuple ID is 1
- lrec is 8190

the ntuple file contains another ntuple ID:

KRR AR R AR R AR A AR A AR A AR A AR A AR AR A A AR AR A A AR AR A AR A AR A AR AR A A AR A A A A A A ANk, K

* Ntuple ID = 2 Entries = 1 Software version

R e R e I b b b b b b I b b b b b a2 b b b b b S I 4 2 b b b b b b b b b b b b b b I b e 2 b b b b b S b b 2 b b b b g
* Var numb * Type * Packing * Range * Block * Name *
R b e I b b b I e b b b b b b b b b b b b b b I b b b b b b b I I 2 b b b b b I I e 2 b b b b b a2 b b b b g
* 1 * I*4 % * * VERSIONS * swcode

* 2 * I*4 % * * VERSIONS * swtrkcode
L R b b b b b b b b b b db b A b 2 b d b d b 2 b b db b b b b b d b A b b b b b b b b b g
* Block * Entries * Unpacked * Packed * Packing Factor *
L b b b b b b b b b b b d b I b b b b db b b b b b b b b b 2 b b b b b b b b b b b b b b db b b b db b b b I b b b b b b b b b g
* VERSIONS * 1 * 8 * 8 * 1.000 *
* Total * - * 8 * 8 * 1.000 *
L R b b b b b b b b b b db b A b 2 b d b d b 2 b b db b b b b b d b A b b b b b b b b b g
* Blocks =1 Variables = 2 Columns = 2 *

Ak A Ak Ak h kA hkhkhkdhkh Ak kA hh kA h Ak ko d ko kA h kv ko ko k ko h kv hkkhhkhkdr kA hkhkrhkhkxhhkxx k%

this ntuple contains software version informations (see above).

4) BRIEF DESCRIPTION OF VARIABLES

This description 1is partly taken from Jens Lund's PhD thesis (Appendix A2,
page 126). All energies are measured in MIP.

* OBT - On Board Time of the event
* pkt_num - PSCU counter
* pro_num - YODA event counter for the processed file

* trigty - type of trigger which generated the event (taken from the trigger
board information):

trigty = 0 is a TOF trigger

trigty = 1 is a S4/pulser trigger

trigty = 2 is a calorimeter trigger

* good - integer, true if there were no error in the event (CRC or processing
errors or alarms)

* perr[4] - integer, one for each section of the calorimeter, if true there
was a processing error for the relative section in the selected event.

* swerr[4] - 1integer, one for each section, 1f true there was an error
detected by the DSP(s) of the calorimeter for the selected event.

* crc[4] - 1integer, one for each section, if true there was a CRC error in
data transmitted by the relative section in the selected event.

* nstrip - the total number of strip hit.
* gtot - the total measured energy in the calorimeter.

* n(g)core - SUM(j=1,2)SUM(i=1,PLmax) Nhit(i,j)*i , where Nhit (i, j) 1is the
number of hits in a cylinder of radius 2 Rm (Moliere radius) around the track
in the i-th plane (where the top plane 1is number 1 and the sum runs up to
plane number PLmax, closest to the calculated electromagnetic shower maximum
of the j-th view). "gcore" is similar but uses the measured energy instead of
the number of strip hit.

* impx(y) - the x (y) impact position on the first plane as determined by the
track fitted in the calorimeter.

* tanx(y) - the tangent of the angle in the x (y) direction as determined by
the track fitted in the calorimeter.

* nint - SUM(j=1,2)SUM(i=1,22) TH(i,j)*i , where TH(i,j) = 1 if the i-th plane
of the j-th view has a cluster along (less than 4 mm away) the track with a
deposited energy typical of a proton (order of one MIP), otherwise TH(i,j) =
0.

* n(g)cyl - the measured energy deposited (number of strip hit) in a cylinder
of radius 8 strips around the shower axis.

* gtrack - the energy deposited in the strip closest to the track and the
neighbouring strip on each side.

* gmax — the maximum energy detected in a strip.

* n(g)x22 - the number of strip hit (energy) in the last silicon plane of the
calorimeter (x view number 22).

* gqg(4) - the energy released in the first half of each of the four
calorimeter sections.

* gtrackx(y) - measured energy in clusters along the track in the x(y)-view.

* dx(y)track - measured energy outside the clusters along the track in the x
(y)-view.

* g(n)last - the same as "g(n)cyl" but only for the last four planes.

* g(n)pre - the same as "g(n)cyl" but only for the first three planes.

* g(n)presh - the same as "g(n)cyl" but with radius 2 strips and only in the

first four planes.

* g(n)low - the same as "gtot (nstrip)" but below the calculated
electromagnetic shower maximum.

* g(n)tr - the same as "g(n)cyl" but with radius 4 strips.

* cibar(2,22) - for each view and each plane the strip traversed by the
particle (or by the shower axis) according to the fit of the track performed
by the calorimeter.

* tibar(2,22) - the same but using the tracking information.

* cbar(2,22) - for each view and each plane the position in millimeters

traversed by the particle (or by the shower axis) according to the fit of the
track performed by the calorimeter.

* tbar(2,22) - the same but using the tracking information.
* planetot - number of planes used to calculate the energy truncated mean
“gqmean” .

* gmean - the energy truncated mean that is the average energy deposit for the
five planes with the smaller energy deposit of the whole calorimeter.

5) KNOWN BUGS

No known bugs. Write to Emiliano (Emiliano.Mocchiutti@ts.infn.it) to report
any problem.

